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Foreword 

This paper is part of an ongoing research in the Risk Analysis and Policy (RAP) project ad- 
dressing issues of siting hazardous facilities, which is one of the most intractable public policy 
problems in most industrialized countries. An important part of this problem is creating credi- 
ble and trusted processes for making these difficult choices. Decision analysis has traditionally 
served to  clarify tradeoffs which underlie these kinds of decisions. This paper presents and com- 
pares different methods for eliciting preferences, which can certainly be a major contribution to  
systematic analyses of difficult policy choices of this sort. 

This work was carried out, in part, during Freerk A. Lootsma's visit to  IIASA from May to  
August, 1992. 
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Abstract 

Since decisions are invariably made within a given context. we model relative preferences 
as ratios of increments or decrements in an interval on the axis of desirability. Next, we 
sort the ratio magnitudes into a small number of categories, represented by numerical 
values on a geometric scale. We explain why the Analytic Hierarchy Process (.4HP) and 
the French collection of ELECTRE systems, typically based on pairwise - comparison 
methods, are concerned with category judgement of ratio magnitudes, whereas the Simple 
Multi-Attribute Rating Technique (SMART) essentially uses the orders of magnitude of 
these ratios. This phenomenon, well-known in psycho-physics, provides a common basis 
for the analysis of the methods in question and for a cross-validation of their results. 
Throughout the paper, we illustrate the approach via a well-known case study, the choice 
of a location for a nuclear power plant. 

1 Introduction 

We are concerned with three well-known approaches for multi-criteria decision analysis 
(MCDA): the direct-rating method in the Simple Multi-Attribute Rating Technique (S- 
MART), as well as the pairwise-comparison methods in the Analytic Hierarchy Process 
(AHP) and in the French set of ELECTRE methods. We concentrate on the basic ques- 
tion which is differently answered in each of them: how to model the decision maker's 
preferential judgement when he considers the alternatives under a particular criterion? 

The above methods are well-known in the field of MCDA, where support is given to the 
subjective weighing of a finite number of alternatives A 1 , .  . . , A, under a finite number 
of conflicting performance criteria CI, . . . , C,. SMART (Von Winterfeldt and Edwards 
(1985)) and the AHP (Saaty (1980), see also Zahedi (1986) and French (1988)) are firmly 
rooted in the American school of MCDA, where the preference intensities for the alterna- 
tives are modelled by a partial value function on the set of alternatives. under each of the 
criteria separately. ELECTRE (Roy (1985), see also Scharlig (1985) and Vincke (1989)) is 
at the origin of the French school, where the preference relations between the alternatives 
are modelled via a system of binary outranking relations. again under each of the criteria 
separately. In all these methods there is eventually an aggregation step to produce either 
a global value function or a global system of outranking relations, enabling the decision 
maker to rank the alternatives in a subjective order of preference. 

In the basic pairwise-comparison experiment of the AHP and ELECTRE, two alternatives 
Aj and Ak are presented to the decision maker whereafter he is requested to judge them 



under a particular criterion C; and to express his indifference between them or his graded 
preference for one of the two. In SMART, however, the decision maker is asked to  rank 
the alternatives Al , .  . . ,A,  under the criterion C; and to  refine his judgement by the 
assignment of grades to  them. Thus. SMART enables the decision maker to keep a rather 
holistic view on the alternatives. In the AHP and in ELECTRE, his judgement is more 
fragmented. 

In several papers (Lootsma (1987, 1990)) we studied the numerical model for preferential 
judgement in the AHP, and we proposed a multiplicative variant where the gradations of 
comparative judgement are put on a scale with geometric progression. We started from the 
assumption that the subjective weighing of the alternatives under a particular criterion is 
carried out in a given context, represented by an interval on the corresponding axis. This 
interval is partitioned into subintervals which are felt to  be of the same order of magnitude; 
the echelons of the partitioning constitute a sequence with geometric progression. This 
property is well-known in psycho-physics. 

In fact, the multiplicative AHP has been designed to estimate ratios of subjective values. 
In the basic experiment just mentioned. the decision maker is requested to estimate the 
relative value of Aj and Ak under criterion C,. Instead of a real magnitude scale, how- 
ever. we use a category scale requiring that his responses are restricted to the gradations 
indifference, weak, strict, or strong preference, or to thresholds between adjacent grada- 
tions. Finally, the above echelons enable us to assign numerical values to the gradations 
of comparative judgement. 

In psycho-physical measurement, the ratios of audible sound or visible light intensities 
are usually recorded as differences on the deci-Bell scale. This means that not the ratio 
magnitudes themselves, but their orders of magnitude are considered. The observation 
suggested us to assume that a difference of grades in SMART represents the order of 
magnitude of a ratio of subjective values in the multiplicative AHP. In doing so, we 
obtain a simple, straightforward relationship between the two hlCDA methods, enabling 
us to carry out a cross-validation of the results. 

In ELECTRE, the outranking relation between the alternatives Aj and Ak under criterion 
C; depends on the difference between the physical or monetary values g;( Aj) and gi( Ak)  
expressing the performance of the two alternatives under C;. The key question is to find 
certain discrimination thresholds around g;(Aj), that is, indifference, preference, and veto 
thresholds, so that the preference for Ak with respect to  Aj is determined by the zone 
where gi(Ak) is situated. The context, however, a uniform framework when we compare 
the alternatives under criterion C;, is not explicitly used in the model. We therefore 
propose to  model the context as an interval on the axis corresponding with C;, and to 
relate the choice of the thresholds to the endpoints of the range. 

2 Categorization of price and reliability ranges 

We start with the example which is frequently used to illustrate MCDA: the evaluation 
and the selection of a car. Usually, low costs are important for the decision maker so 



that he carefully considers the consumer price. and possibly the annual expenditures for 
maintenance and insurance. The consumer price as such. however. cannot tell us whether 
the car in question would be more or less acceptable to him. That depends on the context 
of the decision problem. that is, on the spending power of the decision maker and on the 
alternative cars which he seriously has in mind. In what follows, we shall be assuming that 
the acceptable prices are anchored between a minimum price Cdn which he is prepared to  
pay, and a maximum price C,,, which he can afford and which he does not really want to 
exceed. Intuitively, he will subdivide the price range (Cmin, C,,,) into a number of price 
categories (sub-intervals) which are felt to be of the same order of magnitude. We take the 
grid points Cmin, Cmin + eo, Cmin + el , .  . . to denote the price levels which demarcate these 
sub-intervals. The price increments eo, el. ez, . . . represent the echelons of the category 
scale under construction. In order to  model the requirement that the sub-intervals must 
subjectively be equal, we recall Weber's law (1834) in psychophysics, stating that the 
just noticeable difference As of stimulus intensities must be proportional to the actual 
stimulus level s. The just noticeable difference is a step of the smallest possible order of 
magnitude when we move from C,;, to C',,,; we assume that it is practically the step 
carried out in the construction of our model. Thus, taking the price increment above Cmin 
as the stimulus intensity, that is, assuming that the decision maker is not really sensitive 
to the price as such but to the excess above the minimum price Cd, which he has to pay 
anyway, we set 

e,-e,-1 = ~ e , - ~  , p = 1,2 , . . . ,  (1) 

which yields 
e, = (1 + ~ ) e , - ~  = . . . = (1 + ~)'eo. 

Obviously, the echelons constitute a sequence with geometric progression. The initial step 
is eo, and (1 + e )  is the progression factor. The integer-valued parameter 11 is chosen to 
designate the order of magnitude of the echelons. 

The number of categories is rather small. because our linguistic capacity to describe 
the categories unambiguously in verbal terms is limited. We introduce the following 
gradations to identify the subsequent price categories: 

cheap, 
cheap/somewhat more expensive, 
somewhat more expensive, 
somewhat more/more expensive, 
more expensive, 
more/much more expensive, 
much more expensive. 

Thus, we have four major, linguistically distinct categories: cheap, somewhat more, more 
and much more expensive cars. Moreover. there are three so-called threshold categories 
between them, which can be used if the decision maker hesitates between the neighbouring 
gradations. 

In earlier papers (the author (1990, 1991)) we employed a number of examples such as 
the progression of historical periods and planning horizons, the classification of nations 
according to size, and the perception of light and sound intensities, in order to show 





that human beings follow the same pattern in many unrelated areas when they categorize 
an interval. They introduce three to five major categories, and the categorization of the 
range of audible sound or visible light intensities demonstrates that the progression factor 
(1 + E ) ~  is roughly 4. By the interpolation of threshold categories. they have a more 
refined subdivision of the given interval. Then there are six to nine categories, and the 
progression factor (1 + E )  is roughly 2, as the progression of historical periods and the 
categorization of nations readily show. With these results we can easily complete the 
categorization of a price range. Let us, for instance, take the range between Dfl 20,000 
(ECU 9,000) for a modest Renault 5 and Dfl 40,000 (ECU 18,000) for a well-equipped 
Renault 21 in the Netherlands. The length of the range is Dfl 20,000. Hence, setting the 
last price level C-, + e6 roughly at Cmax we have 

It is sometimes more convenient to associate the above-named qualifications, not with the 
sub-intervals, but with the price levels. Thus, cheap cars are roughly found at the price 
C-, + eo, somewhat more expensive cars at Cmin + e2, etc. This will eventually lead to 
the following subdivision: 

C-, + eo Dfl 20,300 cheap cars, 
C-, + el Dfl 20,600 cheap/somewhat more expensive cars, 
C-, + e2 Dfl 21,200 somewhat more expensive cars, 
C-, + e3 Dfl 22,500 somewhat more/more expensive cars, 
C-, + e4 Dfl 25,000 more expensive cars, 
C-, + e5 Dfl 30,000 more/much more expensive cars, 
C-, + e6 Dfl 40,000 much more expensive cars. 

We can now give a more precise interpretation for the gradations of comparative judge- 
ment. A somewhat more expensive car has a price increment e2, which is 4 times the price 
increment eo of a cheap car, etc. We use this observation to  identify the so-called modifiers 
"somewhat more", "more", and "much more" with ratios 4:1, 16:1, and 64:l respectively. 
Note that. by this convention, a car of Dfl 25,000 is somewhat more expensive than a car 
of Dfl 21,200 because the price increments also have the ratio 4:l. By the same token, a 
car of Dfl 21,200 is somewhat cheaper than a car of Dfl 25,000. We ignore the possibility 
of hysteresis when we invert the orientation of comparative judgement. 

When the alternative cars are judged under the consumer-price criterion. the target is at 
the lower end C-, of the interval of possible prices. From this point the decision maker 
looks at less favourable alternatives. That is the reason why the above categorization, in 
principle an asymmetric subdivision of the interval under consideration, has an orientation 
from the lower end: the upward direction is typically the line of sight of the decision maker, 
a t  least under the given criterion. Figure 1 shows the concave form of the relationship 





between the echelons on the interval (Cmin, Cmax) and their order of magnitude p ,  a form 
which is well-known in psycho-physics. LIathematically, the rela.tionship between p and 
the consumer price C can be written in the form 

c - Cmin 
p = log 

C m a x  - Cmin 
* 6 4 1  . 

When the cars are judged under the reliability criterion, the orientation is downwards. 
Numerical data to estimate the reliability are usually available. Consumer organizations 
collect information about many types and models of cars which follow the prescribed 
maintenance procedures, and they publish the frequencies of technical failures in the first 
three or five years. Let us suppose that t,he decision maker only considers cars with a 
reliability of at least 95%, so that we are restricted to the interval (R,;,, Rmax) with 
Rfin = 95 and RmaX = 100. Following the mode of operation just described, we obtain 
the major categories 

Rmax - e,-, 99.9% reliable cars. 
Rmax - e2 99.7% somewhat less reliable cars, 
Rmax - e4 98.7% less reliable cars, 
Rmax - e~ 95.0% much less reliable cars, 

because eo = (100 - 95)/64 z 0.08. Figure 2 illustrates the relationship between the 
echelons on the interval ( R,,, Rmax) and their order of magnitude p .  

In summary, the alternatives are compared with respect to a certain target. The relative 
performance is inversely proportional to the distance from the target. The reader can 
easily verify this in the two examples just given. If we take Rj  and Rk to denote the 
reliability of the alternative cars A, and Ak, for instance, and if we suppose that the 
respective reliabilities are of the order of magnitude pj  and 111;. then the inverse ratio 

represents the relative performance of A, and Ak under the reliability criterion. The 
qualifications "somewhat cheaper" and "somewhat more reliable" imply that the inverse 
ratio of the echelons (the distances to the target) is 4:1, at least under the assumption 
that the progression factor (1 + E )  may he set to 2. The relationship between pj  and Rj 
takes the ex~ l i c i t  form 

3 Magnitude categories in the multiplicative AHP 

So far. we have been working on two different dimensions: consumer price and reliability. 
Judgemental statements like "somewhat more expensive" a.nd "somewhat more reliable" 
cannot be aggregated, however, unless we make a transition to a new, common dimension. 
That is the reason why we take the expression "somewhat more reliable" to stand for 



"somewhat more desirable" under the criterion of reliability. Similarly, we assume that the 
expression "somewhat more expensive" may stand for "somewhat less desirable" under 
the consumer-price criterion. We shall assume that the desirability of the alternatives 
varies over the same interval (D,,,jn, Dm,,) under each of the respective criteria, a t  least 
during the decision process a t  hand. Moreover, we suppose that the interval (Din, Dm,,) 
may be categorized in the same way as the intervals in the previous examples. Taking 
D j  = Dm,, - ePI and Dk = Dmax - ecrk to denote the desirability of Aj and Ak respectively, 
we model the preference for Aj with respect to  Ak as the ratio of subjective stimulus values 

The  echelons e,] and e,,  may be found on a geometric scale. In the multiplicative AHP, 
we therefore convert the gradations of the decision maker's comparative judgement into 
numerical values on a scale which is also geometric. Thus. we estimate the ratio V, /Vk by 

where bjk1 an estimate of ( p k  - p j ) ,  is an integer-valued index designating the gradation 
of the decision maker's judgement as follows: 

-8 '4, vastly less desirable than Ak, 
-6 Aj much less desirable than Ak, 
-4 A, (definitely) less desirable than Ak, 
-2 A, somewhat less desirable than Ak, 
0 ,-I, as desirable as Ak (equally desirable), 

$2 ,-IJ somewhat more desirable than Ak, 
$4 -4, (definitely) more desirable than Ak, 
$6 Aj much more desirable than Ak. 
$8 A, vastly more desirable than Ak. 

It is current practice to  describe the gradations in terms of preference, so that the gra- 
dation index bjk can equivalently be used to  designate the strength of preference in the 
following way: 

very strong preference for Ak versus Aj, 
strong preference for Ak versus Aj, 
strict (definite) preference for Ak versus Aj, 
weak (mild, moderate) preference for Ak versus Aj, 
indifference between Aj and Ak, 
weak (mild, moderate) preference for Aj versus Ak, 
strict (definite) preference for Aj versus Ak, 
strong preference for Aj versus Ak. 
very strong preference for Aj versus Ak. 

Thus, we use the even values of the gradation index bjk t o  designate the major echelons 
(the major gradations) of comparative judgement. and the odd values for the threshold 
echelons ( the threshold gradations). 



The original .4HP approximates the vector V = (. . . , V,, . . . . \,Ik,. . .) of subjective stimulus 
values by the Perron-Frobenius eigenvector of the matrix R = {rjk).  This approach has 
been criticized by various authors. Alternative proposals were also brought forward. Par- 
ticularly logarithmic regression has been proposed, not only because it is an appropriate 
technique to deal with ratio information, but also on axiomatic grounds (Barzilai et al. 
(1987, 1991)). Thus, we approximate V by the normalized vector T which minimizes the 
expression 

C ( e n  r j k  - en vj + en vk)'. (6) 
j < k  

Minimization is carried out by solving the associated, linear system of normal equations 
with variables u j  = en vj. Obviously, the u j  have an additive degree of freedom. The vj 
will accordingly have a multiplicative degree of freedom. which is used to single out the 
normalized vector E with components summing up to unity. Note that an unnormalized 
minimum solution is given by the geometric row means of the pairwise comparison matrix 
R. 

4 Estimation of orders of magnitude in SMART 

It frequently happens that the decision makers find it difficult to choose a gradation 
for their comparative judgement , particularly when the performance of the alternatives 
under the given criterion is expressed in physical or monetary units. The categorization of 
section 2 will help them to carry out the task properly. In many real-life applications we 
observed that the decision makers intuitively turn to such a procedure. They classify the 
alternatives in a small number of groups (the good ones, the bad ones, and an intermediate 
group) on a vaguely defined range of desirability, whereafter they judge them in pairs 
via inspection of the classification. The pairs are presented in random order, but the 
classification enables the decision makers to keep a somewhat holistic view on the set of 
alternatives within the context of the decision problem. 

In doing so, the decision makers are not far away from the direct-rating procedure which 
is normally used in SMART (see Von Winterfeldt and Edwards (1986)). Thus, when they 
judge the performance of an alternative, they express their judgement by choosing an 
appropriate value between a predetermined lower limit for the worst (real or imaginary) 
alternative and a predetermined upper limit for the best (real or ideal) alternative. In 
schools and universities, such a procedure is well-known as the assignment of grades 
expressing the performance of the pupils or students on a category scale with equidistant 
echelons, between 1 and 5:  between 1 and 10, or between 1 and 100 ( the upper limit varies 
from country to  country; sometimes the scale is upside-down so that the grade 1 is used 
to express excellent performance). Because everybody has once been subject to his or her 
teacher's judgement, the grades are numbers with a strong, qualitative connotation which 
can successfully be used in multi-criteria analysis. Concentrating on the scale between 1 
and 10, we suppose that a unit step difference represents an order of magnitude difference 
in performance (a pupil who usually scores 9 is an order of magnitude better than a pupil 



scoring 8, etc). In the interval (Dmin, Dm,,) we could accordingly .assign the following 
grades to the subsequent gradations of desirability: 

Dmax - eo 10 excellent 
Dmax - el 9 very good 
. . . . . . 
Dmax - e6 = Dmin 4 poor. 

In pass-or-fail decisions at schools, the grades I,?, and 3 are normally used for a perfor- 
mance that cannot be compensated by high grades elsewhere. Hence, we mainly work 
here on a scale between 4 and 10 to  rate the desirabilities between Dm;, and Dm,,. What 
matters, however, is the difference between grades. Considering two alternatives Aj and 
Ak with the respective grades gj and gk assigned to them, we take the quantity 

to estimate their relative desirability 

because g, and gk are estimates of 10 - p j  and 10 - p k  respectively. Such a simple 
relationship between SMART and the multiplicative AHP enables us to carry out a cross- 
validation of the two methods. The experiments in question will be reported in later 
papers. Preliminary results may be found in Lootsma et al. (1993). 

Since the r j k  obtained by (7)  are consistent, an unnormalized solution of (6) is given by 
the vector with components 

291 . 

Normalization of this vector yields the desired vector of calculated weights of the alter- 
natives. 

5 Psycho-physical evidence 

In the psycho-physical literature, the issue of how human beings judge the relationship 
between two stimuli, in a pairwise comparison on one single dimension, was brought 
up a few decades ago. Torgerson (1961) observed that human beings perceive only one 
quantitative relation, but they estimate differences of subjective stimulus values when they 
are requested to express their judgement on a category scale with arithmetic progression 
(equidistant echelons), and they estimate ratios of subjective stimulus values when the 
proposed scale is geometric. Thus, they interpret the relationship as it is required in the 
experiment. Which of the two interpretations is correct, cannot empirically be decided 
because they are alternative ways of saying the same thing. 

Torgerson's observation is easy to understand if we assume that the subjective stimulus 
values are not identically used in the two types of experiments. In the ratio experiment 
with a geometric scale, human beings judge the ratio of two stimulus values. In the 



difference experiment with an arithmetic scale, they do not judge the ratio itself but its 
order of magnitude, which is essentially a logarithm of the ratio. 

Psycho-physical research in the seventies and eighties (see Veit (1978) and Birnbaum 
(1982)) confirmed Torgerson's observation that pairwise comparative judgement of two 
stimuli uses one operation only in both types of experiments. Moreover, if subtraction is 
assumed to be the underlying operation, then ratio judgement is exponentially related to 
difference judgement. Since these two-stimuli experiments cannot discriminate between 
a one-operation and a two-operation theory, four-stimuli experiments were designed such 
as ratio judgement of differences of stimuli, difference judgement of differences etc., in 
order to analyze human perception of quantitative relations. An extensive discussion of 
the results so far is beyond the scope of the present paper. It is enough for our purposes 
to recall here that the basic operation in the comparison of the stimuli appears to be . 

subtraction. Intuitively, this is easy to understand since orders of magnitude are easier 
to handle than the original magnitudes themselves (a.dditive steps!), particularly i f  the 
magnitudes are large. 

Figure 1 and Figure 2 show that the categorizatioil of an interval is in fact a very simple 
procedure. In the horizontal direction one starts with a small initial step, which is repeat- 
edly doubled until the endpoint of the interval is reached. An alternative way of looking 
at the procedure is to consider it as a series of bisections of the interval. In the vertical 
direction one just counts the number of such steps. 

Let us summarize the significance of Torgerson's work in his own words: any model relying 
solely on ratios can be parallelled exactly by a model that solely relies on differences. 
In the field of decision analysis, these two models and the appropriate operations were 
independently established by Barzilai (1992). For the time being, a pragmatic conclusion 
is that the multiplicative AHP and SMART do the same thing albeit in alternative ways, 
that is, they rely on ratios and differences respectively, and they are exponentially related. 

6 Criterion weights and aggregation 

The assumption that the desirability of the alternative varies within the common interval 
(D,,,j,, D,,,) on the dimension of desirability enables us to operate with geometric means 
of preference ratios. Let us consider two alternatives Aj and with their calculated 
weights Fi j  and i j ; k  under criterion C,. For each i the preference ratio 

expressing the relative preference for Aj with respect to Ak under C,, is unique. Since we 
are dealing with ratios. it is natural to model the global preference for A, with respect to 
Ak by the geometric mean 



the calculated weight of the i-th criterion. Thus, we set the final score where c; denotes - 
f , of alternative 

The final scores have a multiplicative degree of freedom cr. They can accordingly be 
normalized to sum up to  unity. 

The ratio (8) suggests the phrases to  be used in the elicitation of the relative importance of 
two criteria C,, and Ci,. We may ask the decision maker to  consider two real or imaginary 
alternatives Aj and Ak such that his preference for Aj over Ak under C;, is roughly equal 
to  his preference for Ak over Aj under C;,. These preferences are estimated by 

respectively, where bjk designates the selected gradation of his comparative judgement. 
Next, assuming that these preferences do not depend on the performance of Aj and Ak 
under the remaining criteria, we ask him to estimate his preference for the two alternatives 
under C;, and C,, simultaneously. Let us take OJk to denote the selected gradation, so 
that his preference for Aj over Ak is estimated by 

2Olk . 

Now, taking w = w;,;, to  stand for the relative importance (the ratio of the weights) of 
C,, and C;,, we obtain by the geometric mean aggregation rule that 

whence 

W = 
bjk + gjk 
bjk - djk' 

It will he clear that 10jkl < lbjkl since the preference for Aj over Ak under the two 
criteria simultaneously cannot be greater than the preference for Aj over Ak under one of 
the criteria individually. It is easy to  verify now that w varies roughly between and 16 
when bjk varies between -8 and 8 and gjk between -lbjkl and )bjk\. The simplest geometric 
sequence of values between ' and 16, corresponding to indifference, weak, strict, strong, 

16 
and very strong preference, is a sequence with progression factor 2. Thus, we obtain 
the following geometric scale for the major gradations in the pairwise comparison of the 
criteria C;, and C,, : 

1 - C,, vastly less important than C;,, 
16 
........................................... 
1 
- 2 C;, somewhat less important than C;, , 
1 C;, as important as C;,, 
2 C;, somewhat more important than C;,, 
4 C;, moreimportantthanC;, ,  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
16 Cil vastly more important than Ci2 ,  



and if we also allow threshold gradations to express hesitations between two adjacent 
qualifications in the above list, we have a geometric sequence with progression factor fi. 
From the above considerations, we derive a simplified procedure to calculate the criteri- 
on weights in the multiplicative AHP. First, we ask the decision maker to compare the 
criteria in pairs and to estimate their relative importance in terms of the above grada- 
tions, possibly keeping in mind the interpretation that we have just given. Next, we use 
logarithmic regression to  calculate criterion weights. If there is exactly one judgemental 
statement for each pair of criteria, the (unnormalized) weight of C; is the geometric mean 
of row i in the pairwise-comparison matrix. Normalization so that the weights sum up to 
unity yields the weights E; of the criteria C;, i = 1, . . . , m. 

In SMART the calculations are even much simpler than in the multiplicative AHP. We 
ask the decision makers to express the importance of the criteria in grades or marks on 
the scale 4, . . . -10 (grades lower than 4 are possible but they practically eliminate the 
corresponding criteria). Taking m; to stand for the mark assigned to  criterion C,, we 
obtain that the ratio of the weights of C;, and C;, is estimated by 

so that an unnormalized weight of C; is given by 

whereafter normalization yields the calculated weight E; of C;. 

The aggregation rules in SMART and in the multiplicative AHP are logarithmically re- 
lated. If we let y;j stand for the grade assigned to alternative Aj under criterion Ci, it 
must be true that - 

so that 
m 

i=l  

where 
m m 

which demonstrates how the arit hmetic-mean aggregation rule in SMART corresponds to 
the geometric-mean aggregation rule in SMART. 

7 Numerical example 

A well-known case study in the literature on multi-criteria analysis is the choice of a loca- 
tion for a nuclear power plant (Keeney and Nair (1977), Roy and Bouyssou (1983, 1992)) 



Table 1. Impacts of 9 alternative locations for a nuclear power plant under G performance 
criteria (case study by lieelley a.ud Nair (1977)). 

Alternative 1,ocations 
Criteria 

CI : Illdividuals ailected 
Cz : River salnion lost 
CJ : Biological impact 
C4 : Socio-econ. impact 
C5 : IIigli-voltage lines 
CG : Incremental cost 

Scores 

8 - 
I 

4 
6 
5 
9 

Table 2. Direct scores 01 alternative locations for a nuclear power plant, criterion weights, as well 
as h11a.l scores according to S M  AItT (a.ri thlnetic-mean aggregation rule) and the n~ultiplicative AII P 
(geolnct ric-mean aggregation rule). 

Alternative Locations 

111 A2 A3 A4 /Is /I, A.; A, A9 
G 6.5 7 6 G G 8 7.5 7 

9.5 9.5 9.5 10 10 10 10 10 10 
8.5 8.5 8 6.5 5..5 5.5 7.5 8 9 
7.5 7.5 7.5 6.5 7 G G.5 G 7 
9.5 9.5 7 7 G 9.5 10 10 10 
8.5 10 8.5 8.5 5.5 .5 7 6 G 
8.04 8.66 8.04 7.68 6.59 6.84 7.49 7.60 7.66 
13.7 21.1 13.7 10.7 5.0 .5.9 9.3 10.1 10.5 

Criteria 

C1 : Illdividuals affected 
C2 : ltiver sa11no11 lost 
C3 : 13iological impact 
C4 : Socio-econ. impact 
C5 : High-voltage lines 
Gj : Inc.relne11ta1 cost 
Final scores (SMART) 
Final scores (Mult. A1IP) 

Table 3. Rank order of alternative locations for a, liuclear power plant, 
calculated according to different methods for multi-criteria analysis. 

Weights 

0.237 
0.167 
0.059 
0.118 
0.084 
0.335 

Expected utility, 
Iieeney a l~d  Nair 
A 3 0.926 
A 2 0.920 
AI  0.885 
A4 0.883 
As 0.872 
A9 0.871 
A i 0.862 
A 5 0.813 
As 0.804 

Multjplicative AIIP 
and SMART 

A2 21.1 
A3 13.7 
Al 13.7 
A4 10.7 
As 10.5 
As 10.1 
A, 9.3 
A6 5.9 
As Fj.0 



in the North-West of the USA (Washington). The consultants evaluated the expected 
utility of 9 alternative sites on the basis of the following 6 criteria: 

C1: Health and safety, the annual number of human beings possibly affected by the power 
plant. This number is allowed to vary over a range between 0 and 200 

C2: Quantity of river salmon lost by thermal pollution. This quantity is allowed to vary 
over a range between 0 and 300 (*lo3). 

C3: Biological impact, measured on a qualitative scale between 0 (smallest impact) and 
8 (worst possible impact), and averaged over a number of -experts. 

C4: Socio-economic impact, also measured on a qualitative scale between 0 (smallest 
impact) and 7 (worst possible impact), and averaged over a number of experts. 

Cs: Esthetical impact, measured by the length of the high-voltage lines connecting the 
plant to the electrical network. The length is allowed to vary over a range between 
0 and 50 miles. 

C6: Cost. the incremental cost with respect to the cheapest possible location. The incre- 
ment is allowed to vary over a range between US$ 0 and US$ 40 million. 

Table 1 shows the impacts of the locations under the respective criteria. Moreover, we 
understand that the criteria have the following rank order in importance: C3 < C5 < 
C4 < C2 < C1 < C6, which is roughly modelled by the assignment of the scores 4, .  . . ,9 .  

Since we have a range of permissible impact variations under each criterion (the ranges 
were required for the construction of the utility functions), we can easily convert the 
impacts into values on the SMART scale between 4 (poor performance that can still be 
compensated) and 10 (excellent performance) via the formulas in sec. 2 and sec. 4. Thus, 
an impact of 57 on the range (0, 200). when the objective is t,o minimize the impact 
(alternative Al under criterion C1), yields the direct score 

2 1 0  log (&-61) = 5.81. 

We have arbitrarily rounded off this quantity to the nearest multiple of 0.5. Despite the 
choice of the step size 0.5 we maintain that we are still working with orders of magnitude, 
but we have somewhat reduced the coarseness of the original SMART scale. Table 2 
exhibits the direct scores so obtained for all alternatives under each of the criteria, the 
criterion weights computed according to formula (9), and the final scores. Lastly, Table 3 
shows the alternatives in the rank order obtained by Keeney and Nair as well as our rank 
order. 

The similarity of the results is encouraging: it shows what we can obtain without asking 
the decision makers to contribute to the construction of utility functions. Simplification of 
the procedures for multi-criteria decision analysis is an urgent issue, and we have obtained 



practically the same rank order here, with a considerably reduced "information load" on 
the shoulders of the decision maker. 

8 The discrimination thresholds in ELECTRE 

In ELECTRE, a pairwise comparison of two alternatives Aj and Ak under criterion C, is 
based on the difference between the physical or monetary values expressing the perfor- 
mance of the respective alternatives under C,. In what follows, we shall be assuming that 
increasing values designate a more desirable performance. In order to simplify matters 
even more, we shall consider two alternative cars Aj and Ak under the reliability criterion 
(see section 2). The respective reliabilities are denoted as R j  and Rk.  With Rj  as the 
reference value, the decision maker is requested to choose discrimination thresholds in 
order to judge Rk - Rj. First, there is an indifference zone around the reference value 
Rj, demarcated by a lower indifference threshold Rj  - q1(Rj) and an upper indifference 
threshold Rj  + q(Rj). Thus, the decision maker is indifferent between the two cars under 
the reliability criterion if 

where the decrement q' and the increment q are functions of Rj. Similarly, the decision 
maker has a weak preference for Ak if 

and a strict preference for Ak if 

where R j  + p(Rj)  and R j  + z'(Rj) stand for the upper preference threshold and the upper 
veto threshold respectively. The inequality 

implies dominance of Ak over Aj which cannot be compensated by the performance of Aj 
under the remaining criteria. Usually, the increments p and v are also functions of Rj. 
Similarly, there are lower thresholds Rj - p'(R,) and Rj  - v1(Rj) in order to  demarcate 
weak and strict preference for Aj with respect to Ak. 

Our experiences with the AHP and SMART prompt us to  make some critical remarks. 
In the above definitions of thresholds, the context does not explicitly appear, although it 
could have been modelled as an interval (R,,,i,, R,,,). The target R,,, could have been 
used to define the increments q, p and v as functions of R,,, - R,, but the target has also 
been ignored. Finally, we will see that the increments q. p and z7 on the one hand, and 
the decrements q1,p' and v' on the other. suggest a symmetry that does not really exist 
within the context of a decision problem. 



When the decision maker is able and prepared to specify the contest, we propose to 
structure the choice of discrimination thresholds as follows. In previous sections, we 
introduced the inverse ratio 

Rmax - Rj 
L a x  - Rk 

to stand for the subjective value of Ak with respect to Aj under the reliability criterion, and 
we used the ratios 1:1, 4:l and 16: 1 to represent indifference, weak, and strict preference 
for Ak with respect to A j .  Let us now take the ratio 2:l to model hesitations between 
indifference and weak preference. Then Rk is in the indifference zone around Rj  if 

1 < L a x  - Rj 5 2. 
- Rmax - Rk 

The upper indifference threshold, the upper endpoint of the zone, is accordingly given by 

and the lower indifference threshold is 

Similarly, using the ratio 8:l to model hesitations between weak and strict preference, we 
find that Rk is in the upper weak-preference zone if 

2 5 Rmax - Rj 
< s ,  

Rmax - Rk - 
so that the upper preference threshold is given by 

R j  + p(Rj)  = Rj + f (Rmax - R j ) .  

The lower weak-preference zone is accordingly described by the inequalities 

I < Rmax - Rj 
8 - 5 i7 Rmax - Rk 

so that the lower preference threshold is given by 

The veto thresholds may be constructed in a similar way. Thus, Rk is in the zone between 
the upper preference threshold and the upper veto threshold if 

Rmax - Rj s 5 < 32, 
Rmax - Rk - 

since a ratio of 32:l represents hesitations between strict and strong preference. 

Of course, the thresholds so obtained are not necessarily situated in the range ( R f i , ,  R,,). 
In ELECTRE, however, the thresholds are only used to build up concordance and dis- 
cordance information. Hence, they are also meaningful outside the range, even if the 
alternatives are only found between the endpoints. 



To illustrate matters, we consider a car A; with reliability Rj = 99%, in the context with 
R h ,  = 95% and Rmax = 100%. The indifference zone around Rj is the interval (98, 99.5), 
the upper weak-preference zone is (99.5, 99.9), and the lower weak-preference zone is (92, 
98). 

Under the consumer-price criterion, in the context with Ch,= Dfl. 20.000 and Cmax = 
Dfl. 40.000, the indifference zone around a price of Dfl. 22.000 would be between Dfl. 
21.000 and Dfl. 24.000, the upper weak-preference zone would be between Dfl. 24.000 
and Dfl. 36.000. etc. 

The context-related choice of thresholds becomes much simpler on the SMART scale, 
which is commonly used in ELECTRE (the qualitative scale) when the performance of the 
alternatives cannot be expressed in physical or monetary terms. A ratio of 2:l corresponds 
to a difference of 1 unit on the SMART scale, ratios of 8:l and 32:l are represented by 
differences of 3 and 5 units respectively. Consider again, for instance, a car A; with 
reliability Rj = 99% on the range between R ~ ,  = 95% and Rma, = 100%. By using 
formula (3). we obtain that the car would have a grade of 6.5 on the SMART scale. Then 
the indifference zone is between 5.5 and 7.5, the upper weak-preference zone between 7.5 
and 9.5, etc. Note again that the thresholds are not necessarily situated in the range 
between 4 and 10. 

The choice of the discrimination thresholds can accordingly be reduced to the choice of 
the intervals (the ranges) representing the context of the decision problem. This greatly 
simplifies the work of the decision maker. ELECTRE has many parameters to be set by 
the user (the discrimination thresholds, on each of the dimensions under consideration), 
so that it may be difficult to handle. 

9 A comparative study 

Both, the multiplicative AHP and SMART have been incorporated by L. Rog (Delft 
University of Technology) in the MCDA system REMBRANDT, using Ratio Estimation 
in Magnitudes or deci-Bells to Rate Alternatives which are Non-DominaTed. Furthermore, 
H. Schuyt (Delft University of Technology) compared the system with ELECTRE I11 a t  
LAMSADE, Universite de Paris-Dauphine. One of the test problems was the choice of 
a location for a nuclear power plant reported in sec. 7. Starting from base case, Schuyt 
employed 9 variations of the ranges and 18 variations of the criterion weights, so that 
there were 9 + 18 = 162 cases under consideration. The data of the base case may be 
found in sec. 4, with the following grades assigned to the criteria, however: 



ELECTRE I11 does not produce final scores of the alternatives. It only ranks the al- 
ternatives in a complete or incomplete order. Hence, we decided to compare only the 
rank orders produced by ELECTRE I11 and REMBRANDT, under the following range 
variations with respect to the base case: 

and with the following variations of the grades assigned to the criteria: 

In all cases, the impacts of the alternatives were converted into scores on the SMART scale 
(the so-called qualitative scale in ELECTRE), in the same way as in sec. 7, whereafter 
the discrimination thresholds of sec. 8 could immediately he used to demarcate the 
transition from indifference to weak preference (1 unit on the scale), from weak preference 
to preference (3  units on the scale), etc. 

This elaborate sensitivity analysis yields the frequencies of the rank order positions ex- 
hibited in the Tables 4 and 5 (in a case where two alternatives with the same final scores 
were competing for two consecutive rank order positions. each alternative was supposed 
to occupy 50% of the two positions, etc.). Obviously, alternative A2 is leading for both 



Table 4. Rank order of 9 alternative 11uc1ea.r power plant locations ca.lcula.led 
by t l ~ e  REMLIRANDT program (nlultiplicative AIIP aud SMART) untler 9 
ra.nge variations a.ntl 18 va.ria.tions of critesiol~ weigllts. The e ~ ~ t s i c s  re1)sesent 
the frequencies (in percenta.ges of t l ~ e  9 * 18 = 162 cases) o l  t l ~ e  ramk order 
positions, so that  tlle followirlg ra.nk order emerges: A2 > A3 > ( A 1  2 Ag 2 

At3 2! > A7 > A6 > /I5. 

Table 5. Rank order of 9 alternative lluclear power plant 1oca.tiolls calculated 
by ELECTRE 111 under 9 range variations and 18 variatio~ls of criterion 
weights. The entries represent tile frequencies (in percentages of the 9*18 = 
162 cases) of tile rank order positions, so that tile followi~lg rank order 
emerges: A2 > (Ag = As) > ( A 3  2 /I1 2 /I4 2 A?) > A6 > A5. 



methods, A6 and A5 are a t  the bottom. Note that Roy and Bouyssou (1992), with their 
choice of the discrimination thresholds, obtained a rank order with A3 % A4 r~ A8 at the 
top and A6 > ,41 > As at the bottom. REMBRANDT is more informative. The main 
diagonal of Table 4. with 5 entries above 50%, determines the position of 5 alternatives: 
Az > A3 at the top, A7 > As > A5 at  the bottom. This brings up the question of 
whether it is rewarding for the users of ELECTRE t o  supply the thresholds, or whether 
psycho-psychical arguments are strong enough to justify the context-related setting of 
the thresholds. More experiments may further clarify the issue. The pertinent question 
a t  the end of the paper is, of course, whether sophisticated methods like the AHP and 
ELECTRE have an "added valuen with respect to SMART which counterbalances the 
more complicated elicitation of human judgement. The discussion about the issue is still 
open. 
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