
THE ART OF INTEGER PROGRAMMING - RELAXATION

D. E. Bell

November 1973 WP-73-8

Working Papers are not intended for
distribution outside of IIASA, and
are solely for discussion and infor­
mation purposes. The views expressed
are those of the author, and do not
necessarily reflect those of IIASA.

THE ART OF INTEGER PROGRAMMING - RELAXATION

David Bell

November 1973

When faced with a difficult problem, the integer programmer

is apt to take the common approach of finding a related eaS1er

problem and solving that instead. In other disciplines this

means approximating the data, making simplifying assumptions,

etc.; in integer programming, the idea is to find a relaxation

of the original problem.

Let Z = m1n f(x)
x£P

(1)

be the original problem.

problem

If Q 1S a set containing P, then the

Z* = m1n f(x)
x£Q

1S said to be a relaxation of (1). The key to this approach

(2)

may be highlighted by the following theorem.

THEOREM If x
Q

solves (2) then

(i) xQ£P implies x
Q

solves (1) .

(i i) Z* = f(x
Q

) < Z .-

Thus, having solved (2), there 1S a simple test to see if (1)

has been solved automatically (is XQ£P?) and if this is not

the case, the effort of solving (2) is not wasted, for it

provides a lower bound, f(X
Q
), for Z, the optimal value of (1).

This is most useful in branch and bound procedures (see [lJ).

Two questions spring readily to mind in connection with

this idea of relaxing:

1. How should Q be chosen?

2. What can be done if xQiP?

Naturally, the more the problem is relaxed (making Q very

large), the less likely it is that xQ£P. On the other hand,

the larger Q is, the easier the relaxation is likely to be to

solve, a clear case of a tradeoff in values. The hope is that

for some Q, problem (2) is a well solved easy problem closely

approximating (1).

The remainder of the paper gives three examples of relaxa­

tions being used in integer programming.

A. The Travelling Salesman Problem

Given a set of cities with known distances between them

(some perhaps infinite), the salesman's aim is to set out from

home (city no. 1 say) and visit all the other cities and return

home having covered the minimum possible distance. In most

practical examples, this can be done without visiting any city

twice and it will be assumed that this is the case.

The problem is extremely difficult and no straightforward

algorithm has been put forward to solve it. Approximate answers

are easily obtained, the exact answer is not.

The set P in this case 1S the set of all tours, that is,

all possible sequences of cities. How may we find a good

relaxation set Q? Consider the following problem based on the

same set of cities.

Suppose that no roads connect these cities and the govern­

ment wishes to lay a system of roads which connects all the

cities together but uses a minimum total distance of road.

This problem is very simple indeed, solved by the greedy

algorithm (see [2]). Having observed that the solution will

include no circuits (for then one road must be redundant), the

idea is to build the shortest road, then the next shortest road

and so on, subject only to the requirement that no road should

be built if it completes a circuit.

2

2 3

3

city I

Figure I

4

Define a Q-tour to consist of any two roads to city I

plus a connected circuitless system of roads on the rema1n1ng

cities.

A Q-tour may be completed 1n Figure I by adding the edge

2 - 6. Now let "Q" be the set of Q-tours.

Proposition Every tour is a Q-tour. Thus. P is a subset of

Q. and the problem of finding a minimum Q-tour is a relaxation

of the travelling salesman problem. Unfortunately. in Figure

I it can be seen that if road 2 - 6 is added. the minimum Q­

tour is not a tour. that is. xQ¢P. What can be done?

Suppose that a toll is imposed for entering or leaving a

city. This means that if Ti is the toll for town i. the

effective cost of travelling from city i to city j 1ncreases

by Ti + Tj. Note that since the salesman must enter and leave

each city exactly once. he has no choice but to pay an extra

ETi no matter which route he takes, hence his optimal route 1S

unaltered by imposing the tolls. However, this will affect

the minimum Q-tour.

Since the a1m 1S to have two roads leading into each

city, the idea 1S to put a high toll on those cities with

more than two roads ln the optimal Q-tour (cities 3 , 6 In
<

Figure 1) and a low toll for those with only one road (4 , 5) .

Is it possible to find a system of tolls such that

For example, if T
3

= 2 and T6 = 4, the problem ln

Figure 1 becomes

4

2 3

1
4

6 1 8

Figure 2

5

glv1ng the mlnlmum tour as 1 - 2 - 3 - 4 - 5 - 6 with a cost

of 61.
bound.

Note that the previous minimum Q-tour cost 52, a lower

It has been shown [3, 4) that this method often works but

that some networks do not have a suitable system of tolls.

Branch and bound procedures are used in these cases.

B. Cutting Planes

The standard linear integer program 1S

minimize cW

5

s . t . AW = b

W > 0

W _ 0

(3)

where ':' stands for equality modulo 1. It will be assumed here

that c, A, b are each integral, where A 1S an mx n+m matrix.

Solving AW = b for m of the variables in terms of the remaining

n, yields a problem written entirely in terms of those n

variables

Nx < b

Nx _ b

x > 0 integral

(4)

The set P in this case is all integral values of x satisfying

the constraints of (4).

A relaxation which 1S well solved (by the simplex method

[5]) is that formed by ignoring the integrality constraints 1n

(4) namely Nx = b and x integral. This results 1n a linear

program with optimal solution x
Q

. Suppose x
Q

is not integral

or does not satisfy NX
Q

: b or both?

Let us suppose (and it 1S reasonable) that the m variables

eliminated between (3) and (4) were the L.P. optimal basic

variables, so that x
Q

= 0 (and thus is integral) and hence that

if xQiP, then NX Q : 0 ~ b.

then

Let N* - N

b* - b

Nx _ b

o < N* < I

o < b* < I

6

1S equivalent to N*x _ b* .

since x ~ 0, Nx = b are necessary conditions for x£P it must

be that all x£P satisfy

But

N*x > b* .-

N*x = 0 "1- b, and hence
Q

N*x ~ b* .
Q

Let Q be all those elements of Q which satisfy (5), then

(i)

(i i)

Q contains P,

Q does not contain x
Q

.

Hence, when the new problem (Q) 1S solved, a new solution

xQ is found. If this is not in P, the process may be repeated.

This procedure has been shown to converge (Gomory in [5] or

see [6]).

C. The Group Problem

Remaining with (4), a second relaxation is to ignore the

constraints Nx < b leaving the relaxed problem

m1n cx

N*x _ b*

x > 0 integer

(6)

where, with the assumption of the missing variables being L.P.

optimal, c > o.

Nov, as it happens, ([7J, [8]) the column vectors N*, b*

generate a finite abelian group [9], say

7

Consider the folloving netvork of k + I nodes correspond­

1ng to the group elements. Include a directed arc from node

i to node j vith cost c k if gi + gk - gj.

Suppose, for example, the problem is

m1n 3xI + 4x
2

2 4 Is . t . "5x
I

+ "5x
2 - 5

xl x
2 > 0 integer.-

The netvork then 1S

I

o

~----....4~ 2

4

Figure 3

Now note that problem (7) is equivalent to finding the

shortest route in the network from node 0 to node 1, and in

general to the node equivalent to b*. The problem of finding

a shortest route ~n a network is well solved and relatively

easy. In Figure 3 it is 7 with two routes 0-4-1 and 0-2-1,

which correspond to the sOlution xl = 1, x
2

= 1 to problem

(7). The solution so obtained must be tested for feasibility

in P (xQ£P?) in this case

A variety of methods exist for proceeding if xQiP,

[10, 11, 12}, an example of which is to add the cutting plane

8

CX

to problem (4) and to repeat the process.

REFERENCES

1. R. Garfinkel and G. Neuhauser, "Integer Programming," 1972.

2. J. Edmonds, "Matroids and the Greedy Algorithm," Mathematical

Programming 1, 127-136, 1971.

3. M. Held and R.M. Karp, "The Traveling Salesman Problem and

Minimum Spanning Trees," Operations Research 18, 1138-1162,

1970.

4. M. Held and R.M. Karp, "The Traveling Salesman Problem and

Minimum Spanning Trees: Part II," Mathematical Programming

1, 6-25, 1971.

5. G.B. Dantzig, Linear Programming and Extensions, Princeton

University Press, Princeton, New Jersey, 1963.

6. D.E. Bell, "The Resolution of Duality Gaps in Discrete

Optimization," M.I.T. Operations Research Center, Technical

Report No. 81, August 1973.

7. R.E. Gomory, "Some Polyhedra Related to Combinatorial

Problems," Linear Algebra 2, 451-558, 1969.

8. L.A. Wolsey, "Group Representation Theory in Integer

Programming," Technical Report No. 41, Operations Resea.rch

Center, Massachusetts Institute of Technology, 1969.

9. G.D. Mostow, J.H. Sampson and J.P. Meyer, Fundamental

Structures of Algebra, McGraw-Hill, New York, 1963.

10. M.L. Fisher and J.F. Shapiro, "Constructive Duality 1n

Integer Programming," to appear in the SIAM Journal on

Applied Mathematics.

11. D.E. Bell and M.L. Fisher, "Improved Bounds for Integer

Programs Using Intersections of Corner Polyhedra,"

University of Chicago Graduate School of Business Working

Paper, October 1973.

12. D. E. Bell, "Improved Bounds for Integer Programs: A

Supergroup Approach". Preliminary Draft IIASA, October 1973.

9

13. J.D.C. Little, K.G. Murty, D.W. Sweeney and C. Karel,

"An Algor it hm for t he Travel i ng Sale sman Probl em, .f

~perations Research 11, 972-989, 1963.

14. G.A. Gorry, W.D. Northup and J.F. Shapiro, "Computa­

tional Experience with a Group Theoretic Integer

Programming Algorithm," Mathematical Programming V4,

171-192.

10

APPENDIX

Computer Times

These times have been collected from various sources to

11

g1ve an indication of the rate of solution. With different

codes, different machines and in different years no comparisons

should be attempted.

A. The Traveling Salesman Problem

The toll procedure of Held and Karp gave the exact

solution to those problems starred below. The remainder were

continued by Branch and Bound. The machine was an IBM 360/91.

Number of Cities Time (seconds)

* 20 4

* 20 6

22 10

* 25 12

25 18

* 26 22

* 30 19

30 20

42 54

46 900

48 84

48 160

57 780

* 64 182

64 504

64 330

64 258

64 418

Many of the above problems were "challenges" to the system

so it could be expected to perform rather better on average

problems.

Little, Murty, Sweeney and Karel in 1963 (six years earlier)

g1ve average times for randomly generated problems (these tend

to be easier) on an IBM 7090 of:

Cities Seconds

10 .72

20 5

30 59

40 500

B. No Information

c. Group Problem

Gorry, Northup and Shapiro report the following times

using the group theoretic approach:

Rows Columns L.P. Total
Machinesec. sec.

12 116 1.34 14 UNIVAC 1108

14 32 0.07 2.4 IBM 360/85

36 72 5.56 112 IBM 360/67

57 132 6.86 33 UNIVAC 1108

86 195 12.82 29 UNIVAC 1108

313 482 35.14 193 IBM 360/85

176 2385 49.26 67 IBM 360/85

5 54 0.35 0.4 IBM 360/85

27 641 4.38 5.3 IBM 360/85

26 383 10.08 136 IBM 360/85

50 65 0.39 4 IBM 360/85

12

