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ABSTRACT 

More and more population forecasts are being produced with associated 95 percent confidence 
intervals. How confident are we of those confidence intervals? In this paper, we produce a 
simulated dataset in which we know both past and future population sizes, and the true 95 
percent confidence intervals at various future dates. We use the past data to produce population 
forecasts and estimated 95 percent confidence intervals using various methodologies. We, then, 
compare the true 95 percent confidence intervals with the estimated ones. This comparison 
shows that we are not at all confident in the estimated 95 percent confidence intervals. Indeed, 
even calling them confidence intervals is quite misleading. 
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PREDICTABILITY, COMPLEXITY, AND CATASTROPHE 
IN A COLLAPSIBLE MODEL OF POPULATION, 

DEVELOPMENT, AND ENVIRONMENTAL INTERACTIONS 

Warren C. Sanderson 

"Demographers can no more be held responsible for inaccuracy in forecasting 20years ahead than 
geologists, meteorologists, or economists when they fail to announce earthquakes, cold winters, or 
depressions 20years ahead. M a t  we can be held responsible for is warning one another and our 
public what the error of our estimates is likely to be." Keyfitz (1981, p. 579) 

1. Introduction 

More and more population forecasts are being produced with associated 95 percent 
confidence intervals.' How confident are we of those confidence intervals? In this paper, we 
produce a simulated dataset in which we know both past and future population sizes, and the 
true 95 percent confidence intervals at various future dates. We use the past data to produce 
population forecasts and estimated 95 percent confidence intervals using various methodologies. 
We, then, compare the true 95 percent confidence intervals with the estimated ones. This 
comparison shows that we are not at all confident in the estimated 95 percent confidence 
intervals. Indeed, even calling them confidence intervals is quite misleading. 

Section 2 contains a discussion of the nature of the confidence intervals that we study here. 
The model that produces past and future populations and associated true confidence intervals 
is discussed in Section 3. Our model is known as Wonderland,' and it is a simple place where 
we can see the interactions of population growth, economic growth, and environmental change. 
Section 4 presents the "true" 95 percent confidence intervals for Wonderland's future population. 

In Section 5, we use a variety of approaches, based on Wonderland data from 1930 to 
1995, to produce expected populations and confidence intervals for the years 2025, 2050, 2075, 
and 2100. It is in this section that we see that the computed confidence intervals can be quite 
different from the true ones. In Section 6, we use data from 1855 through 1995 and focus on 
the expected populations and confidence intervals for 2005, 2015, and 2025. We provide an 
example of circumstances under which the true and computed confidence intervals are disjoint, 
even in the short-run. Section 7 concludes with some suggestions to forecasters, based on what 
we have learned. 

'A highly incomplete list of demographic papers that use 95 percent confidence intervals can be found 
in the References. 

'An earlier non-stochastic version of the Wonderland model appears in Sanderson (1994). 



2. What Are Future Confidence Intervals? 

We distinguish two views of the future here, one that the future is deterministic and the 
other that the future is stochastic. If the future were deterministic, the best population forecast 
would have zero variance. It would simply be the true future population size. In that case, 
uncertainty about the future is a measure of the ignorance of the researcher and should be 
minimized. If the future were stochastic, then forecasters need to produce estimates of the 
distribution of future population sizes. Uncertainty, in that case, would be part of nature. A 
forecast with the correct expected population size and a zero variance could be a very inaccurate 
one. We take the position here that nature is stochastic and that the 95 percent confidence 
intervals that forecasters are trying to measure are the intervals within which future population 
sizes will fall 95 percent of the time. 

3. Wonderland 

Wonderland is a simple nine equation stochastic model of economic, demographic, and 
environmental interactions. Everything that is needed to generate historical and future data for 
Wonderland, the equations, parameters, and initial conditions, are given in Appendix A. In 
Wonderland, we have at our disposal the time paths of population, the crude birth rate, the 
crude death rate, real per capita GDP, the annual flow of pollution, pollution control 
expenditures and the stock of natural capital. The stock of natural capital may be thought of as 
the set of things provided to us by the environment, like air and water, which allow us to live 
healthy and productive lives. 

Reality in Wonderland is uncertain in two different respects. Given the parameters, the 
evolution of Wonderland depends on six random numbers in each year. The distributions of the 
random variables that generate those numbers are assumed to be known and the same in the 
future as in the past. There is also uncertainty in Wonderland because an important parameter 
is unknown, the one that influences how much pollution will be produced per unit of output in 
the future. For simplicity, we assume that it can take on only one of two possible values. On 
one side of the looking-glass, we assume a value that generates a relatively high amount of 
pollution. We call the situation on this side of the looking-glass the Environmentalists' 
Nightmare Scenario (ENS) for reasons that will become apparent in just a moment. On the 
other side of the looking-glass, everything is identical except that we assume a value of the 
parameter that produces less pollution. We call this situation the Economists' Dream Scenario, 
for reasons that will also become apparent in a moment? 

At first glance, Wonderland might look like an unusual place in which to study population 
projections because it has no age structure and no migration. Yet, because of its simplicity, 
lessons will be easier to draw there and they will apply to populations with age structures and 
migration flows as well. 

Figures 1 through 5 show one particular stochastic history and future of Wonderland, 
based on the information in Appendix A. The time series of Wonderland's population appears 
in Figure 1. Even though the history and future are stochastic, the time series of population in 

3 ~ o  be precise, we assume that the value of the x parameter in equation (A9) is -0.01 in the 
environmentalists' nightmare scenario, and -0.03 in the economists' dream scenario. Otherwise, everything 
is identical across the two scenarios. The implications of this parameter choice for pollution flows can be 
seen in Figure 5 below. 



Wonderland is quite smooth. Up to the mid-2070s, it appears to offer no particular difficulties 
for the forecaster. There are  no baby booms and busts, no depressions or wars. There is just 
a smooth segment of an upward-sloping S-shaped curve. Adopting the idea in Rogers' (1995) 
of rating forecasting situations with respect to their degree of difficulty, we would rate the 
problem of predicting Wonderland's population with 95 percent confidence under the EDS as 
being comparatively simple. Wonderland's population history from 1930 to 1995 appears, for 
example, to be considerably more regular than the population history of the United States. The 
problem of forecasting Wonderland's population under the ENS after 2076, when it begins to 
experience a dreadful environmental crisis, is undoubtedly much more difficult. Below we will 
see how well various forecasting techniques perform on both problems. 

Figure 1 : Population Size Under Two Scenar ios 
Wonderland, 1930-21 00 

1930 1940 1950 1960 1970 1980 1990 2000 201 0 2020 2030 2040 2050 2060 2070 2080 2090 21 00 

Year 

Figure 1. Population size under two scenarios. Wonderland, 1930-2100. 

There are no structural changes in the Wonderland model around 2075. The path of 
Wonderland's population under the ENS follows from its history as continuously as it does in 
the case of EDS. In Wonderland, 147 years of common demographic history (from 1930 through 
2076) does not imply even roughly similar demographic futures. In Wonderland this happens 
because population size is determined as part of a system that includes economic and 
environmental factors. From 1930 through the mid-2070s, the two scenarios are demographically, 
and economically identical, but are  not identical with respect to their impacts on the 



environment. After 2076, the environmental impacts under ENS become significant for the first 
time, and then the demographic and economic paths of the two scenarios diverge? 

Figure 2 shows the time paths of the crude birth and death rates. These are the 
determinants of the population growth seen in Figure 1. The crude birth rates and death rates 
are assumed to be negatively related to the level of per capita income, and the crude death rate 
is also assumed to depend on the level of the stock of natural capital. Again, there are no baby 
booms or baby busts to predict here. Everything is reasonably smooth and linear from 1930 
through 2076 under both scenarios. The behavior under the EDS after 2076 appears to be a 
simple extrapolation of what came earlier. The crisis under ENS, after 2076, is clear. The crude 
death rate skyrockets and even the crude birth rate increases, but not enough to keep the 
population size from decreasing. 

Figure 2: Crude Bir th and Death Rates in Two Scenarios 
Wonderland, 1930-21 00 
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Figure 2. Crude birth and death rates in two scenarios. Wonderland, 1930-2100. 

4 Perhaps the idea of two future scenarios that are consistent with a single past can be made more 
concrete by thinking about the Earth. If we continue on our present course, there may be an environmental 
crisis around 2075 or there may not be. Today, we do not know which wiU occur. Currently, both scenarios 
would produce the same demographic and economic outcomes, because the environment is not polluted 
enough to differentiate the two. 



Figure 3 shows per capita net output under the two scenarios. Per capita net output is 
total per capita output minus per capita pollution abatement costs. Per capita output has a 
constant rate of growth when Wonderland is unpolluted. When the stock of natural capital falls, 
economic growth slows down, and if it falls low enough, this decline in the rate of growth turns 
into an actual shrinkage in the economy. 

Figure 3: Net Income in Two Scenar ios 
Wonderland, 1930-21 00  

1930 1940 1950 1960 1970 1980 1990 2000 201 0 2020 2030 2040 2050 2060 2070 2080 2090 21 00  

Year 

Figure 3. Net income in two scenarios. Wonderland, 1930-2100. 

Figure 4 shows the stock of natural capital. The stock of natural capital is allowed to vary 
between a value of 1.0, in the case where the environment is sufficiently clean that it does not 
affect death rates or economic performance, to 0.0, in the case where a polluted environment 
has its worst possible effects on them. The environment has the ability to cleanse itself to some 
degree. This ability, however, is assumed to diminish as the amount of pollution increases. 

From 1930 through the middle of the 2060s, the stock of natural capital remains at 1.0. 
In other words, before the mid-2060s, even though there is a great deal more pollution under 
ENS, there was not so much more that nature could not cleanse itself. It is only after the mid- 
2060s that the burden of pollution becomes too damaging under ENS, and the stock of natural 
capital falls precipitously. This leads to the massive increases in death rates and declines in net 
incomes that we saw previously. Under EDS, pollution remains under control and the stock of 
natural capital remains high throughout the period. 



Figure 4: The Stock of  IUaturaI Capital Under Two Scenarios: 
Wonderland. 1930-21 00 
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Figure 4. The stock of natural capital under two scenarios. Wonderland, 1930-2100. 

Year 

Figure 5. Pollution flows in two scenarios. Wonderland, 1930-2100. 



Figure 5 shows the pollution flows on both sides of the looking-glass. We do not know 
what the rate of pollution per unit output will be in the future. We obtain the ENS by setting 
the parameter controlling that rate to a relatively high value. The implication of this possibility, 
as shown in the figure, is that pollution flows would rise continuously, so that by the beginning 
of the crisis they are around 16 times higher than they were in 1930. We obtain the EDS by 
setting that parameter to a relatively low level (see footnote 3 above for the exact parameter 
settings). The consequence of that assumption is that pollution goes up a little from its 1930 
level and then goes down a little. It does not exhibit the substantial increase seen under ENS. 

4. True 95 Percent Confidence Intervals 

In order to produce true confidence intervals for Wonderland's future population, we first 
need a past. To  obtain this past, we ran the Wonderland model once, from 1930 to 1995, given 
the model, parameters, and initial conditions in Appendix A. We used the ENS assumption in 
footnote 3 above, although the demographic histories from 1930 through 1995 are the same 
under both scenarios.' 

Given the initial conditions in 1995 that are  part of Wonderland's history,6 we generated 
3,200 stochastic futures. The true 95 percent confidence intervals shown in Table 1 are derived 
from those futures. The confidence intervals are expressed in terms of percentage growth from 
Wonderland's known 1995 population. We are quite certain about Wonderland's population size 
for the next 30 years. By 2025, we are 95 percent confident that Wonderland's population will 
grow by between 31.7 percent and 36.8 percent. For 2050, the confidence interval lies between 
51.1 and 67.7 percent growth. This expected growth is the same on both sides of the looking- 
glass. 

By 2075, the confidence intervals differ across scenarios, as crises are  beginning to occur 
in the ENS. In the economists' dream scenario, we are  95 percent confident of population 
growth between 59.2 and 92.7 percent. In the environmentalists' nightmare scenario, we are 95 
percent confident of population growth between -7.8 percent and 91.9 percent. The lower bound 
of the 95 percent confidence interval already shows a population decrease compared to 1995, 
indicating that crises must have begun quite a few years earlier. The upper bound, however, is 
quite close to that of the EDS. Even under the ENS, there are  some futures in which serious 
crises do not materialize. In the economists' dream scenario, we are 95 percent confident that 
Wonderland's population will have grown between 60.8 and 105.3 percent by 2100. Under the 
ENS, we are  exactly as confident that the population will have experienced something between 
a shrinkage of 80.7 percent and a growth of 103.2 percent. Of course, we are not at all confident 
which of those two confidence intervals is the correct one. 

- - 

' ~ l l  the data produced for this paper are available from the author upon request. 

?he population as of January 1, 1995 was 2.2813. The rate of pollution for the year 1995 was 0.52, and 
income during 1995 was 3.4524. 



Table 1. Complete and incomplete confidence intervals for Wonderland's population growth, 
2025 to  2100. 

Type of 
Prediction 

ENS 

Upper 

Average 

Lower 

EDS 

Upper 

Average 

Lower 

Quadratic 

. Upper 

Average 

Lower 

ARIMA 
(0,2'1) 

Upper 

Averagea 

Lower 

ARIMA 
(4,2,0) 

Upper 

Averagea 

Lower 

ARIMA 
(o,l,l) 

Upper 

Average 

Lower 

Causal 

Upper 

Average 

Lower 

Dependent 
Variable 

Population 

Population 

Population 

ln(Popu1ation) 

ln(Popu1ation) 

ln(CBR) 
ln(CDR) 

CBRICDR 

2025 

36.8 

34.2 

31.7 

36.8 

34.2 

31.7 

38.0 

37.4 

36.8 

56.5 

35.5 

17.3 

46.0 

39.5 

32.8 

43.0 

39.4 

35.7 

40.8 

39.6 

38.4 

Year 

2050 

67.7 

59.3 

51.1 

67.7 

59.3 

51.1 

74.9 

74.1 

73.2 

139.2 

67.9 

17.9 

106.8 

84.0 

63.7 

91.1 

80.5 

70.5 

85.6 

83.5 

81.6 

2075 

91.9 

67.0 

-7.8 

92.7 

75.2 

59.2 

115.9 

114.8 

113.8 

273.3 

101.1 

8.3 

197.0 

142.8 

98.4 

153.2 

130.2 

110.2 

144.4 

141.3 

138.2 

2100 

103.2 

-30.5 

-80.7 

105.3 

80.7 

60.8 

159.4 

158.1 

156.9 

499.1 

133.7 

-8.8 

339.4 

220.3 

138.8 

230.7 

189.1 

153.1 

222.2 

217.4 

212.9 



Notes for Table 1: 
Upper refers to the upper bound of the 95 percent confidence interval. 
Average refers to the arithmetic average except in those rows marked with an '. In those cases, the average 
refers to the geometric average. 
Lower refers to the lower bound of the 95 percent confidence interval. 

ENS and EDS confidence intervals have been computed on the basis of 3,200 simulated futures. The first 
forecast year is 1996. ENS and EDS share the same history that was used in estimating the parameters for 
the other specifications. 

All five specifications have been estimated on the basis of historical data from 1930 through 1995. 
Contideme intervals have been computed on the basis of 1,600 simulated futures. 

More information about the specifications can be found in Appendix B. 

5. Projections in Wonderland Based on Data From 1930 Through 1995 

Now that we have the true confidence intervals for Wonderland's population, the task of 
this section is to ascertain how well the 95 percent confidence intervals derived from various 
stochastic specifications compare with the true confidence intervals. Since there will be a 
number of different confidence intervals appearing shortly, it is useful to make a distinction 
between the true confidence intervals generated by the Wonderland model and estimated 
confidence intervals. For this purpose, we will call the confidence intervals, based on the 
Wonderland model, complete confidence intervals, because they are based on a complete 
knowledge of the model used by nature to produce future populations. The complete confidence 
intervals are the true confidence intervals, a terminology that we will also use. Confidence 
intervals that are based on an incomplete model of reality will be called incomplete confidence 
intervals. When we speak of being completely confident or incompletely confident that the 
population will be within a specific range, we will be making the same distinction. Our task, 
expressed in this language, then, is to compare complete and incomplete confidence intervals. 

In order to compare those confidence intervals, we have chosen five specifications. The 
first is what Rogers (1995) calls a simple extrapolative model. 

(Spec. 1) 

recalling that N, is just Wonderland's population in year t. 

Here population size in a given period is just a quadratic function of its size in the 
previous period. Specification 1 was estimated by OLS over the 65 year period from 1931 
through 1995. Given the estimated coefficients, the estimated variance of the error term, and 
the assumptions that the errors are normally distributed with a fixed variance and independent 
of one another, we produced population projections for the years 1996 through 2100. By 
repeating this process 1,600 times with different random draws, we produced the distribution of 
population projections for each year. The highest forty of those observations for each year (or 
2.5 percent of the entire set of observations) lie above the upper bound of the 95 percent 
incomplete confidence interval, and the lowest forty observations lie below the lower bound of 
the 95 percent incomplete confidence interval. The regression coefficients and their standard 
errors appear in Appendix B, along with coefficients, standard errors and other pertinent 
information about the other specifications. 



Specification 2 is slightly more complex. Here we used ARIMA methods for producing 
projections. First through fourth differences in the level of population showed signs of 
nonstationarity, either because of trends in the differenced variable or trends in its variance. 
The second difference of the logarithm of population appeared stationary. We used three 
criteria to choose the appropriate number of autoregressive and moving average terms, Akaike's 
original information criterion (Akaike 1973), Akaike's reformulated information criterion 
(Akaike 1981), and Sawa's BIC criterion (Sawa 1978). We systematically estimated the 15 model 
specifications with 3 or fewer autoregressive terms and three or fewer moving average terms. 
On all three criteria, the best choice was a model with a single moving average term:' 

(Spec. 2) 

where, 
p, is the second difference of the natural logarithm of population at time t, and 
pt is a random error term at time t. 

Specification 3 is just a different ARIMA model. Instead of choosing the model that was 
best on the three information criteria, we systematically searched over all models with 8 or fewer 
autoregressive terms (and no moving average terms). On the basis of the information criteria, 
the best in that group was not as good as the simple ARIMA(0,2,1) model. It was an 
ARIMA(4,2,0) model: 

Pt = a.  + alP,-l + a2Pt-2 + a3F,-3 + a4fi-4 + CLt (Spec. 3) 

Specification 3 is included in order to see the effects of model choice in the ARIMA framework. 
In the case of both Specification 3 and 4, analytic (as opposed to simulated) confidence intervals 
are reported here. 

Specification 4 is somewhat more complex. Here separate ARIMA models are used to 
estimate the crude birth and death rates, and those rates are used to produce stochastic 
population projections. In the cases of both the crude birth and death rates, we used the first 
difference of the logarithms.' The information criteria tests suggested again that the best model 
had a single moving average term and no autoregressive ones, so we used those. 

(Spec. 4) 

where, 
b, is the first difference of the natural logarithm of the crude birth rate in period t, 
d, is the first difference of the natural logarithm of the crude death rate in period t. 

The equations were estimated separately, and in the projections, the error terms were assumed 
to be independent. The confidence intervals in Table 1 are computed from 1,600 stochastic 
futures. 

'For all the ARIMA models tested here, the Box-Ljung Q-statistic was computed for 12, 18, 24, and 30 
lags. In none of them could the null hypothesis of white noise residuals be rejected at the 10 percent level 
of significance, except in one case that will be noted below. Dickey-Fuller tests for all the ARIMA 
specifications rejected the hypothesis of a unit root at a 95 percent level of confidence. 

'Logarithms were used to ensure against negative crude rates. 



The final specification is a causal one; indeed, it is the true one in equations (Al), (A4) 
and (AS) in Appendix A, to the extent that it can be estimated from Wonderland's historical 
data? In this framework, the crude birth and death rates are contemporaneously correlated 
because, in each year, they both depend on the same value of net income. The confidence 
intervals were again calculated from 1,600 simulated futures. 

Using the Rogers' (1995) typology, the five specifications above range from a very simple 
extrapolative model to a more complex causal one. None of them are very complicated. Let us 
now turn to see how well these specifications do in predicting the true 95 percent confidence 
intervals for Wonderland's population. 

Under either scenario, Wonderland's population will grow by between 31.7 and 36.8 
percent by 2025, and between 51.1 and 67.7 percent by 2050. Thus, predicting population to 2050 
is relatively easy. After 2050, when the confidence intervals diverge, the interpretation of the 
predictions becomes strained because although both scenarios are consistent with the same past 
demographic data, they offer distinctly different futures. 

According to the quadratic specification, we are 95 percent incompletely confident that by 
2025 Wonderland's population will grow by between 36.8 and 38.0 percent. Note that the lower 
bound of the 95 percent incomplete confidence interval is the upper bound of the complete 
interval. Indeed, beginning in 2025, the 95 percent incomplete confidence interval for the 
quadratic specification never even overlaps with the true confidence interval. Therefore, we are 
95 percent confident that the population of Wonderland will lie OUTSIDE of the 95 percent 
incomplete confidence interval based on the quadratic specification. 

The incomplete confidence intervals from the quadratic model are very narrow. In 2025, 
its width is only 1.2 percent of Wonderland's 1995 population. The width of the complete 
confidence interval is over four times larger. In 2050, the width of the incomplete confidence 
interval is about one-tenth that of the complete confidence interval. Using the quadratic 
specification, we are apparently even quite certain about what Wonderland's population would 
be in 2100. It tells us that we are 95 percent incompletely confident that the population would 
grow between 156.9 percent and 159.4 percent. Even under the EDS, Wonderland's population 
grows only between 60.8 percent and 105.3 percent by 2100. Use of the quadratic specification 
makes us feel highly confident of quite wrong figures. 

The ARIMA(0,2,1) specification for the natural logarithm of population size has just the 
opposite characteristic. Its confidence intervals are much too wide. Even in 2025, the width of 
its confidence interval is already 39.2 percent of Wonderland's 1995 population. We are 
apparently 95 percent confident that Wonderland's population would grow between 17.3 percent 
and 56.5 percent. In truth, we are 95 percent confident that Wonderland's population will grow 
between 31.7 and 36.8 percent. In 2025, the width of the incomplete confidence interval is over 
7 times that of the complete confidence interval. In 2100, the upper bound of the 95 percent 
incomplete confidence interval is 499.1 percent population growth. This is around 5 times higher 
than the true upper bounds in either the EDS or ENS. In all the specifications that we have 

'Because the stock of natural capital is always equal to unity in the 1930-1995 period, pollution control 
costs are equal to zero (see equation (A8)), and there is no difference between per capita output and net per 
capita output. Therefore, equation (Al) can be used to calculate the net income that enters into the crude 
birth and death rate equations. For the same reason, A, and 0, the parameters in the death rate equation that 
are related to the stock of natural capital, cannot be computed. The functional forms that were estimated 
and the results appear in Appendix B. 



estimated, including a number not reported here, we have observed a general tendency for 
ARIMA models to produce incomplete confidence intervals that are larger than their complete 
counterparts, sometimes quite a bit larger. 

The ARIMA(4,2,0) specification for the natural logarithm of population has confidence 
intervals that are smaller than those in the previous ARIMA model, but still considerably larger 
than the true ones. In 2025, the 95 percent incomplete confidence interval lies between 32.8 and 
46.0 percent population growth. The true interval is between 31.7 percent and 36.8 percent. The 
two lower bounds are close, but the incomplete upper bound is 9.2 percentage points too high. 
For 2050, the upper bound on the incomplete confidence interval is 106.8 percent growth, while 
the true upper limit is 67.7 percent growth. The average predictions of the (4,2,0) model are 
much worse, however, than those from the (0,2,1) model. 

Specification 4 is the first of our two structural models. Among all our specifications, it 
is the one where the size of its 95 percent incomplete confidence intervals are closest to the true 
intervals. Unfortunately, the mean predictions are not very good. By 2050, for example, the 
mean predicted population growth is 80.5 percent, as compared to the true average of 59.3 
percent. Worse, in a sense, is the fact that the incomplete 95 percent confidence intervals and 
the complete ones are disjoint after 2050. We are quite confident that the population of 
Wonderland in the second half of the 21st century will lie outside of the 95 percent confidence 
interval produced by Specification 4. 

The final specification is the true structure, ignoring the effects of the environment. It may 
be surprising or disappointing to some to learn that the true structure does rather poorly. It has 
confidence intervals that are much too small, and it predicts average growth rates that are among 
the worst in the group. Why does the true structure do so poorly? The answer is that in the 
period 1930 to 1995, there is a great deal of noise in the crude birth and death rate series 
relative to the amount of variation. As a result, the parameters cannot be estimated very 
accurately even when we know the true structure. We are well over 95 percent confident that, 
for most of the 21st century, the true population of Wonderland would lie outside of the 95 
percent incomplete confidence interval based on the causal model. 

The population projections out to the year 2075 and beyond are highly suspect, both in the 
average predicted growth and in their estimated confidence intervals. Table 1 shows that 
estimated confidence intervals for long-run projections are themselves so uncertain as to provide 
us with no useful information. 

If we were only to consider projections to the year 2025, we can see that the average 
predictions are reasonably close to the Wonderland's average outcome. The worst prediction, 
the one made by the model where the true structure was estimated, was for an average 
population growth of 39.6 percent, when the true average population growth is 34.2 percent. 
This is not bad. The confidence intervals are predicted much less accurately. In one 
specification, we are 95 percent confident that the population growth would be between 36.8 and 
38.0 percent. In another, we are 95 percent confident that the population growth would be 
between 17.3 percent and 56.5 percent. Looking across specifications, it appears that we are 
much more uncertain about our confidence intervals than we are about the average amount of 
population growth itself. Confidence intervals are themselves estimates. Table 1 suggests the 
possibility that they may often be quite poor approximations to the true confidence intervals. 

It is worth observing here that the great variability in incomplete confidence intervals in 
Table 1 is not due to differences in inputs. All the models are estimated using exactly the same 



data. Table 1 shows that, even in this case, different specifications can produce confidence 
intervals of very different size. 

Do simpler models outperform more complex ones? This question is difficult to answer 
because performance here has two dimensions, the average forecast and its 95 percent 
incomplete confidence interval. The simplest model, the quadratic specification, gives the second 
closest prediction of expected population growth by 2050 for example, but its 95 percent 
incomplete confidence interval is too small by a factor of about 10. The most complex model 
is the causal specification. It has incomplete confidence intervals that are larger than those for 
the quadratic, but still too narrow. In addition, its predictions of expected population growth are 
among the poorest. 

The ARIMA models stand intermediate in complexity. The most complex of these, the 
one based on estimated crude birth and death rates has reasonably sized incomplete confidence 
intervals, but predicted expected population growth worse than the quadratic. The 
ARIMA(0,2,1) model, the one with a single moving average term, predicted expected population 
growth best among our specifications, but it has the largest incomplete confidence intervals. In 
2050, the incomplete confidence interval for that specification is over 7 times larger than the true 
interval. 

On the basis of the models in Table 1, there is certainly no monotonic relation between 
simplicity and performance. Therefore, the choice between simpler or more complex models has 
to be made on other grounds. 

6. Projections in Wonderland Based on Data From 1855 to 1995 

Can we feel more secure in producing confidence intervals for shorter range forecasts? 
In order to investigate this, imagine that instead of starting our Wonderland database in 1930, 
we started it in 1855. We can now associate our 171 years of data with the years 1855 to 2025. 
We can produce 141 years of historical data (i.e. from 1855 through 1995), just as we produced 
the 66 years of history in Section 4, use those data to reestimate the specifications above and 
make projections out to the year 2025. Further, let us assume that we are living in the 
environmentalists' nightmare scenario. For reference, 1995 now is the point labelled 2070 in 
Figures 1 through 5. Clearly, we are on the verge of catastrophe, but we have had 141 years of 
continuous population growth, and continuous declines in the crude birth and death rates. This 
on the Rogers' (1995) scale would be a difficult test indeed. 

On the basis of the 141 year history, we have estimated the parameters of four of the 
specifications that appear in Table 1, with the exception of the ARIMA(4,2,0) model. The 
figures in Table 2 are in terms of Wonderland's population size, not rates of growth as in Table 
1. We think that it is easier to read this way. Given our redated database, Wonderland's 1995 
population is 3.849. As can be seen from Table 2, in 10 years, that is, by 2005, Wonderland's 
population decreases, on average, to 3.336, or by 13 percent. Wonderland has begun a terrible 
environmental crisis. Death rates have begun to climb, and even with somewhat higher birth 
rates, the population is still shrinking. This dismal story continues to unfold decade by decade. 
Between 2005 and 2015, the population of Wonderland falls by 48 percent, and between 2015 and 
2025 by another 48 percent. Moreover, we are not very uncertain about this catastrophe. In 
2025, we are 95 percent completely confident that the population of Wonderland would be 
between 0.87 and 0.94. 



Table 2. Complete and incomplete confidence intervals for Wonderland's population, 2005,20 15, 
and 2025. 

Notes for Table 2: 
Upper refers to the upper bound of the 95 percent confidence interval. 
Average refers to the arithmetic average except in the row marked with an '. In that case, the average refers 
to the geometric average. 
Lower refers to the lower bound of the 95 percent conf7dence interval. 

ENS confidence intervals have been computed on the basis of 3,200 simulated futures. The first forecast year 
in 1996. 

Type of 
Prediction 

ENS 

Upper 

Average 

Lower 

Quadratic 

Upper 

Average 

Lower 

ARIMA 
(0,2,1) 

Upper 

Average1 

Lower 

ARIMA 
CBR (O,1,1) 
CDR (1,1,2) 

Upper 

Average 

Lower 

Causal 

Upper 

Average 

Lower 

All four specifications have been estimated on the basis of historical data from 1855 through 1995. 
Confidence intervals have been computed on the basis of 1,600 simulated futures. 

Dependent 
Variable 

Population 

Population 

ln(Popu1ation) 

ln(CBR) 
ln(CDR) 

CBR/CDR 

Year 

More information about the specifications can be found in Appendix C. 

2005 

3.458 

3.336 

3.232 

3.974 

3.962 

3.950 

4.034 

3.920 

3.809 

3.952 

3.920 

3.889 

3.858 

3.847 

3.837 

20l5 

1.825 

1.750 

1.686 

4.069 

4.050 

4.039 

4.277 

3.955 

3.658 

4.052 

3.969 

3.891 

3.867 

3.852 

3.835 

2025 

0.944 

0.902 

0.866 

4.145 

4.128 

4.111 

4.557 

3.955 

3.432 

4.142 

3.998 

3.865 

3.878 

3.860 

3.840 



Now suppose population projections were made in 1995 on the basis of the past 141 years 
of data. According to the quadratic specification, we expect Wonderland's population to lie 
between 3.95 and 3.97 in the year 2005. Clearly, this range does not include the true 95 percent 
confidence interval. Within 10 years, the complete and the incomplete confidence intervals are 
disjoint. This specification predicts the highest population growth for Wonderland of those 
considered here and provides narrow confidence intervals around those wrong figures. 

The ARIMA(0,2,1) model again produces extremely wide incomplete confidence intervals. 
It tells us that we are 95 percent incompletely confident that Wonderland's population in 2025 
would be between 3.43 and 4.56, but in this case, even such a wide interval does not include 
Wonderland's true population. The ARIMA model based on predictions of crude birth and 
death rates produces smaller incomplete confidence intervals than the ARIMA(0,2,1) model with 
about the same expected populations. 

The causal model of demographic processes, excluding the environment now does poorly 
for a completely different reason. The poor performance of causal model in Table 1 was due 
to the inaccuracy of the parameter estimates. Certainly, with 141 years of data, we should be 
able to estimate the parameters with much greater precision, and indeed this is the case. The 
estimates of parameters that relate net output to crude birth and death rates are now quite 
accurate, as is the estimate of the rate of growth of output in an unpolluted environment. The 
problem arises because the interactions between the environment, population, and the economy 
are ignored. The stock of natural capital has a value of 1.000 from 1855 through 1986, falls to 
0.990 in 1993 and to 0.971 in 1995. The recent fluctuations seem to be small and it is difficult 
to know how to model them. Therefore, we followed a course that was very tempting, given the 
difficulty of incorporating environmental variables into our model; we ignored them. The result 
of ignoring environmental variables in all of the specifications here is to make predictions that 
immediately prove to be wrong. 

Several things are evident from Table 2. First, the predictions and confidence intervals 
are extremely inaccurate, even 10 years into the future. It may be argued at this point that the 
models have been treated unfairly. Of course, a meteorite could strike the Earth next year, 
wiping out a quarter of its population. Forecasts are made assuming that everything stays the 
same in the future as it was in the past. This objection is wrong. In Wonderland, everything is 
exactly the same before 1995 and after 1995. No meteorite hits Wonderland, nor does anything 
else change exogenously. It is crucial to emphasize here that Wonderland is a continuous model. 
There are no step-functions and no thresholds. The problem with the objection is that it 
implicitly assumes that everything staying the same means that everything changes in a roughly 
linear manner. Even with a constant structure, there can be periods of more rapid and less rapid 
change. In nonlinear systems that are poorly understood, it is not uncommon to observe 
surprising periods, when the behavior of the system deviates from what one would have expected 
on the basis of linear extrapolations. This is not the same as an exogenous change, such as a 
collision with a large meteorite. 

The lesson that can be derived from Table 2 is that forecasts are not necessarily good for 
any fixed number of years. A population forecast may be fine for 50 years, or it may be terrible 
in 5 years. There is no way that we can be truly 95 percent confident that the future will not 
hold any surprises for us in the next 25 or 50 years. Indeed, that itself would be very surprising. 



7. Conclusions 

In this paper, we have produced an artificial reality, called Wonderland, and have 
performed population projections on a dataset generated by it, where we know both the past and 
the future. We found that we are not at all confident of the 95 percent confidence intervals 
produced by standard statistical techniques. Those intervals are estimated with a great deal of 
error, Given the specifications that we used, it was often the case that the true population 
would, with 95 percent confidence, lie outside of the estimated confidence intervals. Some 
estimated confidence intervals were much too small, some much too big. There is no guarantee 
that we will be 95 percent confident that the true population will lie within the estimated 95 
percent confidence intervals, even 10 years after the starting date. The longer the horizon of the 
projection the greater is the anticipated error in both the expected population size and its 
confidence intervals. There appears to be a tendency for confidence interval forecasts to degrade 
more rapidly than forecasts of average population size. Since we are not at all confident of our 
computed confidence intervals, it is not surprising that we often found that different 
specifications lead to disjoint 95 percent confidence intervals. 

Given these conclusions, what should forecasters do? First, population forecasters should 
give up producing 95 percent confidence intervals around their estimates. These intervals are 
highly inaccurate and misleading. When a forecaster says that the 95 percent confidence interval 
around the forecast for some future date is between, say, 200 million people and 300 million, the 
user of that forecast interprets that statement to mean that it is quite likely that the population 
at that time would be between 200 and 300 million people. This is an incorrect interpretation. 
The truth of the matter is that the 200 and 300 million figures are themselves highly inaccurate. 
We saw in Tables 1 and 2 that we could truly be 95 percent confident that the population would 
be between 100 and 150 million, or between 240 and 260 million. Because the 95 percent 
confidence intervals are so poorly estimated, leading people to believe that future population 
sizes will lie within them is wrong. 

If for some reason forecasters must produce 95 percent confidence intervals around their 
forecasts, another name for what they produce would be more appropriate. We favor calling 
those intervals "incomplete confidence intervals." This would at least warn users about how 
misleading those intervals could be. Still, there would seem to be very little use for incomplete 
confidence intervals. We would not necessarily prefer a model with smaller incomplete 
confidence intervals to a model with larger ones, because the smaller ones could be too small. 
Similarly, we would not necessarily prefer a model with broader incomplete confidence intervals 
because they may be too large. The size of incomplete confidence intervals provides no basis 
for evaluating models. It also tells us nothing about the uncertainty of the future. 

Is it possible to obtain a measurement of the uncertainty of forecasts without 95 percent 
incomplete confidence intervals? Of course it is. The ~eyfitz-Stoto" approach is still valid. 
We can estimate the extent of uncertainty in new forecasts on the basis of the performance of 
old ones. There are also variants of the Keyfitz-Stoto approach that can be used. If a new 
projection technique is invented, its uncertainty can be measured by using it to make projections 
of the present based on past data. The errors in these forecasts could provide us with a basis 
upon which to evaluate it. Finally, it is possible to have projection tournaments based on 

''See Keyfitz (1981) and Stoto (1983). 



simulated data." None of this is as satisfying as knowing the true interval in which the future 
population will Lie 95 percent of the time. 

We grow wiser by learning more about the world. We also grow wiser by learning that 
there are some things that we cannot know. We cannot know the true 95 percent confidence 
intervals around our population projections. This may make us and the users of projections 
unhappy, but, unfortunately, there is nothing that we can do about it. We also grow wiser by 
accepting the inevitable. 
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Appendix A: The Wonderland Model: 
Equations, Parameters, Initial Conditions, and Standard Deviations 

Al. Equations 

This description of the Wonderland model draws heavily on Sanderson (1994). Equations 
(Al)  and (A2) deal with the economy, equations (A3) through (AS) with the population, 
equations (A6) and (A7) with the environment, and equations (A8) and (A9) with environmental 
policy. The subscript t in the equations refers to the year in which the variables are measured, 
all Greek letters refer to parameters of the model, all subscripted u terms refer to independently, 
normally distributed random variables, and v, refers to a uniformly distributed random variable. 

Wonderland Model Notation 

Equation (Al)  says that per capita output in year t +  1, I,,,, depends on the level of per 
capita output in year t, I,, the level of the stock of natural capital in year t, NK,, two stochastic 
terms 7, , rl, , and a parameter A. Natural capital may be thought of as the set of things provided 
to us by the environment, like air and water, which allow us to live healthy and productive lives. 
When natural capital is undiminished by pollution, the stock is given a value of As more 
pollution occurs, the level of the stock of natural capital diminishes, until, in the extreme, it 
reaches 0.0. Equation (Al )  incorporates the assumption that the lower the stock of natural 
capital, the lower the rate of per capita output growth. When NK, is equal to 1.0, the rate of 
economic growth is 7,; when NK, is equal to 0.0, the rate of economic shrinkage is equal to q,. 

Equation (A2) simply defines net per capita output as the difference between the level of 
per capita output in equation (Al)  and per capita expenditure on pollution control. The latter 
is determined by pollution control policy, as expressed by equation (A8). Standard economic 
accounting procedures do not put a (negative) value on pollution, but do include pollution 
control expenditures. Therefore, offsetting increases in pollution and pollution control 
expenditures, which leave stocks of natural capital unchanged, show up as increases in per capita 
output. To avoid this possibility, net per capita output is used in Wonderland as the measure 
of economic well-being. 

12~quation A7 is undefined when NK is exactly 1.0. In all the runs of the Wonderland model, NK is 
assumed to be bounded from above by 0.99999. 



Equations (A3), (A4), and (A5) make up the demographic portion of the model. Equation 
(A3) determines the crude birth rate (the ratio of births to the population multiplied by 1,000) 
and equation (A4) the crude death rate (the ratio of deaths to the population multiplied by 
1,000). The model assumes that both crude rates decrease with increases in net per capita 
output. In addition, equation (A4) stipulates that decreases in the stock of natural capital cause 
the crude death rate to rise. Both equations (3) and (4) include stochastic terms. Equation (A5) 
is an accounting identity that computes the population in year t + l  based on the population in 
year t and the intervening numbers of births and deaths.* 

The environmental portion of the model appears in equations (A6) and (A7). Equation 
(A6) determines the annual flow of pollutants as a function of the population size, per capita 
output, the technologies of production and pollution abatement, and on the amount of money 
that is spent on pollution control. Equation (A7) shows how the combination of the pollution 
flow and nature's ability to cleanse itself interact to produce changes in the stock of natural 
capital. Our specification is based on the idea that nature has the ability to cleanse itself, but 
that the strength of this ability decreases as the quantity of pollution increases. 

The final equations represent environmental policy. In equation (A8), the stock of natural 
capital is constantly monitored and the amount of money per person spent on pollution control 
determined depending on per capita output, the stock of natural capital, and a random term. 
Per capita spending on pollution control is assumed to increase with per capita output and to 
increase as the stock of natural capital decreases. In equation (A9), the rate of pollution 
(pollution per unit of output) is assumed to be a random walk with a drift of x percent per year. 

'?he model assumes that there is no net migration. 



The Wonderland model: 

Economv 

6 1  = z t { l + ~ , - ( ~ , + ' l t l i l  - N K J ~ ]  
where 
Y t  = Y + U y r  

'l, = 'l + u,,, 

NI, = I, - PC, 

CBR, - CDR, 
t + l = t [ + [  1m I] 

Environment 

Environmental Policy 

PC, = + ( I  - NKJP.It(1 + up> 



A2. Parameters 

These parameters differ somewhat from the parameters in Sanderson (1994). The only change 
that alters the behavior of the model is the change in p. The new parameter value keeps the 
model from cycling in the long-run. 

Economy 

Environment 

n = 2  c = 0.02 S = 1.0 p = 2.00 w = 0.10 

Environmental Policy 

4 = 0.50 p = 2.0 

Technolow 

x = -0.01 
Environmentalists' Nightmare Scenario 

x = -0.03 
Economists' Dream Scenario 

A3. Initial Conditions 

In Sections 3, 4, and 5, these initial conditions are associated with the year 1930. 
In Section 6, these initial conditions are used for the year 1855. 

A4. Standard Deviations 

The standard deviations used are: 

u,, = 1.00 ug,, = 1.00 u,,,,, = 0.02 uCar,, = 0.02 uFc = 0.05 

v, is a uniformly distributed random variable that ranges between -0.0025 and 0.0025. 



Appendix B: Parameter Estimates of the Specifications in Table 1 

Specification 1 - Quadratic 
Dependent Variable - population size 
See equation (Spec. 1) in the text 

Parameter ao a1 a2 

Estimate 0.003539 1.012 -0.0009647 
Standard Error 0.002938 0.004 0.001 174 
Estimated Standard Error of the Residual: 0.001149 
Estimated by OLS Program: GAUSS 

Specification 2 - ARIMA (0,2,1) 
Dependent Variable - second difference of the natural logarithm of population size 
See equation (Spec. 2) in text 

Parameter ao a1 

Estimate -0.0000556 -0.9857 
Standard Error not avail. 0.021945 
Estimated Standard Error of the Residual: 0.000760 
Estimated by Maximum Likelihood Program: BROCCOLI 

Specification 3 - ARIMA (4,2,0) 
Dependent Variable - second difference of the natural logarithm of population size 
See equation (Spec. 3) in text 
Parameter ao a1 a2 a3 a4 

Estimate -0.000 1778 -0.8 160 -0.6226 -0.4 195 -0.3394 
Standard Error not avail. 0.1171 0.1467 0.1477 0.1212 
Estimated Standard Error of the Residual: 
Estimated by Maximum Likelihood Program: BROCCOLI 

Specification 4 - ARIMA (O,1,1) for crude birth rate and crude death rate 
95 Percent Confidence Intervals for Specification 4 Estimated Using GAUSS 

Crude Birth Rate 
Dependent Variable - first difference of the natural logarithm of the crude birth rate 
See equation (Spec. 4) in text 
Parameter ao a1 
Estimate -0.001404 -0.8570 
Standard Error not avail. 0.0665 
Estimated Standard Error of the Residual: 0.02344 
Estimated by Maximum Likelihood Program: BROCCOLI 



Crude Death Rate 
Dependent Variable - first difference of the natural logarithm of the crude death rate 
See equation (Spec. 4) in text 
Parameter B o  BI 
Estimate -0.0007431 -0.89 19 
Standard Error not avail. 0.0579 
Estimated Standard Error of the Residual: 0.02098 
Estimated by Maximum Likelihood Program: BROCCOLI 

Specification 5 - Causal Model 

Income 

I t+,  = I t f ' + ~ t ]  

where 
Yt = Y + UrJ 

Parameter 7 
Estimate 0.01952 
Standard Error 0.00292 
True Value 0.02000 
Estimated Standard Error of the Residual: 1.206 
True Standard Error of the Residual: 1.000 
Estimated by Nonlinear Least Squares Program: GAUSS 

Crude Birth Rate 

Parameter B I B2 B 
Estimate 15.518 2.8719 0.7783 
Standard Error 1.1355 0.1741 0.2563 
True Value 40.000 1.3750 0.1600 
Estimated Standard Error of the Residual: 0.02207 
True Standard Error of the Residual: 0.02000 
Estimated by Nonlinear Least Squares Program: GAUSS 

Crude Death Rate 

Parameter A1 A2 01 

Estimate 4.438 1 5.0620 0.5534 
Standard Error 2.0355 2.1658 0.5676 
True Value 10.000 2.5000 0.1800 
Estimated by Nonlinear Least Squares Program: GAUSS 



Appendix C: Parameter Estimates of the Specifications in Table 2 

Specification 1 - Quadratic 
Dependent Variable - population size 
See equation (Spec. 1) in the text 

Parameter ff o QI a2 

Estimate -0.01320 1.032 -0.006626 
Standard Error 0.001470 0.001 0.0002690 
Estimated Standard Error of the Residual: 0.002069 
Estimated by OLS Program: GAUSS 

Specification 2 - ARIMA (0,2,1) 
Dependent Variable - second difference of the natural logarithm of population size 
See equation (Spec. 2) in text 

Parameter ff o ff 1 

Estimate -0.000092 -0.7889 
Standard Error not avail. 0.053 1 
Estimated Standard Error of the Residual: 
Estimated by Maximum Likelihood Program: BROCCOLI 

Specification 3 - ARIMA (0,1,1) for crude birth rate and ARIMA (1,1,2) for crude death rate 

Crude Birth Rate 
Dependent Variable - first difference of the natural logarithm of the crude birth rate 
See equation (Spec. 4) in text 
Parameter ff o f f ~  

Estimate -0.004853 -0.6094 
Standard Error not avail. 0.0679 
Estimated Standard Error of the Residual: 0.02393 
Estimated by Maximum Likelihood Program: BROCCOLI 

Crude Death Rate 
Dependent Variable - first difference of the natural logarithm of the crude death rate 

Note: This equation differs from (Spec. 4) in text. 
Parameter Po BI B 2  B 3  

Estimate -0.0004672 0.7164 -1.7282 0.7815 
Standard Error not avail. 0.0883 0.07801 0.0684 
Estimated Standard Error of the Residual: 0.01997 
Estimated by Maximum Likelihood Program: BROCCOLI 

95 Percent Confidence Intervals Estimated Using GAUSS 



Specification 4 - Causal Model 

Income 

It+,  = I t p + ~ t ]  

where 
Yt = Y + UY,, 

Parameter 7 
Estimate 0.02037 
Standard Error 0.00176 
True Value 0.02000 
Estimated Standard Error of the Residual: 1.024 
True Standard Error of the Residual: 1.000 
Estimated by Nonlinear Least Squares Program: GAUSS 

Crude Birth Rate 

Parameter B 1 B2 B 
Estimate 39.548 1.3888 0.1653 
Standard Error 0.5771 0.0141 0.0055 
True Value 40.000 1.3750 0.1600 
Estimated Standard Error of the Residual: 0.02028 
True Standard Error of the Residual: 0.02000 
Estimated by Nonlinear Least Squares Program: GAUSS 

Crude Death Rate 

Parameter A 1  A 2  a 
Estimate 10.000 2.5052 0.1897 
Standard Error 0.3043 0.0622 0.0136 
True Value 10.000 2.5000 0.1800 
Estimated Standard Error of the Residual: 0.01850 
True Standard Estimate of the Residual: 0.02000 
Estimated by Nonlinear Least Squares Program: GAUSS 


