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Systems Analysis of Technological 
and Economic Dynamics 

This new research project at IIASA is concerned with modeling technological 
and organizational change; the broader economic developments that are as­
sociated with technological change, both as cause and effect; the processes by 
which economic agents - first of all, business firms - acquire and develop the 
capabilities to generate, imitate, and adopt technological and organizational 
innovations; and the aggregate dynamics - at the levels of single industries 
and whole economies - engendered by the interactions among agents which 
are heterogeneous in their innovative abilities, behavioral rules and expecta­
tions. The central purpose is to develop stronger theory and better modeling 
techniques. However, the basic philosophy is that such theoretical and mod­
eling work is most fruitful when attention is paid to the known empirical 
details of the phenomena the work aims to address: therefore, a consider­
able effort is put into a better understanding of the 'stylized facts' concerning 
corporate organization routines and strategy; industrial evolution and the 
'demography' of firms; patterns of macroeconomic growth and trade. 

From a modeling perspective, over the last decade considerable progress 
has been made on various techniques of dynamic modeling. Some of this 
work has employed ordinary differential and difference equations, and some 
of it stochastic equations. A number of efforts have taken advantage of 
the growing power of simulation techniques. Others have employed more 
traditional mathematics. As a result of this theoretical work, the toolkit for 
modeling technological and economic dynamics is significantly richer than it 
was a decade ago. 

During the same period, there have been major advances in the empirical 
understanding. There are now many more detailed technological histories 
available. Much more is known about the similarities and differences of 
technical advance in different fields and industries and there is some under­
standing of the key variables that lie behind those differences. A number 
of studies have provided rich information about how industry structure co­
evolves with technology. In addition to empirical work at the technology 
or sector level, the last decade has also seen a great deal of empirical re­
search on productivity growth and measured technical advance at the level 
of whole economies. A considerable body of empirical research now exists 
on the facts that seem associated with different rates of productivity growth 
across the range of nations, with the dynamics of convergence and divergence 

lll 



IV 

in the levels and rates of growth of income in different countries, with the 
diverse national institutional arrangements in which technological change is 
embedded. 

As a result of this recent empirical work, the questions that success­
ful theory and useful modeling techniques ought to address now are much 
more clearly defined. The theoretical work described above often has been 
undertaken in appreciation of certain stylized facts that needed to be ex­
plained. The list of these 'facts' is indeed very long, ranging from the micro­
economic evidence concerning for example dynamic increasing returns in 
learning activities or the persistence of particular sets of problem-solving 
routines within business firms; the industry-level evidence on entry, exit and 
size-distributions - approximately log-normal; all the way to the evidence 
regarding the time-series properties of major economic aggregates. However, 
the connection between the theoretical work and the empirical phenomena 
has so far not been very close. The philosophy of this project is that the 
chances of developing powerful new theory and useful new analytical tech­
niques can be greatly enhanced by performing the work in an environment 
where scholars who understand the empirical phenomena provide questions 
and challenges for the theorists and their work. 

In particular, the project is meant to pursue an 'evolutionary' interpreta­
tion of technological and economic dynamics modeling, first, the processes by 
which individual agents and organizations learn, search, and adapt; second, 
the economic analogs of 'natural selection' by which interactive environments 
- often markets - winnow out a population whose members have different 
attributes and behavioral traits; and, third, the collective emergence of sta­
tistical patterns, regularities, and higher-level structures as the aggregate 
outcomes of the two former processes. 

Together with a group of researchers located permanently at IIASA, the 
project coordinates multiple research efforts undertaken in several institu­
tions around the world, organizes workshops and provides a venue of scien­
tific discussion among scholars working on evolutionary modeling, computer 
simulation and non-linear dynamical systems. 

The research will focus upon the following three major areas : 

1. Learning Processes and Organizational Competence. 
2. Technological and Industrial Dynamics 
3. Innovation, Competition, and Macrodynamics 



Preface 

Many novel techniques that have proved effective in multidisciplinary applied 
research were developed at IIASA. For example, in the early 1980s a group of 
economists from the \!Vest and mathematicians from the East made studies 
on generalized urn schemes and their applications to economics. This paper 
represents a review of the results that were obtained and outlines some new 
research topics, especially distributed economics and evolutionary games. 
The paper also provides an introduction to the application of this machinery . . 
m economics. 

In January 1994, IIASA launched a new project on Systems Analysis 
of Technological and Economic Dynamics (TED). This paper represents the 
outcome of work carried out in one of the three major directions, namely, 
modeling of macroeconomic issues. 

v 

Peter E. de Jdnosi 
Director 
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Abstract. Adaptive (path dependent) processes of growth modeled by urn schemes 
are important for several fields of applications: biology, physics, chemistry, 
economics. In this paper we present a general introduction to urn schemes, together 
with some new results. We review the studies that have been done in the 
technological dynamics by means of such schemes. Also several other domains 
of economic dynamics are analysed by the same machinery and its new modifications 
allowing to tackle non-homogeneity of the phase space. We demonstrate the 
phenomena of multiple equilibria, different convergence rates for different limit 
patterns, locally positive and locally negative feedbacks, limit behavior associated 
with non-homogeneity of economic environment where producers (firms) are 
operating. It is also shown that the above urn processes represent a natural and 
convenient stochastic replicator dynamics which can be used in evolutionary games. 
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1. Introduction 

Microeconomic heterogeneity, non-equilibrium interactions and the co-existence of 
negative and positive feedbacks appear to be quite general characteristics of eco­
nomic change. They are particularly evident in the case of technological innovation 
and diffusion - but by no means limited to them. Technical change typically 
involves diversity amongst the agents who generate or are effected by it; various 
forms of learning often based on trial-and-error procedures; and mechanisms of 

Correspondence to: G. Dosi, Dipartimento di Science Economichie, Universita degli Studi di Roma. 
Via Nomentana 41 , I-00161 Rome, Italy 
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selection which reward particular types of technologies, agents or behaviors at the 
expenses of others. 

These appear to be, indeed, general features of the competitive process driving 
economic dynamics. "Competition" entails the interaction among heterogeneous 
firms embodying different technologies, different expectations and, quite often, 
displaying different behaviors. Moreover, it is often the case that technological 
and organizational learning is associated with various types of externalities and 
increasing returns. 

Over the last two decades, at last, such dynamic phenomena have drawn an 
increasing attention within the economic discipline - especially with reference to 
technological change. A number of conceptual approaches and mathematical tools 
have been applied, often benefiting from contemporary developments in the analysis 
of dynamical systems in natural sciences. 

In this work, we shall discuss some of these approaches and, in particular, 
present the basic structure and the interpretative scope of one "formal machinery", 
namely generalized urn schemes. This paper can be considered as an introduction 
to generalized urn models, containing both known and new results together with a 
sketch of some directions for the future research. In section 2, we shall outline some 
phenomena which are central to technological and economic dynamics, and briefly 
review alternative formal representations of them. Section 3 introduces the basics 
of urn schemes. In the following sections we illustrate some applications to relatively 
simple competitive environments (section 4), and further refinements, contemplating 
local feedback processes (section 5); phenomena of increasing returns deriving from 
system compatibility (section 6); non-homogeneous environments (section 7) and 
"evolutionary games" (section 8). Finally, in the conclusion we shall point out some 
promising areas of application of this formal apparatus, including the economics 
of innovation, industrial dynamics, macroeconomics, finance. 

2. Processes of economic evolution 

In very general terms, the impulses driving economic change stem, first, from 
variations in the knowledge anq physical resources upon which individual agents 
can draw in order to pursue their activities; second, from the process by which agents 
learn, adapt, invent - on the grounds of whatever they perceive to be the available 
knowledge and resources, and, third, from the interactions amongst the agents 
themselves. Of course, these sources of change are by no means independent: for 
example, learning activities obviously affect the available knowledge and the 
efficiency by which resources are used; interactions might trigger learning and entail 
externalities; learning itself may be associated with particular forms of economic 
activity, such as learning-by-doning. The variety of sources and mechanisms of 
economic change highlighted by economic history, most likely, in our view, 
precludes the identification of some unique or archetypical dynamic form which 
could apply across industries, phases of development, historical contexts. Still, it 
might be possible (and indeed is a challenging area of research) to identify few 
relatively invariant characteristics of the process of change and, with them, also the 
"formal machineries" most apt to represent them. 

Some basic features of economic evolution are the following: (i) imperfect and 
time-consuming microeconomic learning; (ii) microheterogeneity; (iii) most often, 
various form of increasing returns - especially in the accumulation of know-
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ledge - and non-linearities; (iv) aggregate dynamics driven by both individual 
learning and collective selection mechanisms; (v) "orderly" structural properties 
resulting from non-equilibrium fluctuations. 

Correspondingly, let us examine the formal representations which can account 
for at least some of these features of evolutionary dynamics. As a general reference, 
let us start from "order-through-fluctuation" dynamics (cf. Nicolis and Prigogine 
1971 and 1989; Prigogine and Stengers 1984): it is a quite broad paradigm for the 
interpretation of complex non-linear processes, initially developed with reference 
to physical chemistry and molecular biology, but more generally emphasizing the 
properties of self-reinforcing mechanisms and out-of-equilibrium self-organization. 
Such systems turn out to be sensitive to (however small) early perturbations and 
display multiplicity of patterns in their Jong-term behaviour. The cumulation of 
small early disturbances (or small disturbances around unstable states) "pushes" 
the system toward one of these patterns and thus "select" the structure towards 
which the system will eventually tend. These properties apply to a very wide class of 
dynamical systems, highlighting, loosely speaking, some general "evolutionary" 
features well beyond the domain of social sciences and biology. 

Further specifications of evolutionary dynamics come from mathematical 
biology (see Eigen and Schuster 1979). Evolution in many of such models occurs in 
a way that some integral characteristics (mean fitness for biological systems or mean 
"competitiveness" in the economic analogy) "improves" along the trajectory. In the 
simplest case of Fisher's selection model, "improvements" straightforwardly imply 
that the mean fitness increases along the path. However, even in biology this 
equivalence does not hold in general (due, for example, to phenomena of hyper­
selection, co-evolution, symmetry-breaking: see Allen (1988) and Silverberg (1988) 
for discussions directly linked to economic applications). Even more so, this 
non-equivalence between "evolution" and "increasing fitness", however defined, is 
likely to emerge whenever there is no identifiable "fundamental Jaw of nature" or 
conservation principle. Putting it another way: evolutionary dynamics - in biology 
as well in economics - involves some kind of selection process grounded on the 
relevant distributions of agents' characteristics, on the one hand, and on some 
environmental criterion of "adaptiveness", on the other. (Until recently, most 
economic models have avoided the issue simply by assuming that all the agents were 
perfectly "adapted", either via some unspecified selection process that occured just 
before the economist started looking at the world, or via some optimization process 
that occured in the head of the agents themselves.) Replicator dynamics is a common 
formal tool to represent such selection-driven adaptation (for applications to 
economics, see Silverberg ( 1988) and Silverberg et al. ( 1988); adaptation processes 
of various types in "evolutionary games" are discussed by Banerjee and Weibull 
(1992), Cabrales (1992), Kandori et al. (1993), Samuelson and Zhang (1992) Young 
(1993)). However, at least the simplest replicator process imposes quite stringent 
conditions on the way selection occurs. In essence, these restrictions turn out to be 
negative feedbacks, i.e. diminishing returns, deriving from some underlying "conser­
vation principle".1 On the contrary, positive feedbacks lead to multiple limit states 
and generate a much richer variety of trajectories which the system may follow. For 
example, it is increasingly acknowledged that technological innovations are likely 

1 Conventionally, in economics, profit (or utility) maximization under a constraint of given and 
scarce resources clearly performs this role. 
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to involve some forms of dynamic increasing returns - hence, positive feedbacks -
along their development and diffusion (cf. Freeman (1982), Dosi et al. ( 1988), 
Anderson et al. (1988), David (1988), and for an interpretation of the empirical 
evidence, Dosi (1988)). Relatedly, there is no guarantee that the particular economic 
outcome which happens to be historically selected amongst many notional 
alternatives will be the "best" one, irrespectively of the "fitness" or welfare 
yardsticks. 2 

Concerning the mathematical tools that have been proposed within and outside 
economics for the analysis of the competitive process, ordinary differential equa­
tions have a paramount importance (not surprisingly, since they are also the most 
common language of modern science and especially physics). They are applied to 
most analyses of economic and technological dynamics (for our purposes here, cf. 
Nelson and Winter (1982), Polterovich and Henkin (1988), Day (1992), and the 
works surveyed in Boldrin (1988); in general, cf. Brock and Malliaris (1989) and 
Rosser ( 1991 )). In particular, ordinary differeritial equations with trajectories on the 
unit simplex - i.e. of the replicator type - borrow, as already mentioned, an idea 
of selection-driven evolution from biology (cf. Silverberg et al. 1988). 3 For stocha­
stic (Markov) perturbations of these equations see Nicolis and Prigogine ( 1971) -
for general equations -, and Foster and Young (1993), - for equations of the replicator 
type. However, while these continuous-time formulations work well, they involve 
a not so harmless approximation for events that are by nature discrete (the main 
example being a phase space which is discrete and changes by discrete increments). 
More intuitively, the continuous-time approximation is bound to take very literally 
the old saying that natura non facet saltum. 

Moreover, from a technical point of view, the approximation carries unnecessary 
hypotheses of mathematical nature (a classical example is the Lipschitz condition 
on the coefficients of the differential equation describing the system) and specific 
difficulties (such as the requirement of rigorously defining the stochastic pertur­
bations of replicator equations). In this respect, it might be worth mentioning here 
some recent results from so-called "evolutionary games" showing convergence to 
conventional Nash-type equilibria in the continuous approximation but not in the 
discrete formulation (Banerjee and Weibull 1992; Dekel and Scotchmer 1991). 
Moreover, formal representations of selection processes in economics often rely on 
replicator dynamics satisfying the weak monotonicity condition (Friedman 1991; 
Samuelson and Zhang 1992; Baherjee and Weibull 1992) (loosely speaking, the 
condition guarantees that, given an environment, there is no reversal in the "forces 
of selection" along the trajectory). However, even in simple cases the results on limit 
properties obtained under replicator dynamics might not hold under more general 
selection processes (see, for example, Cabrales 1992). 

To summarize this brief overview of the formalisms applied to economic 
dynamics and evolution: ideally, one would like some machinery able to capture as 

2 In fact, even environments that are stationary in their "fundamentals" (e.g. best practice 
technologies) selection-driven adaptation yields convergence to equilibria associated with Pareto­
optimal properties only under further (and quite demanding) restrictions on the nature of the 
interactions, the related payoffs and the adaptation dynamics. This is certainly true in presence of 
"strategic" interactions, but it applies also under (quasi) pure competition: on the latter, see the 
pioneering investigation in Winter (1971). 
3 Of course, this does not bear any implication for the sources of"mutation" upon which environ­
mental selection operates. For example, Silverberg et al. (1988) assume an exogenous drift in 
innovative opportunities with learning-by-using and diffusion-related externalities. 
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adequately as possible (a) increasing-returns phenomena, i.e. positive feedbacks; 
(b) "ugly" and badly behaved selection dynamics, involving also "jumps" and dis­
continuities, co-evolutionary effects, etc.; (c) a large variety of individual processes 
of adaptation and innovation (and, thus, being quite agnostic on the processes 
driving the perturbations); and (d) the process of accumulation of agents' individual 
behaviors into the regularities driving the dynamics of the whole population. 

In the following, we shall assess to what extent an alternative class of models, 
namely generalized urn schemes, can fulfill these tasks. These schemes, sometimes 
called non-linear P6lya processes or adaptive processes of growth, generate stochastic 
discrete-time dynamic systems with trajectories on the set of points with rational 
coordinates from the unit simplex (cf. Arthur 1988, Arthur et al. 1983 and l 987c; 
Glaziev and Kaniovski 1991; Dosi et al. 1994; Arthur and Ruszczinski 1992). 
Formally, they represent non-stationary Markov chains with growing numbers of 
states. This allows to reach, under corresponding conditions, any state from the 
unit simplex (which is, by definition, not the case for finite Markov chains). The 
mathematical background comes from Hill et al. (1980) and Arthur et al. (1983), 
(I 987a) and ( 1988). It does not rely on notions common for Markov processes such 
as "master equations": this essentially simplifies the argument and allows to produce 
deeper results. Moreover, this formal apparatus enables one to handle positive 
and/or negative feedbacks, possibly coexisting in the same process: see Arthur ( 1988) 
and Arthur et al. (I 987c). In particular, these feedbacks may have a "local" nature -
in the sense that they may occur only under particular states on the trajectories 
(Dosi et al. ( 1994) ). This approach allows also to treat complementaries and 
network externalities in the adoption of competing technologies (Arthur et al. 
I 987b), whereby individual commodities - say, computers or telecommunication 
equipment - operate within networks requiring compatibility.4 It must be also 
emphasized that in this work we generally suggest examples of application of this 
formalism drawn from the economics of innovation, but similar properties can 
easily be found in many other economic domains: rather than technologies, one 
could also consider e.g. organizational forms or strategies in business economics; 
cognitive models and decision rules in finance; etc. (see the final section). Using the 
generalized urn schemes one can analyse the emergenece of random market 
structure with more than one limit state occuring with positive probability (cf. 
Arthur et al. 1983 and Glaziev and Kaniovski 1991 ). Moreover, one may determine 
the different convergence rates to the various limit states attainable with positive 
probability (Arthur et al. 1988). 

Generalized urn schemes are well suited to analyse increasing returns pheno­
mena and, generally, the interaction of individual behaviors of agents who have 
incomplete information about the environment and its mechanisms of evolution. 
The two points are most often related: dynamic increasing returns tend to imply 
unpredictability of the particular limit state that will be attained. Conversely, as we 
shall see, the process of information acquisition entails dynamic consequences 
similar to purely "technological" increasing returns. The rules driving the collective 

4 Systems compatibility implies that one ought to consider combinations amongst individual 
technologies. In turn, this can hardly be done by adding to the "technological space", where choices 
are made, all possible combinations of technologies existing at a ny moment in time. At the very 
least, this procedure wo uld lead to an enormous growth in the dimension of the phase space. Fo r 
example, if N new technologies come to the market , considering all their possible combinatio ns 
would imply the "explosion" of the dimension of the phase space up to 2" - I. 
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dynamics are the cumulated effects of individual behaviors. For each agent, the 
impact of his own action is negligible, but the sequence of all of them shape the 
evolution of the system. Hence, one looks for the long run properties when the size 
of the population or, equivalently, time go to infinity. This does not restrict the 
applicability of the results for finite, but large enough, populations (although some 
caution is obviously required). This formal machinery is also a simulation tool as 
convenient and effective as ordinary differential equations (we shall tackle this type 
of application in a future publication). 

In this work we shall analyse some of the patterns of system evolution which 
can be discovered by means of generalized urn schemes. In order to do this, we shall 
use some known models of technological dynamics and also introduce some novel 
modification highlighting the complex limit structures that these models generate. 

Let us start with the simplest definition of a generalized urn scheme. 

3. The basic elements of the theory of generalized urn schemes 

In this section we give the basic version of the generalized urn scheme and outline 
the main patterns of the asymptotic behavior which it can demonstrate: multiplicity 
of the limit states, attainability and unattainability of them, and different conver­
gence rates to the attainable ones. 

To simplify the presentation, let us restrict ourselves to the case of two competing 
technologies which corresponds to urn schemes with balls of two colors (Hill et al. 
1980 and Arthur et al. 1983). As illustrations, think for example of two technologies 
whose efficiency improves together with its diffusion, due e.g. to increasing returns 
in its production or to "network externalities" for the adopters. 

Consider an urn of infinite capacity with black and white balls. Starting with 
nw?: 1 white balls and nb ?: 1 black balls into the urn, a new ball is added into the 
urn at time instants t = 1, 2 .... It will be white with probabiiity fr(X,) and black with 
probability 1 - fr(X,). By X, we designate the proportion of white balls into the urn 
at time t. The general intuition is that, given the function fr(·), one can build models 
of the stochastic evolution of X,. The balls might be producers and white and black 
balls denote two technologies. The model is then one of adoption of competing 
innovations. Other interpretations might involve individuals selecting among 
products or even among "opinions". The path of X, can take on a great variety of 
qualitative properties, depending on the specifica tion of the function fr('): some of 
them will be explored in the following. Moreover, by allowing the addition of more 
than one ball, more than two colors, more than one urn, further urn models can be 
created. Here fr( ·) is a function, 5 which maps R(O, 1) in [O, 1] (R(O, 1) stands for the 
set of rational numbers from (0, I)). The dynamics of X, is given by the relation 

X ,+ I= x, + (t + nw + nb) - 1 [~,(X,) - X,], t ?: 1, x I= nw(nw + nb) - 1. 

Here ~,(x) , t?: 1, are random variables independent in t, such that 

~ (x) = {I with probability,f, (x), 
' 0 with probability 1 - fr(x) . 

5 When it does·not depend on 1, it is called (Hill et al. (1980)) urnfunction. 
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Designate ¢,(x) - E¢,(x) = ¢,(x) - f,(x) by (,(x), where E stands for the mathematical 
expectation. Then we have 

X 1+ 1 =X1 +(t+nw+nb)- 1 {[f,(X 1)-X1]+(,(X 1)}, t~I, 

x I = nw(nw + nb)- 1
• ( 1) 

Due to E((x) = 0, the system (1) shifts on average at time t ~I from a point x on 
the value (t + nw + nb)- 1 [f,(x)- x]. Consequently, limit points of the sequence {X,} 
have to belong to the "set of zeros" of the functionfr(x)- x (for xE[O, !]).It will 
really be the set of zeros if fr(·) does not depend on t, i.e . fr(·) = f ( · ), t ~ 1, for f ( ·) 
being a continuous function. 

In the general case one needs a specific mathematical machinery to describe 
this "set of zeros" (see Hill et al. ( 1980) for the case when the probabilities are 
discontinuous and do not depend on t; and Arthur et al. (1987b) for the case when 
the probabilities are discontinuous functions and depend on t). 

To summarize the properties of the above urn scheme that are important for our 
purposes recall the following: 

!. Representing a non-stationary Markov chain with growing number of states, 
the process X, develops on the one-dimensional unit simplex [O, l] taking 
(discrete) values from the set R(O, !): at time i + !, it can take the values 
i(t + nw + nb) - 1

, where nw ~ i ~ nw + t; 
2. Since in general we do not require any regularity of J;( · ), t ~ 1, the process can 

display a very complicated behavior; for example, its trajectories can produce 
"persistent fluctuations'', 6 or even can "sweep off' an interval with probability 
1 (see Arthur et al. 1987b); 

3. If for a sequence {fr(-)} there is a function f (-) such that f,( ·) = f ( ·) + b,( ·) and 
supxERio. 1,1b,(x)I-+0 sufficiently fast as t-+ oo, then for an isolated root () of 
f(x)- x, one can have convergence of X, to() with positive or zero probability 
(we call such points attainable 7 or unattainable, correspondingly) depending 
upon 

(f(x) - x)(x - ()) ~ 0 (2) 

or 

(f(x) - x)(x - ()) ~ 0 (3) 

in a neighborhood of() (see Hill et al. 1980) and Dosi et al. ( 1994) ); similar results 

6 By '"persistent fluctuations" we mean the following. Assume that/;(·) does not depend on t. Also 
let the set of zeros of f(x) - x on [O. l] contain an interval (x, fl) and X, converge with probability 
1 to a limit X 0 as 1--> x. Then d"{X 0E(x,PJ} > 0 (see Hill et <ii. (1980)). For a fixed elementary 
outcome w, X, would converge to a certain limit. But we cannot observe the whole path for a fixed 
w. At each time instant c;;, I we pick up a new elementary outcome and. consequently, the 
trajectory is unlikely to have a limit. This phenomenon of chaotic behavior of an (observed) 
trajectory we interpret as a "persistent fluctuation". More complicated almost "'bubble-type"' 
fluctuations appear if there is no convergence of X, , t;;, I, with probability I, as in the above 
mentioned case when a trajectory "sweeps off" an interval. 
7 Note that in the case of a deterministic model described by an ordinary differential equation, in 
order to speak about attainability of certain limit state. one would have to operate with such 
notions as '"domain of attraction" of this state, whose practical implementation is not often clear 
(especially for systems of nonlinear ordinary differential equations). 
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are known also for touchpoints, i.e. solutions of the equation f(x)- x = 0, where 
this function does not change its sign (see Pemantle 1991);8 

4. Under the above representation for {f,(·)}, the convergence rate to those 8, 
which belong to the support of the limit variable (i.e. are attainable), depends 
upon the smoothness off( ·) at 8. In particular, if the smoothness decreases from 
differentiability, i.e. 

f(x)=f'(8)(x-8)+o(lx-81) as x-+8, 

to the Holder differentiability of the order y > 1/2, i.e. 

f(x) = f~(())sgn(x - 8)1x -w + o(lx - (J!Y) as x-+ e, 
then the order of convergence of X, to() increases from t- 112 to t- 11<1 +;·) (see 
Kaniovski and Pflug 1992). 

The properties 1-3 listed above demonstrate the variety of possible long 
run behaviors of X,, ranging from chaotic patterns to convergence to one of 
possibly multiple limit states. Therefore, it can describe an evolutionary process 
with many feasible outcomes. Developing in time, the process "selects" one of 
them. The different convergence rates mean that the rates of evolution are, in 
general, different for different limit states. 

In order to show the analytical power of this formal apparatus, let us begin 
by considering some examples of technological dynamics in homogeneous 
economic environments, where competing firms, producing either one of the 
technologies, are operating. 

4. Some examples of competition under global feedbacks in an homogeneous 
economic environment 

We start with the simplest model which displays (global) positive feedback and, as 
a consequence, multiple patterns oflimits behavior (two in this case). In this section 
we demonstrate in particular how the global forces ruling the dynamics of whole 
populations can be derived from the individual behavior of economic agents. 

Suppose that we have two competing technologies, say, A and B, and a market 
with imperfectly informed and risk-averse adopters.9 The two technologies have 
already been introduced in the market, say nA ~ 1 units of A and n8 ~ 1 units of B. 
Let us study their diffusion on the market. At time instants t = 1, 2, ... one new 
adopter enters the market. Since he is imperfectly informed and risk-averse, he 
uses some "boundedly rational" decision rule to make his choice. 1° For example, 

8 Depending upon whether f( ·)attains or not the values 0 and I, these properties can hold for X 1 

belonging to a certain domain in R(O, I) or for any X 1 from R(O, 1) (for details see Dosi et al. 1994). 
9 Note that some general system properties - such as the multiplicity of limit states under positive 
feedbacks - are independent from the exact characterization of microeconomic decision rules, 
although the latter influence both the processes and the nature of limit structures themselves. 
10 In any case, fascinating issues, which cannot be pursued here, regard the meaning of"rationality" 
in environments driven by positive feedbacks and showing multiple limit states. For example, even 
if the agents knew the "true" urn model, what use could they make of this cognitive representation? 
How could they be more than "boundedly rational"? 
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in Arthur et al. (1983) and Glaziev and Kaniovski (1991) the following rule was 
considered: 

RI. Ask an odd number r > I of users which technology they adopt. If the 
majority of them use A, choose A. Otherwise choose B. 

According to this rule, technologies are symmetric. Alternatively, suppose that 
they are not. For example, A comes from a well-known firm with a lot of "goodwill" 
and B from a new and unknown one. Hence, potential users perceive a different risk 
in this choice and require different evidence. Assume that this corresponds to the 
following rule: 

R2. Fix o:E(O, I). Ask q ~ 3 users of the technologies. If more than o:q of them use 
A, choose A. Otherwise choose B. 

Here o: measures the relative uncertainty of the aciopters concerning the two 
technologies. Clearly if o: = I / 2 and q is an odd number, then R2 converts into RI. 

An alternative interpretation of the choice process described by RI and R2 is in 
terms of increasing returns to the technologies, rather than risk-aversion of the 
adopters: the latter know that the greater the number of past adopters, the bigger 
are also the improvements which a technology has undergone (although the 
improvements themselves are not directly observable). Hence, in this case, sampling 
provides an indirect measure of unobservable technological characteristics. 

Rule RI generates the probability to choose A as a function of its current 
proportion on the market. Such probability is given by: 

f,(x) = PR 1(x) + b,(x), (4) 

where 

PR1(x)= L C~xi(I -x)' - i, 
i = (r + 1)/ 2 

sup I b,(x) I ~ const min(x, I - x)t- 1
, 

xER(O, 1) 

and C~ stands for the number of combinations from r to i. 
The function PR 1(x) - x has three roots 0, 1/ 2 and I on [O, I]. The root 1/ 2, 

satisfying (3), proves to be unattainable, i.e. there is no feasible asymptotic market 
structure corresponding to it or, speaking in mathematical terms, X, converges to 
this root with zero probability as t--+cJJ (see Glaziev and Kaniovski (1991)), while 
the roots 0 and 1, satisfying (2), are indeed attainable, i.e. X, converges to each of 
them with positive probability for any ratio between nA ~ 1 and n8 ~ 1: in other 
words, they both identify a feasible asymptotic market structure. Moreover, the 
probability for A(B) to dominate in the limit (i .e. that X,--+ 1(X,--+0) as t--+ oo) will 
be greater than 1/ 2 if the initial number of units nA(n8) of the technology is greater 
than the initial number of units of the alternative technology (for details see Glaziev 
and Kaniovski 1991). 

Consequently, we observe here a mechanism of "selection" which is "history­
dependent": the past shapes, in probability, the future, and this effect self-reinforces 
along the diffusion trajectory. 

Quite similarly, rule R2 generates 

f,(x) = PR 2(x) + b,(x), (5) 
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where 
q 

PR2(x) = L C~xi(I - xr\ 
i = [~q]+ l 

sup [c5,(x)[ ~ const min(x, 1 - x)t- 1
. 

xER(O. I) 

Here we designate by [a] the integer part of a. The function PR 2(x) - x has three 
roots 0, e and I on [O, 1 ], where e shifts to the right as ct. increases. 11 It can bt: shown, 
that similarly to the previous case, also this rule generates a mechanism for 
establishing the dominance of one of the competing technologies (and both have a 
positive probability to dominate). However, one cannot explicitly trace here the 
influence of the initial frequencies of the technologies on the probabilities to 
dominate. 

In general, it is not true that a representation similar to (4) can be derived, with 
a function which does not depend on t (pR 1(') in the case of (4)). To demonstrate 
this, consider the following example. 

R3. At time t ~ I ask an odd number r, > I of the users of alternative technol­
ogies. If the majority of them use A, choose A. Otherwise choose B. 

Here each of the new adopters uses his own sample size to make his decision. 
Requiring that r, ~ N < oo (i.e. that one can not infinitely increase the size of the 
sample used for decision making), we see that 

f,(x) = p~ 3 (x) + 6,(x), 

where 
,, 

P~3(x) = L c~,xi(I - x)"-i, 
i = (r1 + 1)/ 2 

sup I c5,(x) I ~ const min(x, 1 - x)t- 1
. 

xER(O. l) 

Generally speaking, p~ 3 ( ·)does not display any regularity as t-> oo. Consequently, 
the representation from the previous section does not hold. At the same time, all the 
functions p~ 3(x)- x, t ~ 1, have the same roots 0, 1/2 and 1 on [O, t]. Also, since 
3 ~ r, ~ N, derivatives of these functions at 1/ 2 are uniformly bounded from zero 
and from above. These properties imply that 0 and 1 are attainable, while 1/2 turns 
out to be unattainable. 12 In contrast, assuming that the choice of the sample size is 
random according to a fixed distribution, i.e. that r,, t ~ 1, are random variables and 
have the same distribution 

&P{r, = 2i + 1} =Pi> 0, i = 1,2,. . .,n, L Pi= 1, 
i= 1 

1 1 The above mentioned facts concerning the estimate for .5,( ·) and the root (} hold true only for 
large enough q (depending on a). This becomes clear if notice that for aq < l one gets [aq] = 0 and 
PR 2(x) - x has only two roots 0 and I. The same is true for all other cases when asymmetric decision 
rules are involved (i.e. rules different from the simple majority/minority ones). 
12 Examples of essentially nonstationary functional sequences, i.e./,(·), t;;:. I, that do not exhibit 
any regularity as t-+ ctJ, can be studied by means of a theory especially developed to tackle such 
issues (see Arthur et al. l 987a and 1988). 
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we have 

f,(x) = PR 3(x) + b,(x), 

where 
2i+ I 

PR3(x)='°'p " Ci. xi(l-x)2i+t - i L I L 21 + 1 ' 
i= I j=(i+ 1)/ 2 

sup I b,(x) I ~cons! min(x, I - x)t - 1
• 

xeR(O, l) 
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The function p R 3( ·),satisfying the representation from the previous section, also has 
three roots 0, I / 2 and I, among which 0 and I are attainable and 1/2 is unattainable. 
Note that here stochasticity simplifies the problem by removing the intrinsic 
nonstationarity of the process. 

The three foregoing examples display (global) positive feedbacks. 13 Examples 
of (global) negative feedbacks can be similarly derived. 

Consider the following rules: 
R4. Ask an odd number r of users which technology they adopt. If the majority 

of them use A, choose B. Otherwise choose A. 
RS. Fix aE(O, I). Ask q ~ 3 users of the technologies. If more than ::xq of them use 

A, choose B. Otherwise choose A. 
If a= 1/2 and q is an odd number, then RS converts into R4. 
These rules may accommodate behaviors such as the search for diversity in 

consumption or implicitly capture the outcomes of strategic behaviors on the side 
of the producers of the technologies aimed at the exploitation of "market power" 
(cf. Dosi et al. 1994 and Glaziev and Kaniovski 1991 ). We have relations here similar 
to (4) and (S) with 

(r - 1)/ 2 

PR4(x) = L C~x;(I - xY- i , 

i ::;;;O 

and 
[aq] 

PRs(x) = L C~xi(I - x)q - 1
. 

i =O 

In both cases there is a unique solution of the corresponding equations PR 4 (x) - x = 0 
and PRs(x) - x = 0. For R4 it is 1/ 2, and for RS the root () shifts to the right as a 
increases. 14 The negative feedback determines a limit market structure, whereby 
both technologies are represented in the market with equal share in R4, or they 
share the market in the proportion 8:(1 - 8) (the limit for the ratio of the number 
of units of A to the number of units of B) in the case of RS. 

13 Actually this statement is not completely correct. Consider for example the rule R2. In the 
feasible domain R(O, !) (i.e. the set of points which can be attained with positive probability through 
a finite number of steps from the initial state) there is actually a global positive feedback with 
respect to 0. In other words, this root is a global repeller in R(O, I). But adding to this domain 0 
and I, two asymptotically attainable points, we see that there is a local negative feedback in R(O, II) 
with respect to 0 and a local negati ve feedback in R(O. I) with respect to I. Or, in ot her words. 0 
is a local attractor in R(O, 0) and I is a local attractor in R(O. I). 
14 For a fixed et: one can show that 0 converges to et: as</__, x.. 



104 G. Dosi and Y. Kaniovski 

For both rules, we know the rates of convergence of X, to the root, i.e. 
Jl. (X, - 1/2) for R4 or Jl.(X, - 0) for RS, are asymptotically normal as t--> oo. The 
means of the limit normal distributions equal zero for both cases and one can also 
specify the corresponding variances (see Arthur et al. (1983) for the case of R4). 
Consequently, we can characterize the rate of emergence of the limit market 
structures. 15 

More complicated f(-) functions appear if we introduce additional hypotheses 
concerning the characteristics and/or dynamics of the pool of adopters. Ifwe assume 
that adopters who use some decision rule R; occur with frequency (probability) 
ai>O, i= 1,2, ... ,k, (2::~~ 1 ai= I), then the function f,(-), corresponding to the 
behavior of the whole pool, is a randomization with weights ai of functions J;(-) 
generated by the rules Ri , i.e. 

f,(x) = L aJ;(x), xER(O, I), t ~I. 
i = 1 

The simplest example, where adopters who use R 1 come up with probability a> 0, 
while those who use R4 come up with probability 1 - a> 0, has been considered in 
Dosi et al. ( 1994 ). 

More generally, meaningful applications of generalized urn schemes to parti­
cular problems of technological and economic dynamics imply an "inductive" 
specification of the f(-) function, which, loosely speaking, "summarizes" the 
"intrinsic" or behavioral features of the agents and the nature of their interactions. 

Beyond these properties of general positive and negative feedbacks, let us now 
consider those more complicated situations with locally positive and/or locally 
negative feedbacks . 

5. Examples of technological dynamics under local feedbacks in homogeneous 
economic environments 

In this section we deal with the situation when there are more than one interior 
attainable limit state (or root of the corresponding function). Conceptually it might 
mean for example that there are several patterns of the Jong run behavior which do 
not imply monopoly of either technology. Moreover, the second type of models 
considered in this section, suggests another interpretation of urn schemes. In 
contrast to the previous examples, where we assume that the uncertainty is due to 
imperfect information of individual adopters about the choices of the whole 
population, we shall introduce uncertainty generated by "imperfectness" of the 
adopters themselves (somewhat analogous to fluctuations of their preferences). 

One of the simplest examples of technological dynamics under "local" feedbacks 
is the following. 16 Think of adopters of competing technologies who are risk-averse 
enough not to follow the choice of a minuscule minority of the pool of users, but, 

15 For this particular rules one can determine an even sharper asymptotic characterization - the 
law of iterated logarithm (see Arthur e t al. l 983). 
16 Jn this section, by "loca l" we mean specific to pa rticular states of the process, without however 
any "spatial" connotation. Feedbacks that the "local" in terms of some "topology .. of the 
environment will be considered in section 7. 
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for some reasons, are not inclined to conform to the absolute majority of them (say, 
due to a preference for variety, "inwardedly" generated judgements, eccentricity, 
etc.). To trivialize, imagine the example of someone who might not want to buy a 
touch-tone phone instead of a classic rotary one when less than 10% of his friends 
do so, but may as well desire an old-fashioned rotary phone when more than 90% 
of his friends have touch-tone ones. 

Somewhat similar dynamics are present also outside the domains of technology 
adoption and consumption patterns: for example, the "bullish" and "bearish" phases 
on financial markets retain some of these characteristics (although admittedly one 
should be cautious in applying without appropriate modifications the formal 
machinery presented here to speculative phenomena, since in the latter the "weight 
of history" might well be lower than that implied by these urn schemes). 

This type of behavior gives rise to the following rule. 
R6. Fix aE(O, 1 / 2). Ask q > 1 /a users of the technologies. If the number of those 

of them who use A is greater than aq and smaller than (1 - a)q, choose A. Otherwise 
choose B. 

Arguments similar to the ones given in the previous section show that an 
analog of the relation (4) in this case holds true and 

[(! -a)q] 

PR6(x) = L C~xi(I - x)q - i. 
i = [aq] + 1 

If a is small enough, then pR 6 (x) - x has three roots 0, 81 and 82 on [O, l]. Here 
0 < 8 I < 1/2 < 82 < I. 1 7 Satisfying (3), the root 81 turns out to be unattainable, while 
0 and 82 are attainable roots. Consequently, in the limit we can have either monopoly 
of B, or the situation when with positive probability the market is shared by A and 
Bin the proportion 82 :(1 - 82 ) > I. For large a close to 1/2 there could be only one 
root 0, i.e. the corresponding limit market pattern is monopoly of B. For an 
intermediate value of a one can imagine a situation when pR 6 (x) - x has two roots 
on [O, 1] - a crosspoint 0 and a touch point 8E(0, 1/ 2). Then both are attainable with 
positive probability (for 8 this follows from the results of Pemantle (1991)). 
Consequently, in the limit we have either monopoly of B, or the ratio between A 
and B equals to 8:(1 - 8) <I. 

We now turn to a different class of models. 
Let us introduce a price dynamics for the two technologies. As in Dosi et al. 

( 1994), assume that two firms (producers of A and B, respectively) use the following 
strategy: up to a certain market share, defined by the proportion of the product of 
the firm among all products which have been sold until the current time (usually 
greater than 1/2), the firm reduces the price and above that level increases it. Let us 
consider the simplest (linear) case of this policy which is graphically represented in 
Fig. I. Here Pr A(xA) designates the dependence of the price of technology A as a 
function of its proportion xA among adopters who are using either technology. 
Pr8(xA) designates the dependence of the price of the technology Bas a function of 
x A" (Note that the proportions of the technologies A and B are related by: 
xA + x 8 = 1.) Define x~ and x; as the "critical" market shares which switch from 
falling- to rising-price rules. Hence, the dependence of the price of the A (B) 

17 For a fixed a one can show that 81 --+ Cl and 02 --+ I - a as r--+ oo . 
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Prs(Xe) 

PrA(xA) 

a1 

0 l - x~ x• 
A 

Fig. I. Dependence of prices of A and B on the market share of A 

G. Dosi and Y. Kaniovski 

XA 

technology on its proportion on the market xA(x8) is given by four parameters: 
Pr A(O) x~; Pr A(x~); Pr A( I )(Pr8( I); x;; Pr8(1 - x;); Pr 8 (0) ). 18 

This price dynamics embodies both positive and negative feedback mechanisms 
of diffusion. Within the domain of positive feedback the price falls with increasing 
market shares possibly due to learning economies, dynamic increasing returns, etc., 
and/or, on the behavioral side, to market-penetration strategies. Then, above a 
certain market share, the price starts to increase (hence entailing negative feedbacks), 
possibly due to monopolistic behaviors of the firm or to the progressive exhaustion 
of technological opportunities to lower production costs. Note that the model 
accounts also for those particular cases when firms follow different "non-symmetric" 
policies·· e.g. one increases the price and another lowers it, or both increase (lower) 
them, 19 or one increases (lowers) price and the other follows the above general 
strategy. These special cases can be obtained from the general one by simply 
changing the relations between Pr A(O), Pr A(x~), Pr A (I )(Pr 8 ( I), Pr 8 (1 - x;), Pr 8(0) ). 

It is natural to suppose that in the case when the "value" of the technologies for 
the users is approximately the same and potential adopters know about it, the 
technology which is cheaper has more chances to be sold, i.e. the A technology is 
bought if Pr A(xA) - Pr8(xA) < 0. However, if the prices only slightly differ or con­
sumers have some specific preferences (which can be characterized only statistically 
or on average), that may sometimes lead to the adoption of the more expensive 
technology. Mathematically this case can be formalized in the following way (see 

18 Not-: that one accounts also for the circumstances when Pr A(I),;;;; Pr A(x~) (Pr8(0),;;;; Pr8(1 - x;)), 
such as when x~ = l(xi = 1): in this case, firm A(B) still reduces the price on its product as its 
proportion on the market goes to one. 
19 For the case when both lower prices, see Glasiev and Kaniovski (I 99 I) where formally the same 
situation is interpreted somewhat differently. 
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also Hanson 1985). The A technology is bought if PrA(xA) - Pr8(xA) + ¢ < 0, where 
¢is a random variable. (Consequently, the B technology is bought if PrA(xA) ­
Pr8(xA) + ¢ > 0.) To preserve the symmetry of the decision rule we should avoid 
the situation when the event "Pr8(xA) - PrA(xA) = (" has nonzero probability. 
This is definitely not the case when the distribution of¢ possesses a density with 
respect to the Lebesgue measure on the set of real numbers. Consequently, we will 
assume that the distribution¢ has a density in R 1

• The probabilityf(xA) to choose 
the A technology, as a function of xA, equals to P{( < Pr8(xA) - Pr A(xA) }. To 
avoid unnecessary sophistications of the model, we shall assume that¢ has a uniform 
distribution on [ - a, a]. The probability to choose A as a function of x A in this case 
has the form 

1

1 

0 
f(xA) = 

Pr8(xA)-PrA(xA)+r:x .f P () P () 
1 -a< r8 xA- rAxA <CI.. 

2a 

if Pr8(xA)- Pr A(xA)? a, 

if Pr8(xA) - PrA(xA) ~ - rx, 

For a> max; = u. 3 .4~i this is graphically represented in Fig 2. Here we have three 
roots - 8 1, 82 and 8 3 - of the function f (x) - x on [O, I]. Satisfying (3), the root 02 

proves to be unattainable, while 8 1 and 83, satisfying (2), are attainable, i.e. the 
process X, converges to each of them with positive probability for any initial 
proportions of the technologies on the market. Using results of Arthur et al. (1988), 

f (x) 

0 6 I ei e i x 

Fig. 2. Probability to choose A depending on its market share 
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we find the rates of convergence to the attainable roots 

8 - (a:+l11)(l-x;) 
1 - 2ix(l - x;) + !11 + !12' 

83 
= I _ (ix+ !14)(1 - x~) 

2ix(l - x~) + !13 + !14 

In particular, 

lim.9'{jt(X, - 8;) < y, X 5 -+8J = .9'{X5 -+8;}.9'{% (0, af) < y}. 
,_ 00 

Here % (0, a?) stands for a Gaussian distribution with zero mean and variance 

2 8;(1 - 8;) 
a.= ----

' I - 2f'(8;) ' 

where f'(-) designates the derivative of JO It can be shown that 

! ' (8 )- !11 + !12 
I - - 2ix(l - x;) 

and 

f'(83) = - !13 + !14 . 
2a:(l -x~) 

(6) 

(7) 

(8) 

(9) 

One sees from (6)- (9) that convergence to both 81 and 83 occurs with the rate t - 112 

but the random fluctuations around this, which are determined by the variances of 
the corresponding limit distributions, can be different. 

In this example, the above dynamics of prices together with the described 
behavior of adopters generate multiple limit patterns with slightly different rates 
of emergence. Under the same price dynamics and marginally more sophisticated 
assumptions concerning the behavior of adopters, one can have even more com­
plicated limit market structures where the initial proportions of the technologies on 
the market influence those structures (see Dosi et al. 1994). Similar considerations 
concerning convergence rates also apply (with corresponding modifications). 

The analytical procedure is to introduce further specifications on the statistical 
frequences (probabilities) of the producers of A(B) to follow a particular shape of 
the above price dynamics and/or hypotheses concerning sta tistical frequences of the 
adopters who use variants of the above decision rules: thus, one can construct much 
more complicated functions f,( · ). 

Next, let us discuss one important generalization of the urn scheme presented so 
far. 

6. Urn schemes with multiple additions - a tool for analysis of system 
compatibilities 

As mentioned in section 2, quite a few modern high-technology products require 
compatibility. Think for example of compa tibility requirements of software pack­
ages and hardware in computers. Moreover, it is reasonable to expect that 
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competing technologies might arrive in different "lumpy" quantities and in different 
combinations with each other. In this section we present the modification of the basic 
scheme apt to handle such phenomena. We have hinted earlier that considering 
all notional combinations of new technologies as a sort of "higher level" new 
technologies, although formally possible, does not look too attractive. An alter­
native method for handling inter-technological compatibilities has been introduced 
by Arthur et al. (1987a). For the case of two (A and B) competing technologies it 
looks like the following. 

Consider Z~, the s~ of two dimensional vectors with non-negative integer 
coordinates. Introduce ~ '(x), t? I, xE R(O, I), random vectors with values in Z~ 
independent int. If°¢'(x) = (~:(x), ~~(x)) takes the value T = (i 1, i2) we can interpret 
this both as additions of i 1 ? 0 white and i2 ? 0 black balls into an urn of infinite 
capacity with black and white balls or, equivalently, as adoption in a market of 
infinite capacity of i 1 units of A and i2 units of B. 

Mathematical results similar to those presented in section 3 are obtained (see 
Arthur et al. l 987a, l 987b and 1988). An important property of this generalization 
is that ¢r(x) can take the value 0 = (0, 0) with nonzero probability. Consequently, no 
adoption might happen at time t. Taking into account that the scheme allows 
multiple adoptions, one sees that sequential instances of adoption do not coincide 
with physical time "periods". Hence, loosely speaking, history may "accelerate" by 
discrete jumps of variable length. 

Designate by X, the proportion of white balls in the urn at time t? 1. Then the 
number wr of white balls and Yr• the total number of balls in the urn at time t, follow 
the dynamics 

Wr+1=Wr+~r1 (Xr), t?I, 

Yr+ 1 =Yr+ ~11 (Xr) + ~~(Xr), t? 1. 

(10) 

( 11) 

Here w1 ? l and b1 ? l stand for the initial numbers of white and black balls in the 
urn. Also y1 = w1 + b1• Dividing (10) by (11), one has 

x = x + -1 ~rl (X,)- Xr[~rl (X,) + ~~(X,)] t? I x = W1 
t+l I Y, I - I["'(X) "'(X)], , 1 . +y, '>1 ,+-,2 I Y1 

Let p(T,x), T EZ~,xER(O, 1), be the distribution of°¢(x), i.e. 20 

.oJ'{°¢'(x) = T} = p(T, x). 

Since 

E[~11 (X 1)+~~(X1)]= L (i 1 +i1)p(T,x), 
iez: 

then, requiring that for all x6R(O, I) 

p(O,x)~a<l and L (i 1 +i1) 2p(f,x)~c 1 , 
i ez: 

( 12) 

(13) 

(14) 

20 In general this distribution can also depend on t and/or the total current number of balls in the 
urn y,, but, to simplify the formulae, here we restrict ourselves to the simplest situation. 
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one has with probability I 

I 1. . f Yr 1. Yr -ex::( 1mm -- ::( 1msup -- ::(c2. 
r- oo t-1 r- 00 t-1 

( 15) 

Here c;, i = I, 2, stand for some constants. Notice that 

E{ - 1~r,(Xr) - Xr[~r,(Xr)+~~(Xr)JIX =x = }= 
Yr I + Y r- 1[ ~r1(Xr)+ ~~(Xr)J r ,yr y 

_ _ 1 ""' i 1 - x(i 1 +i2) (-:-- ) 
- Y ~ pt,X. 

iEz2. I+ Y-
1(i1 + iz) 

( 16) 

Relations (12), (15) and (16) allow to show that Xr converges with probabilitiy I as 
t--. oo to the properly defined (since the function involved may be discontinuous) 
set of zeros on [O, 1] of the function 

g(x) = I [i 1 - x(i1 + i2)]p(f, x). 
- 2 
i eZ + 

( 17) 

Furthermore, if the function G(") in the right hand side of (13) turns out to be 
continuous, and Xr a.s. converges to x 0 , then, from (11) and (13), one has tha t 
(t - l) - 1yr converges with probability 1, and the limit y0 has the form v0 = G(X 0) . 

For this case we can derive the same set of asymptotic statements as for the 
basic scheme. 

As an example of how this modification of the basic scheme can work, let us 
consider the following generalizations of the decision rules R2 and R5 given in 
section 4. 

R7. Fix cxE( 1/2, 1 ). Ask q ?:: 3 users of technologies. If more than cxq of them use 
A, choose A. If not more than (1 - cx)q of them use A, choose B. Otherwise do not 
choose any technology. This rule generates the following probability to choose A: 

p((l,O),x) = P<i~(x) + c5 ~l)(x), 
and, analogously, B: 

p( (0, 1 ), x) = p<,?Hx) + c5~2 l(x) . 

Finally, the probability not to choose anything, i.e. p((O, O),x), is 

p((O, 0), x) = p<,i~(x) + c5~3 >(x) . 

Here y stands for the total current number of balls in the urn, 
q [(I -a)q] 

P~Hx) = L C~xi(l - x )q -i, p<,?~(x) = I C~xi(l - x)q - i, 
i = [a q]+ I i = O 

[•q] 

p<,iHx) = I - P<i~ (x) - p~~(x) = I C~xi(l - x)q- i, 
i = [(l -a)q] + I 

sup ic5~il(x)I ~ const min(x, 1 - x)y- 1
, i =I , 2, 3. 

XER (O,l) 

Also g( ·) in this case is 

g(x) = p~~(x)- x[p~~(x) + p~~(x)] 
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and the only root on (0, 1) of g(") is given by the equation 

p(I>(x) 
X= R1 . 

p~~(x) + p~~(x) 

111 

Since p~j(x) + p~~(x) < I for xER(O, I), this root is smaller than the corresponding 
root of R2. But still it is unattainable. Two other roots, 0 and 1, are attainable. 

Similarly to R7 we can introduce R8 - a counterpart of RS. In this case we 
have, as for RS, that there is only one attainable root. For reasons similar to 
those mentioned in the previous section, this root is larger than the corresponding 
one of RS and for a fixed a it approaches a as q-> oo . 

As highlighted in all the foregoing examples, applications of urn schemes allow 
an analytical investigation of questions such as the possibility of "lock-in" into one 
of alternative technological systems or, conversely, the feasibility of their long-term 
co-existence. Clearly, in several of the examples, lock-in and history-dependent 
selection of a particular system does occur. But these models show also that the 
notional multiplicity of limit states and the evolutionary importance of early 
historical events depend upon the precise mechanics by which agents acquire 
information and change their preferences. (In the simple examples here these 
mechanics are captured by the different decision rules.) Similar considerations are 
likely to apply to more complex models allowing for learning processes also among 
suppliers of the technologies themselves. However, as already mentioned, it is not 
the purpose of this work to discuss the specific characteristics of market interactions 
and learning processes: rather, one of our major points here is that urn schemes, 
with the appropriate modifications, can be applied to a wide variety of them. 

Further, let us introduce the urn model corresponding to the case when 
competition occurs in non-homogeneous economic environments, and thus inter­
actions have "local" characteristics in some "spatial" sense. 

7. Generalized urn schemes with non-homogeneous environments and their 
economic applications 

In this section we introduce a new modification of the basic scheme allowing for a 
"distributed" economic system, composed of interacting parts which can be 
metaphorically understood as "regions". The parameters of the whole system are 
dynamically formed by all the regions, involving different kinds of non-linear 
interacting. Interestingly, the dynamics of the system proves to be much more 
complex than the behaviors of its components. In the following we shall mainly 
consider the technical aspect of this modification; however it is intuitive that 
obvious candidates for economic application are growth processes involving "local" 
learning. 

Think of m urns of infinite capacity with black and white balls. Starting with 
nw ~ 1 white balls and nb ~ I black balls into the i-th urn, a ball is added in one of 
the urns at time instants t = 1, 2, ... . 21 With probability fJX(t)) it will be added into 
the i-th urn. It will be white with probability f~(X(t)) and black with probability 

2 1 In general one does not require that ni ~ 1 and n~ ~ 1. The only thing one really needs is 
positiveness of ni + n~ . Consequently, the process can start from zero number of balls of one of the 
colors into the urns. The same is true for all urn processes considered in the paper. 
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f~(X(t)). HereJ ( · ),J w(-),J b( ·),are vector functions which map R(O, l) in Sm, and 
J w( ·) + J b( ·) = J ( · ). By R(O, l) we designate the Cartesian product of m copies of 
R(O, 1) and 

Sm= {xERm: X;? 0, .IX;= 1 }· 
i::l 

X(t) stands for the vector whose i-th coordinate X;(t) represent~_the proportion of 
white balls in the i-th urn at time t. To introduce the dynamics of X(t) consider ¢1(x), 
t? 1, xER(O, l), random m x 2 matrices independent int with the elements ¢LJ:X), 
i = 1, 2, ... ,m,.j = 1, 2, such that &{ ¢'.. 1 (x) = 1} = f:W(x) and &{ ¢;, 2(:X) = 1} = f~(x). 
This means that a white (black) ball is added into the i-th urn at time t if 
¢;, 1(X(t)) = 1(¢;, 2(X(t)) = 1). Then the total number Y'. of balls in i-th urn at time 
t ? 1 follows the dynamics 

y;+ 1 =y'.+¢'.. 1 (X(t))+¢'.. 2 (X(t)), t?l, y/=n~+n~. (18) 

Since 

E[¢:. 1 (x) + ¢;. 2(x)] = f;(:X), 

then, requiring that 

f;(x) ? J? > o, 

one has 

o · · Y'. . ~ f; ~ hm mf - ~ hm sup - ~ 1. 
1-00 t 1- 00 t 

(19) 

(20) 

(21) 

The number w; of white balls and the number b; of black balls in the urn follow the 
dynamics 

w;+ 1 =w;+¢;,1(X(t)), t?l, w;1 =n~, (22) 

b;+ 1 = b'. + ¢;. 2 (X(t)), t? 1, bi1 = n~. 
Dividing (22) by (18) one has the following dynamics for the proportion of white 
balls in the i-th urn 

x .(t + l) = X.(t) + l ¢;. 1 (X (t)) - x ;(t) [¢'.. 1 (X (t)) + ¢'.. 2 (X(t))J, 

' ' Y'. l+(yr 1 [¢:.1(X(t))+¢'..2(X(t))] 

n~ 
t? 1, X;(l) = -T· 

Y; 

Since 

E { 1 ¢'.. 1 (X(t)) - X;(t)[¢i1 (X(t)) + ¢i2(X(t))] I X(t) = x, Y' = r} 
y; l +(yr 1 [¢;, 1(X(t))+¢;,2 (X(t))] 

_ 1 f;w(x) - xJ;(x) 

- Y; l + (y;)- 1f;(x)' 

(23) 

relations (21) and (23) allow to show that X (t) converges wth probability 1 as t--> oo 
to the set of zeros (properly defined) on [ 0, l] of the m-dimensional vector-function 
F( ·)whose i-th coordinate isJ;w(x)- x;f;( x). Assume that bothf w( ·) andf b( ·)are 
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continuous and there is a limit x0 for X(t). Then from equality (19) one can conclude 
that t- 1 y' converges with probability I as t-+ oo and the limit y0 has the form 

Y? = f;(X 0
), i = 1, 2, .. . ,m. (24) 

Using the above relations we can obtain analogs of the results listed in section 3 
for the basic generalized urn scheme. 

In principle, multiple urns models are capable of capturing positive (and, 
possibly, negative) feedback processes which are "local" on some appropriately 
defined space (it could be "regions" or "countries", but also groups of agents with 
particular features). 

Consider a particular model of technological dynamics in a non-homogeneous 
economic environment which can be treated by means of the modification given 
here. 

Suppose that we have two possible locations (which can be thought as urns), 1 
and 2, for the producers of two competing technologies - A and B. At each of the 
locations (they could be understood as "economic regions" or "countries") there are 
one firm producing A and one firm producing B. Producers use the strategy 
described in section 5 (with their own sets of parameters). Suppose for example that 
there are (bounded) increasing returns and market-share dependent pricing stra­
tegies. Then for each of the locations there exists a minimal price of the technologies 
as a function of the current concentration of, say, A, i.e. M(xA) = min(Pr A(xA), 
Pr8(xA)). For the case represented by Fig. 1, the function is given in Fig. 3. Note that 
at points A.; technologies reverse their order as the cheaper ones. Designate the 
proportion of A for the first and the second locations by x 1 and x 2 correspondingly. 
Also let A.~, j""' 1, 2, 3, i = 1, 2, be the points where the minimal prices switch from 
one technology to another. (Consequently, we consider the case when the minimal 

M(x) 

0 1'. I 1'. 2 1'. 3 XA 

Fig. 3. The price of the cheapest among A and B technologies as a function of X.-1 
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prices for both locations have a shape similar to that presented in figure 3.) Suppose 
that at time instants t = I, 2, . .. , a consumer buys a unit of either technology. 
(A "consumer", irrespectively of where he is located, can demand a technology 
produced in either region.) He adopts the cheapest among the technologies, but, as 
before (section 5), because of some specific preferences or other reasons which can 
be taken into account statistically, he measures the difference between M i(.x 1) and 
M 2(x 2) with a random error. Here M ;(-) stands for the minimal price for the i-th 
location as a function of the market-share of A at this location. A unit of the 
technologies from the first location is bought if M 1(x 1) - M 2(x2) + ( < O; otherwise, 
i.e. when M 1(x 1) - M 2(x 2) + ( > 0, a unit from the second location is bought. As 
before (section 5) to preserve the symmetry of the decision rule we should avoid the 
situation when the event "M 2(x2) - M 1(x 1) = (" has nonzero probability. Con­
sequently, we should again assume that the distribution of ( possesses a density with 
respect to the Lebesgue measure on the set of real numbers. The probability to 
choose the first loca tion isf1(x 1, x 2)= .9{( <M2(x2)-M 1(x 1)} . To simplify our 
considerations let us suppose that ( has a uniform distribution on [ - {3, {3]. Then 
the probability to choose the first location is 

f1 Cx) = o if M 2(x2) - M 1 (xi) :::;; - {3, l 
I if M2 (x 2 ) - M 1 (x 1 ) ~ /3, 

[M 2(x2)- M i(x 1) + {3] /2{3 if - {3<M 2(x2)-M 1(xi) < {3. 

Suppose that f3 > max0 ,, x; "' 1.i = 1.21M2(x 2) - M 1 (x 1)1. Then (20) holds with 

J~ = L ,,x; i;:~= J , i [M 2(X2) - M 1(X1)J + fJ} / 2{3 

and 

f2° = 1/ 2 -L,, x;~~-~ = 1.
2 
[M 2(X2) - M 1(x1)]} / 2{3. 

The simplest decision rule for choosing a specific technology when a location has 
been chosen is the following: a unit of A(B) is adopted at the i-th location if 
X;E /~(x;E /~). Here I}. = (0, ).;1) u (Jc~, .A.~) and /~ = [,l.;P }.~] u [).~, I). The correspond­
ing vector-function F( ·) has the form 

- {(I - X;)f;( x ) for X;El~, F(x)= 
' -xJJx) for x;Elf, 

We can show that X(t) converges (for any initial number of A and B at the both 
locations) with probability I as t-+ oo to a random vector X. The limit takes with 
positive probability four values: (Jc :, Jc i), (Jc: , A. ;), (A. ; , A. iJ, (A. ; , A.;). Of course, one may 
easily refine these examples by introducing more complicated decision rules (e.g. 
mixed strategies randomizing the choice among technologies after having chosen 
the location, etc.), or by specifying the technological and behavioral relationships 
between location-specific prices and market-shares. In any case what is important 
to notice here is that this class of models is apt to analyse the dynamics of what can 
be interpreted as the inter-regional (or international) location of "production" of 
diverse technologies under non-constant returns and heterogeneous behaviors 
among producers. "Spatial" asymmetries in the limit distributions are the general 
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outcome, while - as mentioned earlier - more precise long-term properties can be 
analysed by adding the appropriate "inductive" specifications on technological 
dynamics and behavioral responses. 

Further along these lines, consider the application of this formal apparatus to 
a sort of"reduced form" model of international growth driven by investment in two 
alternative technologies, A and B. The "world economy" consists of m interacting 
parts (for example, economic regions) of infinite capacity. Technologies are 
capital-embodied so that each instance of adoption is associated with an investment 
decision. The time sequence t = I, 2, .. . , is defined by the sequence of investments 
(i.e. adoption decisions). This will not interfere with our considerations since we are 
interested in the proportions of the total capital stock embodying each of the 
technologies. Further, let us make the following assumptions: 

1. Assume (in a quite non-Schumpeterian fashion) that there is no "creative 
destruction", and units of capital pile up on each other without depreciation. 

2. Each technology yields a different productivity, which changes along the 
diffusion trajectory. The productivity of each technology in each region, and 
their shares by region, ultimately determines per capita incomes (along the 
process and in the limit). However, private agents do not select technologies on 
the grounds of productivities but in terms of their relative profitabilities. 

For the i-th region we consider the following indicators: x;(I - x;) - the fraction of 
the capitals embodied by A(B); P1(x;)(P~(x;) - the cost of a unit of investments 
embodying A(B) and dependent on x,; R1(x;)(R~(x;)) - the overhead costs per unit 
of investment (which may include the cost of capital services) as a function of x;; 
W;A(x;)(W.8 (x;)) - the unit labour costs for a given X; . (Note that the dynamics of 
W;A(")(W/j( ·)) may well depend on technology-specific changes in labour product­
ivity associated with e.g. dynamic increasing returns, and region-specific changes in 
wage rates denominated in some constant unit of measure. However, in the most 
general formulation of the model we do not need to specify the exact form of these 
relationships.) For convenience, assume that each "investment" adds one unit of 
output. Thus, the profit n1(x;)(n~(x;)) from using A(B) is 

n1(x;) = P1(x;) - R1(x;) - W;A(x;), 

n~(x;) = P~(x;) - R~(x;) - J.v;8 (xJ 

Also the total profit for the i-th region is 

n;(x;) = n1(x;) + n~(x;). 
Now we can consider the following mechanism of investment/ adaptation. 

Suppose that n1(x;) > 0 and n~(x;) > 0 for X;E [O, I] , i = I, 2, . .. ,m (i .e. all the 
technologies have non-negative profitabilities). Assuming that the current fractions 
of A in the regions are given by the corresponding coordinates of an m-dimensional 
vector x E[O, I], a unit of A(B) is adapted in the i-th region with probability 

n1(x;) ( n~(x;) ) 

I:;= 1 nk(xk) I:;= 1 nk(xk) . 
(25) 

The economic interpretation is a sort of "Ricardian" mechanism - whereby invest­
ment depends, in probability, on the net surplus generated by each technology -
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jointly with less than perfect mobility of investment across technoiogies (say, due 
to technology-specific learning-by-doing and -by-using). 22 

By thinking of a unit of A as a white ball and a unit of Bas a black ball, we obtain 
the above scheme with 

nA( ·) 
J;w(-) = L; =1 Ink(-) and 

nB(.) 

!~(-) = 2:;=
1

1nk( ·)° 

Further conceptual results can then be derived, for example, by imposing particular 
restrictions on the dynamics of Jabour productivity, wages, overheads and mark­
ups, therefore determining the shape of the functions n1( ·) and nf( · ). Other 
refinements might involve the introduction of a stochastic element in the decisions 
governing the allocation of investment to regions and technologies. Assuming (small 
enough) random errors c1 and cf, i = 1, 2, ... ,m, instead of (25) we shall have 

n1(x;) + c1 ( nf(x;) +cf ) 
2:;= Jnhk) + c: + c~] 2:;= 1[nk(xk) + c: + c~] . 

In any case, whenever our assumption holds on the different (and endogenous) 
productivities associated with different technologies, our multiple urn scheme 
allows the analysis of the process of long-term differentiation in per capita incomes 
driven by "local" learning and other forms of "virtuous" and "vicious" circles - as 
Nicholas Kaldor would put it. 23 The limit shares of white and black balls in each 
urn, under a rather innocent hypothesis of monotonicity of productivities and 
incomes, determine also the limit distribution of the latter among countries or 
regions24 (One may visualize this distribution as the shares into growing pie 
representing "world income" normalized with world population.) 

8. Generalized urn process and evolutionary games 

Generalized urn schemes generate stochastic replicator dynamics. In particular, all 
of the above urn process represent a kind of discrete time stochastic replicator 
equations and, consequently, can be used in the general setting of "evolutionary 
games" instead of deterministic ones (see Friedman (1991) for the corresponding 
construction with deterministic dynamics). Let us give a simple sketch of how this 
can be done, reserving to further works a more detailed analysis of this problem. 

Following Friedman (1991), consider a set of interacting populations, indexed 
k = 1, 2, ... ,m. Ifm = 2 they could be thought, for example, as "sellers" and "buyers". 
A member of each population has a finite number of available actions (or 
"behaviors" or "strategies"). Let us restrict ourselves for simplicity to the case of 
two possible actions, indexed i = 1, 2. Then, any point of the one dimensional 

22 This mechanism is somewhat analogous to the diffusion patterns of capital-embodied 
innovations modeled by Soete and Turner (1984). See also Metcalfe (1988). 
23 The formal apparatus presented here clearly allows generalizations in an explicit dynamic 
setting on the models of"local" learning put forward by Atkinson and Stiglitz (1969) and David 
(1975). Note that by "local" in this section we mean both region- and technology-specific. 
24 In this there is an intuitive link also with endogenously generated absolute advantages/dis­
advantages which shape the possibilities of growth in open economies as in Dosi et al. (1990). 
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simplex [O, 1] represents a possible mixed strategy for an individual member of a 
population. Any point in the same simplex a.!§o_ represents the fraction of a 
population employing the first strategy. Hence [O, 1 ], the Cartesian product of m 
copies of the simplex [O, 1], is the set of strategies profiles and also the state space 
under the maintained interpretation that interactions are anonymous. 

Interactions are summarized in a fitness function which specifies the relevant 
evolutionary payoff for the individuals in each population as a function of their own 
strategy ~.n.Q. the current state. Formally a fitness function consists of maps: 
[O, 1] x [O, 1 ]--> R 1

, k = 1, 2, ... ,m, which are assumed linear in the first (own 
strategy) argument and continuously differentiable in the second (population state) 
argument. If m = 2, the payoffs of a bi-matrix game give a simplest example of a 
fitness function. 

The final basic element of the model, which radically departs from other models 
currently available (see Friedman 1991), is a stochastic replicator-type dynamic 
structure specifying how a state evolves over time. The urn machinery allows a quite 
general and powerful formalization. We postulate that 

X(t + 1) = Q(t, X(t), °[,), t;;:, 1, X(l)E[O, l]. (26) 

Here X(t) stands for the vector whose i-th coordinate X;(t) equals to the proportion 
of players in the i-th population who are using at time t the first strategy (then the 
proportion of players in the i-population who keep the second strategy is 1 - X;(t)). 
Moreover, Z,, t;;:, 1, m-dimensional random vectors are independent it t and 
Q(. , ., .) stand~ for a deterministic function, which: 

(a) keeps [O, l] invariant; 
(b) is measurable,with respect to the produc! of two er-fields of Borel sets on Rm. 
To illustrate this concept, let us consider the following example. 
Assume a dynamics which satisfies the above requirements and consider two 

populations, say "buyers" and "sellers". Suppose the interaction concerns the 
exchange of some object under imperfect and incomplete information such that the 
two populations can undertake two (pure) strategies: "be honest" or "cheat" for the 
sellers and "inspect" or "trust" for the buyers (so m = 2). Assume that, starting from 
b1 ;;:: 1 who inspect arid b2 ;;:, 1 who don't, at time instants t = 1, 2, ... , a new buyer 
joins that population. He can be of the inspecting or non-inspecting kinds and this 
depends upon the current frequencies of inspecting and non-inspecting buyers and 
of honest and cheating sellers. This dependency does not act deterministically, but 
randomly. In particular, there is a function / 1 (", · ): [O, l]--> [O, 1] and random 
Variables e I (t,., ·),independent in t;;:, 1, SUCh that 

e (t x = {1 with probability !1 (x, y), 
1 

' 'y) O with probability 1 - / 1 (x, y), 

where (x, y)E R(O, l). Then X(t), the proportion of buyers who inspects, evolves in 
the following way 

1 
X(t + 1) = X(t) + - [e 1 (t, X(t), Y(t))- X(t)], t;;:, 1, 

t + b 
bl 

X(l) = - , (b = b1 + b2). 
b 

(27) 

Consequently, at time ta new inspecting (non-inspecting) buyer joins the correspond­
ing population if e I (t, X(t), Y(t)) = 1(0). Here Y(t) stands for the current proportion 
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of honest sellers. Similarly, the dynamics of the latter is 

1 
Y(t +I)= Y(t) + - [¢ 2 (t, X(t), Y(t))- Y(t)], t ~I, 

t+s 

G. Dosi and Y. Kaniovski 

s, 
Y(I) = - , (s = s 1 + s2 ). (28) 

s 

We set s 1 ~ I for the initial number of honest sellers and s2 ~ 1 for the initial number 
of cheating ones. Also ¢ 2(t, ·,·)are independent in t ~ 1 and such that 

;: ) {1 withprobability f 2 (x,y), 
s 2(t,x,y = . . . 

0 with probability I - f 2(x, y), 

for (x,y)ER(O, l). Therefore, at time t a new honest (cheating) seller joins the 
corresponding population if ¢2 (t, X(t), Y(t)) = 1(0). The function f 2(·, ·)maps [O, l] 
on [O, 1]. It i~assumed that {~ 1 (t,-,·)} and {¢ 2(t,-, ·)} are independent. 

If we set X(t) = (X(t), Y(t)), then (27) and (28) represents a dynamics of the form 
(26). Indeed, condition (a) here holds automatically and the measurability condition 
(b) is also met since X( ·)takes in this case at most a countable number of values. 25 

Taking the conditional expectations in (27) and (28), one gets 

1 
X(t + 1) = X(t) + - [f1(X(t), Y(t))- X(t)] 

t + b 

and 

1 b 
+ - ( 1(t,X(t), Y(t)), t~ 1, X(I)=-.!. 

t + b b 

1 
Y(t + 1) = Y(t) + - [f2(X(t), Y(t)) - Y(t)] 

t+s 

I 
+ - ( 2(t,X(t), Y(t)), t ~I, 

t+s 
Y(I) = ~ 

s 

(29) 

(30) 

Here (i(t, x, y) = ~i(t, x, y) - E¢i(t, x, y), i.e. E(i(t, x, y) = 0. Hence, at time t the system 
shifts on average from a point (x,y) on 

( _!_b [f1(x,y)-x], -
1
- [f2(x,y)- y]). 

t + t + s 

This gives us two hints. First, that, under certain assumptions (see, for example, 
Ljung and Soderstr6!J1 1983), the system of finite difference equations (29) and (30) 
asymptotically (as t ...... oo) behaves like the following system of ordinary differential 

25 Here X( ·) is a nonstationary Markov process with growing number of states. In particular, 

- . . ( b, + i s, + j ) X(t) can attam only the following values: --- , --- , 0 <;; i <;; t - 1, 0 <;;j <;; t - 1. If, for 
b+t-1 s+r-1 

the purpose of the analysis, one would prefer populations which do not grow, then a number of 
conceptually interesting maps Q(·,., ·)can be produced by means of finite state Markov chains 
(see, for example, Kandori et al. 1993 and Samuelson and Zhang 1992). An important feature of 
any dynamics like (26) developing in a discrete space is that condition (b) holds automatically. 
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equations 

x = J1(x,y)- x, Y = J2(x,y)- y. (31) 

Second, possible limits of X ( ·) are given as the solutions of the following system 
of nonlinear equations 

J1(x,y)- x = 0, J2(x,y)- y = 0, (32) 

where (x, y)E [O, l]. Since, in general, we do not assume continuity of the functions 
Ji(-,·), the solutions should be defined in the appropriate sense (see Arthur 
et al. 1987a). 

So far, one has been totally agnostic in the form of the functions Ji(·,·), i = I, 2,: 26 

in our earlier example they depend on how buyers and sellers adjust their 
behaviors in the course of their interactions and, thus, on the fitness functions of the 
populations, qi(·,·), i = I, 2, but several other processes come easily to mind. 2 7 Note 
that, at one extreme, one can give a totally "ecological" interpretation of the link 
between the Ji(·,·) and qi(·, ·) functions: newly arriving agents do not "learn" 
anything by the observation of frequencies and payoffs, but relative fitness directly 
affects the probabilities of arrival of the cheating/non-cheating, inspecting/ trusting 
types. In a crude biological analogy, relative fitness affects the rates of reproduction 
of the various "types". (In the economic domain, an analogy is the expansion/ 
contraction of organizations characterized by fixed behavioral routines.) Alternat­
ively, one may think also of various processes of adaptive learning. Models of this 
type are examined by Fudenberg and Kreps (1993) and Kaniovski and Young 
( 1994). Hence, the dynamics of the form (27) and (28) will depend, of course, on the 
shape of the fitness functions 28 and also on the assumptions that one makes about 
the information agents are able to access - e.g. on the "true" fitness of their own 
population and the other ones, on the current combination of different types of 
agents (the "strategy profile") and also on the "cognitive" processes at work in 
adaptation. In this respect, the notion of "compatibility" (Friedman 1991) can be 
interpreted as a special restriction of the relationship between frequency dynamics 
and fitness functions, built on the deterministic analog (31) of the system (27) and 
(28). 

9. Conclusions 

Innovation and technology diffusion and more generally economic change involve 
competition among different technologies, and, most often, endogenous changes 

26 In general, they can also depend on t. 
27 Postponing a detailed analysis of the theoretical applications covered by this formali sm to a 
separate publication, we only mention here the following examples. First, the agents, having no 
(explicit) fitness function , use a majority rule similar to the ones discussed in section 4. Second, 
play ing a bi-matrix game, they use the corresponding payoffs as a fitness function. Since the 
proportions of players following a certain strategy from the opposite team are given by statistical 
estimates, opponents define the best reply strategy with a random error. Third, a combination of 
the previous two when the pool of players is not homogeneous, i.e. with positive probabilities 
new-comers can use both of the above decision rules. 
28 Incidentally, notice that for the purposes of this work, o ur "agnosticism" extends also to the 
precise form of the q1(', ·) functions. 
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in the costs/prices of technologies themselves and in adopters' choices. In the 
economic domain (as well as in other disciplines) the formal representation of such 
processes involves some dynamics of competing "populations" (i.e., technologies, 
firms, or even behavioral traits and "models" of expectation formation). A growing 
literature on such dynamics has begun studying the properties of those (generally 
non-linear) processes that innovation and diffusion entails. As by now robustly 
established, multiple equilibria are normally to be expected and "history matters'', 
also in the sence that out-of-equilibrium fluctuations may bear system-level 
consequences on notional asymptotic outcomes. Developing on previous results 
showing - under dynamic increasing returns - the likely "lock-in" of diffusion 
trajectories onto particular technologies, we have presented a formal modeling 
apparatus aimed at handling the interaction between diffusion patterns, on the one 
hand, and technology learning or endogenous preferences formation or endogenous 
price formation, on the other. As examples, we presented three classes of stochastic 
models of shares dynamics on a market of infinite capacity by two competing new 
technologies. In the first of them, we assumed that the adoption dynamics is essentially 
driven by endogenous changes in the choices of risk-averse, imperfectly informed 
adopters (or, in a formally equivalent analogy, by some positive or negative externality 
imperfectly estimated by would-be users of alternative technologies). In the second 
example, we considered an endogenous price dynamics of two alternative technologies, 
driven by e.g., changes in their costs of production and/or by the intertemporal 
behaviors of their producers. In the third example we dealt with the same economic 
set-up as in the second one, but with an explicit "spatial" representation of the 
location of producers, and with location-specific selection of capital-embodied 
technologies (this latter case has interesting implications in terms of macroeconomic 
"lock-ins" into diverse patterns of growth). Finally, we sketched some possible 
applications of generalized urn schemes to the dynamics of selection and adaptation 
by interacting populations (including "evolutionary games"). 

In all of the cases, the process is allowed to embody some stochasticity, due to 
e.g., "imperfect" learning from other people's choices, marginal and formally 
undetectable differences in users' preferences, or some inertia in adjusting between 
different prices but identical-return technologies. 

The formal apparatus present~d here, based on the idea of the generalized urn 
scheme, allows, in the domain of its applicability, quite general analytical accounts 
of the relationships between some system-parameters (e.g., proxies for information 
"imperfection" by adopters; dynamic increasing returns and monopolistic exploita­
tion of new technologies by their producers) and limit market shares. While 
path-dependency (i.e., "history matters") applies throughout, the foregoing analyti­
cal techniques appear to be able, at the very least, to discriminate those which turn 
out to be feasible limit equilibria (i.e., those which are attainable with positive 
probabilities) and, also, to discover the different rates of emergence of the limit 
patterns. 

The apparatus can also be used for numerical simulation. In this case it proves 
to be as general as ordinary differential equations and as easy to implement. By 
means of numerical simulation one can also study much more complicated and 
"inductively rich" models. Still, the developed mathematical machinery serves in 
such numerical studies as a means of prediction and verification, showing the 
general kind of behavior one ought to expect. Yet another complementarity between 
the analytical exploration of these models and their numerical simulation concerns 
the study of their non-limit properties, e.g. the "transient" structures that might 
emerge along the trajectories and their degrees of persistence. 
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As the foregoing modeling illustrations show, "market imperfections" and 
"informational imperfections" often tend to foster technological variety, i.e., the 
equilibrium co-existence of different technologies and firms. Moreover, stochasticity 
in the choice process may well bifurcate limit market-shares outcomes. Finally, it 
is shown, corporate pricing strategies - possibly based on rationally-bounded 
procedures, imperfect information and systematically "wrong" expectation-forma­
tion mechanisms - are generally bound to influence long-term outcomes. Under all 
these circumstances, the foregoing modeling techniques allow, at the very least, a 
"qualitative" analytical assessment of diffusion/competition processes by no means 
restricted to those circumstances whereby microeconomic expectations, on average, 
represent unbiased estimations of the future. 

If all this analytical representation is empirically adequate, then there seem to 
be no a priori reasons to restrict it to technological dynamics. In fact, under suitable 
modifications, it may apply as well to interdependent expectations, decisions and 
returns in many other economic domains. Just to give a few examples: the evolution 
of strategies and organizational forms in industrial dynamics; the dynamics of 
location in economic geography (Arthur 1990); adaptive processes and the emergence 
of social norms; "mimetic" effects on financial markets; macroeconomic coordi­
nation. 29 The list is likely to be indeed very long. Ultimately, what we have 
tried to implement is a relatively general analytical apparatus able to handle at least 
some qualitative properties of dynamic stochastic processes characterized by both 
positive, and, possibly negative, feedbacks of a functional form as "badly-behaved" 
as possible. 

In principle, domains of applicability of generalized urn schemes correspond to 
the set of phenomena where not only "history matters" but the burden of the past 
increasingly shapes the present. Of course, we are far from claiming that this is 
always the case. However, we do indeed suggest that quite a few of the processes of 
economic change fall into this category. 
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