
Working Paper 
Aspiration Level Approach to 

Interactive Multi-objective 
Programming and its Applications 

Hirotaka Nakayama 

WP-94-112 
November 1994 

FflllASA International Institute for Applied Systems Analysis n A-2361 Laxenburg Austria 

Eh.4 Telephone: +43 2236 807 o Fax: +43 2236 71313 E-Mail: infooiiasa.ac.at 



Aspiration Level Approach to 
Interactive Multi-ob jective 

Programming and its Applications 

Hirotaka Nakayama 

WP-94-112 
November 1994 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

IflIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg Austria 

ihd: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at 



Foreword 

For a long time, it has been recognized that most decisions are taken with respect to 
several criteria. The main difficulty, however, has been to find an approach for inte- 
grating the multi-criterion feature into the decision making methodology in such a way 
that it is at the same time practically acceptable and mathematically feasible. In the 
development of such approaches, IIASA has played a central role. Particularly, the as- 
piration level approach has been developed largely at IIASA. The author of the present 
Working Paper, Professor Hirotaka Nakayama of Konan University in Kobe (Japan), has 
cooperated with the MDA-project for many years on the topic of multi-criteria analysis. 
Professor Nakayama specializes in refining and adapting the aspiration level approach in 
order to increase its practical usability without losing the mathematical tractability. In 
the present Working Paper, he presents his approach and summarizes his experiences with 
this adapted approach. 



Abstract 

Several kinds of techniques for multiple criteria decision making have been developed 
for the last few decades. Above all, the aspiration level approach to multi-objective 
programming problems is widely recognized to be effective in many practical fields. As 
a variant of the aspiration level approach, the author developed the satisficing trade- 
off method. In addition, he has been applying the method to several kinds of practical 
problems for these ten years. Some of them were already performed in real life. Typical 
examples such as feed formulation for live stock, erection management of a cable stayed 
bridge and bond portfolio selection will be included in this paper. 
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Aspiration Level Approach to 
Interactive Multi-ob jective 

Programming and its Applications 

Hirotaka Nakayama* 

1 Introduction 

Multi-objective programming problems are formulated as follows: 

(MOP) Minimize f (x) = (fi (x), f2(x), . . . , fr(x)) 

over x E X. 

The constraint set X may be given by 

s ~ ( x )  1 01 j = 1, ..., m, 

and/or a subset of Rn itself. For the problem (MOP), we define Pareto solutions as 
follows: 

Definition 1.1 A solution it is said Pareto optimal, if there is no better solution x E X 
other than it, namely, if 

f (x)  $ f (it) for any x # it E X. 

In general, there may be many Pareto solutions. The final decision is made among 
them taking the total balance over all criteria into account. This is a problem of value 
judgment of decision maker (in abbreviation, DM). The totally balancing over criteria is 
usually called trade-off. It should be noted that there are very many criteria, say, over one 
hundred in some practical problems such as erection management of cable stayed bridge, 
and camera lens design. Therefore, it is very important to  develop effective methods for 
helping DM to trade-off easily even in problems with very many criteria. 

Interactive multi-objective programming search a solution in an interactive way with 
DM while eliciting information on his/her value judgment. Along this line, several meth- 
ods have been developed remarkably for the last about fifteen years: Among them, the 
aspiration level approach is now recognized very effective in practice, because 

(i) it does not require any consistency of DM'S judgment, 
(ii) aspiration levels reflect the wish of DM very well, 

and 
(iii) aspiration levels play the role of probe better than the weight for objective func- 

tions. 
In the following, we will discuss the difficulty in weighting method which is commonly 

used in the traditional goal programming. 

"Department of Applied Mathematics, Konan University, 8-9-1 Okamoto, Higashinada, Kobe 658, 
Japan 



2 Why is the Weighting Method Ineffective? 

In multi-objective programming problems, the final decision is made on the basis of the 
value judgment of DM. Hence it is important how we elicit the value judgment of DM. 
In many practical cases, the vector objective function is scalarized in such a manner that 
the value judgment of DM can be incorporated. 

The most well known scalarization technique is the linearly weighted sum: 

Tlle value judgment of DM is reflected by the weight. Although this type of scalarization 
is widely used in many practical problems, there is serious drawbacks in it. Namely, it 
can not provide a solution among sunken parts of Pareto surface due to "duality gap" for 
nonconvex cases. Even for convex cases, for example, in linear cases, even if we want to 
get a point in the middle of line segment between two vertices, we merely get a vertex 
of Pareto surface, as long as the well known simplex method is used. This implies that 
depending on the structure of problem, the linearly weighted sum can not necessarily 
provide a solution as DM desires. 

In the traditional goal programming (Charnes-Cooper, 1961), some kind of metric 
function from the goal f * is used as the one representing the preference of DM. For 
example, the following is well known: 

The preference of DM is reflected by the weight w;, the value of p, and the value of the 
goal f;'. If the value of p is chosen appropriately, a Pareto solution among a sunken part 
of Pareto surface can be obtained by minimizing the function (2.2). However, it is usually 
difficult to pre-determine appropriate values of them. Moreover, the solution minimizing 
(2.2) can not be better than the goal f *, even though the goal is underestimated. 

In addition, one of the most serious drawbacks in the goal programming is that people 
tend to misunderstand that a desirable solution can be obtained by adjusting the weight. 
It should be noted that there is no positive correlation between the weight w; and the value 
f (i) corresponding to the resulting solution i as will be seen in the following example. 
Example 2.1 Let yl = fi  (x),  y;! = f2(x) and y3 = f3(5), and let the feasible region in 
the objective space be given by 

Suppose that the goal is (y;, yd, yg) = (0, 0, O).The solution minimizing the metric 
function (2.2) with p = 1 and wl = w2 = w3 = 1 is (yl, y2, y3) = (1 - 1/a, 1 - 
I/&, 1 - I/&). Now suppose that DM wants to decrease the value of fi a lot more 
and that of f2  a little more, and hence modify the weight into w', = 10, w; = 2, wi = 1. 
The solution associated with the new weight is (1 - 1 0 / a ,  1 - 2 / m ,  1 - 1 / a ) .  
Note that the value of f2  is worse than before despite that DM wants to improve it and 
hence increase the weight of f2  up to twice. Someone might think that this is due to the 
normalization of weight. Therefore, we normalize the weight by wl + wz + w3 = 1. The 
original weight normalized in this way is wl = w2 = w3 = 1/3 and the renewed weight by 
the same normalization is wi = 10/13, w; = 2/13, wi = 1/13. We can observe that w; 



is less than 202. NOW increase the normalized weight w2 to be greater than 113. To this 
end, set the unnormalized weight wl = 10, w2 = 7 and w3 = 1. With this new weight, 
we have a solution (1 - 1 0 / m ,  1 - 7 / m ,  1 - I/&%). Despite that the normalized 
weight w: = 7/18 is greater than the original one (= 1/3), the obtained solution is still 
worse than the previous one. 

As is readily seen in the above example, it is usually very difficult to adjust the 
weight in order to  obtain a solution as DM wants. Therefore, it seems much better 
to take the aspiration level of DM rather than the weight as the probe. Interactive 
multi-objective programming techniques based on aspiration levels have been developed 
so that the drawbacks of the traditional goal programming may be overcome. In the 
following section, we shall discuss the satisficing trade-off method developed by the author 
(Nakayama 1984) as one of them. 

Satisficing Trade-off Met hod 

In the aspiration level approach, the aspiration level at the k-th iteration f k  is modified 
as follows: 

Here, the operator P selects the Pareto solution nearest in some sense to the given aspira- 
tion level f k .  The operator T is the trade-off operator which changes the k-th aspiration 
level f if DM does not compromise with the shown solution p(fk). Of course, since 

~ ( f  ') is a Pareto solution, there exists no feasible solution which makes all criteria better 

than p(fk), and thus DM has to trade-off among criteria if he wants to improve some of 

criteria. Based on this trade-off, a new aspiration level is decided as T o ~ ( f  '). Similar 
process is continued until DM obtains an agreeable solution. This idea is implemented in 
DIDASS (Wierzbicki 1981 and Grauer et al. 1984) and the satisficing trade-off method 
(Nakayama 1984). In particular, the satisficing trade-off method provides several devices 
which make the trade-off analysis easier by using the sensitivity analysis and parametric 
optimization techniques in traditional mathematical programming. 

3.1 On The Operation P 

The operation which gives a Pareto solution p(fk) nearest to f k  is performed by some 
a.uxiliary scalar optimization. It has been shown in Sawaragi-Nakayama-Tanino (1985) 
and Wierzbicki (1986) that the only one scalarization technique, which provides any 
Pareto solution regardless of the structure of problem, is of the Tchebyshev norm type. 
However, the scalarization function of Tchebyshev norm type yields not only a Pareto 
solution but also a weak Pareto solution. Since weak Pareto solutions have a possibility 
that there may be another solution which improves a critera while others being fixed, 
they are not necessarily "eficient" as a solution in decision making. In order to exclude 
weak Pareto solutions, the following scalarization function of the augmented Tchebyshev 
type can be used: 

r 

where o is usually set a sufficiently small positive number, say 



Theorem 3.1 (Nakayama-Tanino 1994) For arbitrary w 2 0 and cr > 0, ii E X 
minimizing (3.2) is a properly Pareto optimal solution to (MOP). Conversely, if i is a 
properly Pareto optimal solution to (MOP), then there exist w > 0, cr > 0 and f such 
that 2 minimizes (3.2) over X. 

The weight w; is usually given as follows: Let f;' be an ideal value which is usually 
given in such a way that f,* < Min{ f;(x)l x E X), and let f,; be a nadir value which is 
usually given by 

f*i = max fi(xj+) 
1 9  <r  

(3.3) 

where 
x; = arg min fj(x).  

xEX 

For this circumstance, we set 

The minimization of (3.2) with (3.5) or (3.6) is usually performed by solving the following 
equivalent optimization problem, because the original one is not smooth: 

(Q) Minimize z + ax;',, W; f;(x) 
subject to 

Remark 3.1 Note the weight (3.5) depends on the k-th aspiration level, while the one 
by (3.6) is independent of aspiration levels. The difference between solutions to (Q) for 
these two kinds of weight can be illustrated in Fig. 1. In the auxiliary min-max problem 
(Q) with the weight by (3.5), f: in the constraint (3.7) may be replaced with f;' without 
any change in the solution. For we have 

3.2 On The Operation T 

In cases DM is not satisfied with the solution for P(?), he/she is requested to  answer 
-k+l 

his/her new aspiration level f . Let xk denote the Pareto solution obtained by projec- 

tion p(fk), and classify the objective functions into the following three groups: 

(i) the class of criteria which are to be improved more, 

(ii) the class of criteria which may be relaxed, 
(iii) the class of criteria which are acceptable as they are. 

-k+ 1 
Let the index set of each class be denoted by I!, ~ k ,  I);, respectively. Clearly, f i  < 

-k+l 
fi(xk) for all i E I:. Usually, for i E I;, we set f i  = fi(xk). For i E Ik, DM has to 

-k+l 
agree to increase the value of f i  . It should be noted that an appropriate sacrifice of f j  
for j E Ik is needed for attaining the improvement of f, for i E I f .  



Figure 1: The difference between solutions associated with two kinds of weight. 

Example 3.1 Consider the same problem as in Example 2.1: Let yl = fl (x),  y2 = f2(x) 
and y3 = f3(x), and let the feasible region in the objective space be given by 

Suppose that the ideal point is (y;, y,', y,') = (0,0, O) ,  and the nadir point is (y,l, y,,, y,,) = 

(1,1,1).  Therefore, using (3.6) we have wl = w2 = w3 = 1 .O. Let the first aspiration 
level be (pi, pi, pi) = (0.4, 0.4, 0.4). Then the solution to (Q) is (y;, y;, y;) = 
(0.423, 0.423, 0.423). Now suppose that DM wants to decrease the value of fl a lot more 
and that of f2  a little more, and hence modify the aspiration level into jj; = 0.35 and 
- 
y; = 0.4. Since the present solution (y;, y;, y;) = (0.423, 0.423, 0.423) is already Pareto 
optimal, it is impossible to improve all of criteria. Therefore, suppose that DM agrees to 
relax f3, and with its new aspiration level of g$ = 0.5. With this new aspiration level, the 
solution to (Q) is (y;, y;, yi) = (0.359, 0.409, 0.509). Although the obtained solution 
does not attain the aspiration level of fl and f2 a little bit, it should be noted that the 
solution is improved more than the previous one. The reason why the improvement of 
fl and f2  does not attain the wish of DM is that the amount of relaxation of f3 is not 
much enough to compensate for the improvement of fi and f2.  In the satisficing trade-off 
method, DM can find a satisfactory solution easily by making the trade-off analysis de- 
liberately. To this end, it is also possible to use the sensitivity analysis in mathematical 
programming. (Refer to the following automatic trade-off or exact trade-off). We have 
observed in the previous section that it is difficult to adjust weights for criteria so that 
we may get a desirable solution in the goal programming. However, the aspiration level 
can lead DM to his/her desirable solution easily in many practical problems. 



3.3 Automatic Trade-off 

It is of course possible for DM to answer new aspiration levels of all objective functions. In 
practical problem, however, we often encounter cases with very many objective functions, 
for which DM tends to get tired with answering new aspiration levels for all objective 
functions. Therefore, it is more practical in problems with very many objective functions 
for DM to answer only his/her improvement rather than both improvement and relaxation. 
At this stage, we can use the assignment of sacrifice for f j  ( j  E IR) which is automatically 
set in the equal proportion to (Xi + a)w;, namely, by 

where N is the number of elements of the set IR, and X is the Lagrange multiplier asso- 
ciated with the constraints in Problem (Q). The reason why (3.8) is available is given by 
the following: 
T h e o r e m  3.2 (Nakayama 1991-b, Nakayama-Tanino 1994) Let it be a solution to (Q) 
with X = {x 1 gj(x) < 0, j = 1, . . . , m )  and f = f (it). Suppose that the second order 
sufficient condition holds; namely, 

for any u # 0 such that 
V f i ( 5 ) u = 0 ,  i =  1, . . . ,  r - 1  

and 

Vgj(it)u = 0, j E J = {j( gj(it) = 0). 

Suppose also that the vectors ( V  fl(it), -I), . . . , ( V  f,(it), - I) ,  (Vgk, (it), 0), 
. . . , (Vgkd ( 2 ) )  0) are linearly independent, where (kl, . . . , k,) is the index set of active 
constraints of (Q). In addition, suppose that the following strict complementary slackness 
condition holds: 

Xi  > 0 for any i E 1, .  . . , r  

p j  > 0 for any j E J. 

Then, with Afi (i = 1, . . . , r) such that (fi + A f ~ ,  . . . , f, + A f,) is on the Pareto surface, 
we have r 

Therefore, under some appropriate condition, ( (A1  +a)wl,.  . . ,(X,+a)w,) is the normal 
vector of the tangent hyperplane of the Pareto surface. In particular, in multi-objective 
linear programming problems, the simplex multipliers corresponding to  a nondegenerated 
solution is the feasible trade-off vector of Pareto surface (Nakayama 1992). 

By using the above automatic trade-off method, the burden of DM can be decreased 
so much in cases that there are a large number of criteria. Of course, if DM does not agree 
with this quota A f j  laid down automatically, he/she can modify it in a manual way. 
E x a m p l e  3.2 Consider the same problem as in Example 3.1. Suppose that DM 
has the solution (y;, y,', yi) = (0.423, 0.423, 0.423) associated with his first aspiration 
level (y:, y;, ?jA) = (0.4, 0.4, 0.4). The Lagrange multipliers at this solution is X1 = 
X 2  = X3 = 0.333. Now suppose that DM modifies the aspiration level into 8: = 0.35 and 
- y; = 0.4. For the amount of improvement of JA f l I  = 0.073 and lA f i l  = 0.023, the amount 



of relaxation of f3 on the basis of automatic trade-off is lAf3( = 0.095. In other words, 
the new aspiration level of f3 should be 0.52. If DM agrees with this trade-off, he/she 
will have the new Pareto solution (y;, y;, y;) = (0.354, 0.404, 0.524) to the problem 
(Q) corresponding to the new aspiration level (y;, yi, 3;) = (0.35, 0.4, 0.52). It should 
be noted that the obtained solution is much closer to DM'S wish rather than the one in 
Example 3.1. 
Example 3.3 Consider the following multiple objective linear programming problem: 

fl  = -2 x1 - x2 + 25 + Min 

f 2  = X I  - 2x2 + 18 + Min 

subject to 

-21 + 3x2 5 21 

X I  + 3x2 5 27 

4x1 + 3x2 5 45 

3x1 + x2 5 30 

X l , X 2  2 0 

Suppose that the ideal point f* = (4, 4) and the nadir point f, = (18, 21) by using 
the pay-off matrix based on minimization of each objective function separately. Lettiing 
the first aspiration level be f1 = (15, 9), we have the first Pareto solution (11.632, 4.910) 
by solving the auxiliary min-max problem (Q). This Pareto point in the objective function 
space is the intercept of the line parallel to the line passing through f* and f, with the 
Pareto surface (curve, in this case). Now we shall consider the following three cases: 
<Case 1> Suppose that DM is not satisfied with the obtained Pareto solution, and 
he/she wants to improve the value of f2.  Let the new aspiration level of f2  be 4.5. Instead, 
suppose that DM agrees with some sacrifice of fl .  The new aspiration level of fl  based 
on the automatic trade-off is 14.5. Since the automatic trade-off is based on the linear 
approximation of Pareto surface at the present point, the new aspiration level obtained by 
the automatic trade-off is itself Pareto optimal in this case as shown in Fig. 2. <Case 2> 
Suppose that DM wants to improve f l  rather than f2  at  the moment when the first Pareto 
solution (11.632, 4.910) is obtained. Let the new asipration level of fl  that DM desires 
be 9.0. Then the new aspiration level by the automatic trade-off is f 2  = (9.0, 5.286), 
and is not Pareto optimal. Solving the auxiliary min-max problem (Q) with the new 
aspiration level, in this case, we have the new Pareto solution (9.774, 6.226). Since the 
improvement which DM desires is not so large after solving the min-max problem (Q) 
with an aspiration level in many practical cases, the new aspiration level produced by 
automatic trade-off based on the linear approximation of Pareto surface is close to the 
Pareto surface. Therefore, the satisficing trade-off method using the automatic trade-off 
yields the desirable solution usually only in a few iterations. 
<Case 3> Suppose that DM wants to  make fl  less than 9.0 absolutely at the moment 
when the first Pareto solution (11.632, 4.910) is obtained. In this case, we have to treat 
fl  as the constraint 

f i (x)  1 9.0 

As will be shown in the subsection 3.5 below, the interchange between objectives and 
constraints can be made so easily in the formulation of auxiliary min-max problem. (We 
can treat the criteria as DM wishes between objectives and constraints by adjusting one 
parameter p in the min-max problem.) 



1 (11.632. 4.910) (14.5. 4.5) fl 

Figure 2: Automatic trade-off (case 1) 

I I 

(11.632. 4.910) 
fl 

Figure 3: Automatic trade-off (case 2) 



3.4 Exact Trade-off 

In linear or quadratic cases, we can evaluate the exact trade-off in an extended form of the 
automatic trade-off stated above. This implies that we can calculate exactly the amount 
of relaxation such that the new aspiration level is on the Pareto surface (Nakayama, 1992). 
The main idea in it is that the parametric optimization technique is used in stead of the 
simple sensitivity analysis. Using this technique, a new Pareto solution can be obtained 
without solving the auxiliary sclarized optimization problem again. This implies that we 
can obtain the new solution very quickly. Therefore, using some graphic presentation as 
computer outputs, DM can see the trade-off among criteria in a dynamic way, e.g. as an 
animation. This makes DM'S judgement easier. 

3.5 Interchange between Objectives and Constraints 

In the formulation of the auxiliary scalarized optimization prolem (Q), change the right 
hand side of the equation (3.7) into P;z, namely 

As is readily seen, if Pi = 1, then the function f ;  is considered to be an objective 
function, for which the aspiration level f; is not necessarily attained, but the level of f ;  
should be better as much as possible. On the other hand, if P; = 0, then f ;  is considered to  
be a constraint function, for which the aspiration level Ti should be guaranteed. In many 
practical problems, there is almost no cases in which we consider the role of objective and 
constraint fixed from the beginning, but usually we want to interchange them depending 
on the situation. Using the formula (3.9), this can be done very easily (Korhonen 1987). 
In addition, if the value of P; is set in the middle of 0 and 1, f ;  can play a role in the 
middle of objective and constraint which is neither a complete objective nor a complete 
constraint (Kamenoi e t  al. 1992). This is also very effective in many practical problems. 

3.6 Remarks on Trade-off for Objective Functions with O-Sen- 
sit ivity 

Since cr is sufficiently small like and X I  + . . .A ,  = 1, we can consider in many cases 

When X j  = 0 and f j  is not to  be improved, we set A f j  = 0 in the automatic trade-off. 
Therefore, unless we select at least one f j  with X j  # 0 as an objective function to be 
relaxed, we can not attain the improvement that DM wishes. 

Since ( A ;  + cr)wi (or approximately, X;wi) can be regarded to  provide the sensitivity in- 
formation in the trade-off, A; = 0 means that the objective function f ;  does not contribute 
to  the trade-off among the objective functions. In other words, since the trade-off is the 
negative correlation among objective functions, X i  = 0 means that f ;  has the positive 
correlation with some other objective functions. Therefore, if all objective functions to  
be relaxed, f j  ( j  E IR), have X j  = 0 ( j  E IR) , then they can not compensate for the 
improvement which DM wishes, because they are affected positively by some of objective 
functions to  be improved. 
Example 3.4 Consider the following problem: 



subject to 

Figure 4: A Case with 0-Sensitivity 

Tlle ideal point is (0, 0, 0) and the nadir point is (1.0, 1.0, 0.5). For the first aspiration 
level (0.2, 0.2, 0.4), we have a Pareto value (0.333, 0.333, 0.333) and the corresponding 
simplex multiplier (A1,  X 2 ,  X3) = (213, 113, 0). Suppose that DM wants to improve fl 
and f 2 ,  and sets their new aspiration levels 0.2 and 0.3, respectively. Since the relaxation 
A f3 = 0 by the automatic trade-off, the new aspiration level becomes (0.2, 0.3, 0.333). 
Associated with the new aspiration level, we have the Pareto value (0.3, 0.4, 0.3), in 
which neither fi is improved nor f3 is relaxed. This is because that the objective func- 
tions fi and f3 has a positive correlation along the edge of Pareto surface a t  the point 
(0.333, 0.333, 0.333), while fl and f 2  have trade-off relation with each other there. ,As a 
result, though f3 was considered to be relaxed, it was affected strongly by fl  and hence 
improved. On the other hand, despite that f3 was considered to be improved, it was 
relaxed finally. This is due to the fact that the objective function to be relaxed is only f3 

despite that X3 is 0, and the fact that we did not consider that f3 has positive correlation 
with fl. This example suggests that we should make the trade-off analysis deliberately 
seeing the value of simplex multiplier (Lagrange multiplier, in nonlinear cases). Like this, 
the satisficing trade-off method makes the DM'S trade-off analysis easier by utilizing the 
information of sensitivity. 

3.7 Relationship to Fuzzy Mat hematical Programming 

In the aspiration level approach to multi-objective programming such as the satisficing 
trade-off method, the wish of DM is attained by adjusting hislher aspiration level. In 



other words, this means that the aspiration level approach can deals with the fuzziness of 
right hand side value in traditional mathematical programming as well as the total balance 
among the criteria. There is another method, namely fuzzy mathematical programming, 
which treat the fuzziness of right hand side value of constraint in traditional mathematical 
programming. In the following, we shall discuss the relationship between the satisficing 
trade-off method and the fuzzy mathematical programming. 

For simplicity, consider the following problem: 
(F) Maximixe fo(x) 

subject to f l (x)  = 5 
Suppose that the right hand side value f l  is not needed to  meet so strictly, but that it 

is fuzzy. The membership function for the criterion fl is usually given as in Fig. 5 .  Since 
our aim is to  maximize this membership function, we can adopt the following function 
without change in the solution: 

where E is a parameter representing the admissible error for the target 7,.  

Figure 5: Membership function for fl  in (F) 

Now, the problem (F) is reduced to a kind of multi-objective optimization in which 
fo and ml should be maximized. Then a membership function for maximization of fo is 
usually defined with its aspiration level To. For example, 

However, if we maximize the above mi as it is, the solution will be merely the one to 
the satisficing problem for which fo is to be just greater than f,. As was stated in the 
previous section, we shall use the following function in stead of mi in order to assure the 
Pareto optimality of the solution: 

mo(x) = -(To - fo(x))/(fo' - fo*) + 1. 



Finally, our problem is to maximize both mo and ml ,  which is usually reduced to the 
following problem: 

Minimize z 

subject to 

Now, one may see some similarity between the above formulation and the one in the 
satisficing trade-off method. In the satisficing trade-off method, the objective function 
with target such as fl + f1 is usually treated as two objective functions, fl  + Max and 
fl  + Min.  Under this circumstance, suppose that for fl  + Max we set the ideal value - 
f,' = TI, the nadir value fl, = f - 6 and the aspiration level f1 - 6; for fl  + Min we - 
set the ideal value f,' = T1, the nadir value fl, = f + 6 and the aspiration level f1 + 6. 

Then the treatment of fl  is the same between the above formulation and the satisficing 
trade-off method. 

However, usually in the satisfcing trade-off method, we set f,' and fl, based on the 
pay-off matrix (i.e., different from 7, and 7, f 6, respectively). Hence, we do not contain 6 

in the denominator of constraints in the min-max problem, because we make the trade-off 
analysis by adjusting 6 rather than the target f ,; for example, using (3.6) the constraint 
for fl  in the min-max problem is given by 

(71 - 6 - fl(x))/(f;  - fl*) 5 z 
-(J1 + 6 - fl(x))/(f;  - fl*) i 

With this formulation, even if DM wants 6 = 0 and if there is no solution to fl  (z) = f ,, 
we can get a solution approximate to fi(x) = f1 as much as possible. In the fuzzy 
mathematical programming, however, if 6 = 0, then we have a crisp constraint f l (x)  = fl ,  
and we sometimes have no feasible solution to it. 

Finally as a result, we can see that the satisficing trade-off method deals with the 
fuzziness of right hand side value of constraint automatically and can effectively treat 
problems for which fuzzy mathematical programming provides no solution. Due to this 
reason, we can conclude that it is better to formulate the given problem as a multi- 
objective optimization from the beginning and to solve it by the aspiration level approach 
such as the satisficing trade-off method. 

4 Applications 

Interactive multi-objective programming methods have been applied to a wide range of 
practical ~roblems.  Good examples in engineering applications can be seen in Eshenauer 
et  al. (1990). The author himself also has applied to several real problems: 

1. blending 

(a) feed formulation for live stock (Nakayama et al. 1992) 

(b) plastic materials (Nakayama et  al. 1986) 

(c) cement production (Nakayama 1991-a) 



(d) portfolio (Nakayama 1989) 

2. design 

(a) camera lens 

(b) erection management of cable-stayed bridge (Furukawa e t  al. 1986) 

3. route search 

(a) car navigation system (Nakayama e t  al. submitted) 

4. planning 

(a) scheduling of string selection in steel manufacturing (Ueno e t  al. 1990) 

(b) long term planning of atomic power plants 

In the following, some of examples are introduced briefly. 

4.1 Feed Formulation for Live Stock 

Stock farms in Japan are modernized recently. Above all, the feeding system in some 
farms is fully controled by computer: Each cow has its own place to eat which has a 
locked gate. And each cow has a key on her neck, which can open the corresponding gate 
only. Every day, on the basis of ingredient analysis of milk and/or of the growth situation 
of cow, the appropriate blending ratio of materials from several viewpoints should be 
made. 

There are about 20-30 kinds of raw materials for feed in cow farms such as corn, 
cereals, fish meal, etc. 

About 10 criteria are usually taken into account for feed formulation of cow: 

cost 

neutrition 

- protein 

- TDN 

- cellulose 

- calcium 

- magnesium 

- etc. 

stock amount of materials 

etc. 

This feeding problem is well known as the diet problem from the beginning of the 
history of mathematical programming, which can be formulated as the traditional linear 
programming. In the traditional mathematical programming, the solution often occurs 
on the boundary of constraints. In many cases, however, the right hand side value of 
constraint such as neutrition needs not to be satisfied rigidly. Rather, it seems to be 
natural to consider that a criterion such as neutrition is an objective function whose target 



has some allowable range. As was seen in the previous section, the satisficing trade-off 
method deals well with the fuzziness of target of such an objective function. The author 
and others have developed a software for feed formulation using the satisficing trade-off 
method, called F-STOM (Feed formulation by Satisficing Trade-Off Method) (Nakayama 
e t  al. 1993). This software is being distributed to live stock farmers and feed companies 
in Japan through an association of live stock systems. 

WGO) Weight 

Figure 6: A Phase of F-STOM 

4.2 Erection Management of Cable Stayed Bridge 

In erection of cable stayed bridge, the following criteria are considered for accuracy control 
(Furukawa et al. 1986): 

i. residual error in each cable tension, 

. . 
11. residual error in camber at each node, 

. . . 
111. amount of shim adjustment for each cable, 

iv. number of cables to be adjusted. 



Since the change of cable rigidity is small enough to be neglected with respect to shim 
adjustment, both the residual error in each cable tension and that in each camber are 
linear functions of amount of shim adjustment. Let us define n  as the number of cable 
in use, AT, (i = 1 , .  . . , n )  as the difference between the designed tension values and the 
measured ones, and xik as the tension change of i-th cable caused from the change of 
the k-th cable length by a unit. The residual error in cable tension caused by the shim 
adjustment is given by 

Let m be the number of nodes, Azj ( j  = 1, .  . . , m) the difference between the designed 
camber values and the measured ones, and y j k  the camber change at j - th node caused 
from the change of the k-th cable length by a unit. Then the residual error in the camber 
caused by the shim adjustments of All , .  . . , Al, is given by 

In addition, the amount of shim adjustment can be treated as objective functions of 

And the upper and lower bounds of shim adjustment inherent in the structure of the cable 
anchorage are as follows; 

s h i m  amount 
n 

I I 
U 

a s p .  l e v e l  -LL 

c a b l e  t e n s i o n  

- 
8 ,  

U 

camber n I I  n 
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Figure 7: A phase of the proposed erection management system 

r'ig. 7 shows one phase of erection management system of cable stayed bridge using 
the satisficing trade-off method. The residual error of each criterion and the amount of 
shim adjustment are represented by graphs. The aspiration level is inputted by a mouse 
on the graph. After solving the auxiliary min-max problem, the Pareto solution according 



to the aspiration level is represented by a graph in a similar fashion. This procedure is 
continued until the designer can obtain a desirable shim-adjustment. This operation is 
very easy for the designer, and the visual information on trade-off among criteria is user- 
friendly. The software was used for real bridge construction, say, Tokiwa Great Bridge 
(Ube City) and Karasuo Harp Bridge (Kita-Kyusyu City) in 1992. 

4.3 An Interactive Support System for Bond Trading 

In portfolio selection problems, many companies are now widely trying to use mathemati- 
cal analysis for bond trading. In this subsection, some bond trading problem is formulated 
as a kind of multi-objective fractional problem. It will be seen in the following that the 
satisficing trade-off method can be effectively applied to such a porfolio problem. 

Bond traders are facing almost every day a problem which bonds and what amount 
they should sell and/or buy in order to attain their customers' desires. The economic 
environment is changing day by day, and sometimes gives us a drastic change. Bond 
traders have to take into account many factors, and make their decisions very rapidly 
and flexibly according to these changes. The number of bonds to be considered is usually 
more than 500, and that of criteria is about ten as will be shown later. The amount of 
trading is usually more than 100 million yen, and hence even a slight difference of portfolio 
combination might cause a big difference to profit or loss. This situation requires some 
effective method which helps bond traders following faithfully their value-judgment on a 
real time basis not only mathematically but also in such a way that their intuition fostered 
by their experiences can be taken in. 

Bond portfolio problems are a kind of blending problems. Therefore, mathemetical 
programming approach can be used very effectively. However, the traditional mathemat- 
ical programming approach with a single objective function can not take in the value- 
judgment and intuition of bond traders so easily in a flexible manner for the changes of 
environment. We shall show that the satisficing trade-off method fits to this purpose. 

4.3.1 Mathematical Formulation for Bond Portfolio Problems 

We shall follow the mathematical model given by Konno and Innori (1987). Assume that 
an investor holds u j  units of bonds Bj, j = 1, . . . , N. Associated with Bj, we have the 
following indices: 

cj: coupon to be paid at a fixed rate (yen/bond/year) 
fj: principal value to  be refunded at maturity (yen/bond) 
pj: present price in the market (yen/bond) 
tj: maturity (number of years until its principal value is refunded) 

Returns from bonds are the income from coupon and the capital gain due to price 
increase. Bond portfolio problems are to determine which bonds and what amount the 
investor should sell and/or buy taking into account many factors, say, expected returns 
and risk, the time needs money for another investment, and so on. Therefore, we have 
the following criteria for each bond Bj: 
[:I.] returns 

(i) direct yield (short term index of return) 



( i i )  effective yield 

V '  3 = [cj{(l + a)'' - l)/a + fj]ll" - 1 
P j 

where CY is the interest rate. 

[II] risk 

(iii) price variation 

Let x j  ( j  = 1, ...., nl) and Xk (k  = 1, ..., n2) denote the number of bonds to be sold and 
to be purchased, respectively. Then So and S1 represent respectively the total quantity 
of bonds and the total value of bonds after the transaction. Namely, 

In addition, we set 

Then the average for each index is taken as an objective function: 

(it) average direct yield 

(ii') average effective yield 

(iii') average price variation 

Our constraints are divided into soft constraints and hard constraints: 

(iv) average unit price 



(v) average maturity 

(vi) specification of time of coupon to be paid 

where I ,  is the set of indices of bonds whose coupon are paid at the time t,. 
[III] hard constraints 

(viii) specification of bond 

lj 5 x j  5 uj, j = 1, ..., nl 

Lk 5 Xk 5 Uk, k = 1, ..., n2 

For this kind of problem, the satisficing trade-off method can be effectively applied. 
Then we have to solve a linear fractional min-max problem. In the following subsection, 
we shall give a brief review of the method for solving it. 

4.3.2 An Algorithm for Linear Fractional Min-Max Problems 

Let each objective function in our bond trading problem be of the form: 

F;(x) = ~ ; ( x ) / ~ ; ( x )  (i = l , . .  . , r )  

where p; and q; are linear in x. Then since 

the auxiliary min-max problem (Q) becomes a kind of linear fractional Min-Max problem. 
For this kind of problem, several methods have been developed: Here we shall use a 
Dinkelbach type algorithm (Borde-Crouzeix 1987, Ferland-Potvin 1985) as is stated in 
the following: 
Step 1: Let xO E X. Set 8' = maxl<i<, - - fj(xO)/gi(zO) and k = 0. 
Step 2: Solve the problem 

T ~ ( B ~ )  = min m+x( fi(x) - B ~ ~ ~ ( x ) ) / ~ ~ ( x ~ )  
X E X  l< t<r  



Let xk+' be a solution to (Pk). 
Step 3: If Tk(Ok) = 0 then stop: dk is the optimal value of the given min-max Problem, 
and xk+' is the optimal solution. 
Step 4: If not, take dk+' = m a x l ~ i ~ r  fi(xk+l)lgi(xk+ l). Replace k by k + 1 and go to 
Step 2. 

Note that the problem (Pk) is the usual linear min-max problem. Therrefore, we can 
obtain its solution by solving the following equivalent problem in a usual manner: 

(Qk) Minimize z 
subject to 

4.3.3 An Experimental Result 

A result of our experiments is shown below: The problem is to decide a bond portfolio 
among 37 bonds selected from the market. The holding bonds are x(1) = 5000, x(9) = 
1000, x(13) = 2500, x(17) = 4500, x(19) = 5500, x(21) = 6000, x(23) = 5200, x(25) = 
4200, x(27) = 3200 and x(37) = 3800. The experiment was performed by a worker of a 
security company in Japan who has a carreer of acting as a bond trader. 

Pareto sol. Asp.Leve1 Lowest Highest Sensitivity 
(Target Range) 

Fl (max) 5.8335 5.8000 5.4788 5.9655 0.0133 
F2 (max) 6.8482 6.8000 6.7165 6.8698 0.0000 
F3 (min) 0.1292 0.1300 0.1262 0.1325 1 .OOOO 

* F4 102.7157 F4 < 103.00 
* F5 4.0000 4.00 5 F5 < 5.00 
* F6 0.2000 0.20 5 F6 
* F7 0.2000 0.20 < F7 



The asterisk of F4 to F7  implies soft constraints. In our system, we can change 
objective function into soft constraints and vice versa. Here, the bond trader changed 
F2 (effective yield) into a soft constraint, and F4 (unit price) into an objective function. 
Then under the modified aspiration level by trade-off, the obtained result is as follows: 

Pareto sol. 

F l  (max) 5.8629 
* F2 (max) 6.8482 

F3  (min) 0.1302 
F4 (min) 102.3555 

* F5 4.0000 
* F6 0.2000 
* F7  0.2000 

Asp.Leve1 Lowest Highest Sensitivity - 

(Target Range) 
5.9000 5.8193 5.9608 0.0000 



The result was satisfactory to the testee. He recognized that this method (software) 
is very easy to use and flexible for variation of the desire of investers. Transaction cost 
should be taken into account in the future. 

5 Concluding Remarks 

Recently, much attention has been being paid to the intelligent information process by 
computers. Such intelligent information process as diagnosis with less value-judgment will 
be treated in an effective way by artificial intelligence or knowledge engineering. However, 
among intelligent information process, the value-judgment will remain hard to treat to 
the last. In many practical problems such as portfolio problems, it is very important to 
get a solution reflecting faithfully the value-judgment of customers. In order to make 
decisions in a flexible manner for the multiplicity of value-judgment and complex changes 
of environment of decision making, the cooperative system of man and computers are very 
attractive: above all, interactive multi-objective programming methods seem promising. 

Among several interactive multi-objective programming techniques, the aspiration 
level approach has been applied to several kinds of real problems, because 

i. it does not require any consistency of judgment of DM, 

. . 
11. it reflects the value of DM very well, 

. . . 
111. it is easy to implement. 

In particular, the point (i) is very important, because DM tends to change his attitude 
even during the decision making process. This implies that the aspiration level approach 
such as the satisficing trade-off method can work well not only with the multiplicity of 
value judgment of DMs but also the dynamics of value judgment of them. 
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