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SYSTEMS ANALYSIS OF TECHNOLOGICAL A N D  
ECONOMIC DYNAMICS 

This new research project at  IIASA is concerned with modeling technological change, and 
the broader economic developments that  are associated with technological change, both as cause 
and effect. The central purpose is to develop stronger theory and better modeling techniques. 
The basic philosophy is that  such theoretical and modeling work is most fruitful when attention 
is paid to  the known empirical details of the phenomena the work aims to  address. 

Over the last decade considerable progress has been made on various techniques of dynamic 
economic modeling. Some of this work has employed ordinary differential and difference equa- 
tions, and some of i t  stochastic equations. Several models have been developed in which an 
economic analogue of "natural selection" winnows out a population whose members have dif- 
ferent attributes and different degrees of fitness. A number of efforts have taken advantage of 
the growing power of simulation techniques. Others have employed more traditional mathemat- 
ics. As a result of this theoretical work, the toolkit for modeling technological and economic 
dynamics is significantly richer than it was a decade ago. 

During the same period, there have been major advances in the empirical understanding. 
There are now many more detailed technological histories available. Much more is known about 
the similarities and differencers of technical advallce in different fields and industries and there is 
some understanding of the key variables that lie behind those differences. A number of studies 
have provided rich information about how industry structure co-evolves with technology. In 
addition to  empirical work at  the technology or sector level, the last decade has also seen a great 
deal of empirical research on productivity growth and measured technical advance a t  the level 
of whole economies. A considerable body of empirical research now exists on the facts that  seem 
associated with different rates of productivity growth across the range of nations. 

As a result of this recent empirical work, the questions that  successful theory and useful 
modeling techniques ought to  address now are much more clearly defined. The theoretical work 
described above often has been undertaken in appreciation of certain stylized facts that  needed 
t o  be explained, like the apparent phenomenon of dynamic increasing returns, or in other cases, 
understanding that  n many industries the distribution of firm sizes is approximately log normal. 
However, the connection between the theoretical work and the empirical phenomena has so far 
not been very close. The philosophy of this project is that  the chances of developing powerful 
new theory and useful new analytical techniques can be greatly enhanced by performing the work 
in an environment where scholars who understand the empirical phenomena provide questions 
and challenges for the theorists and their work. 

The research will focus upon the following three areas: 

1. Technological and Industrial Dynamics 

2. Innovation, Competition and Macrodynamics 

3. Learning Processes and Organisational Competence. 



Abstract 

Strategic interaction among autonomous decision-makers is usually modelled in 

economics in game-theoretic terms or within the framework of General Equilibrium. Game- 

theoretic and General Equilibrium models deal almost exclusively with the existence of 

equilibria and do not analyse the processes which might lead to them. Even when existence 

proofs can be given, two questior,r are still open. The first concerns the possibility of multiple 

equilibria, which game theory has shown to be the case even in very simple models and 

which makes the outcome of interaction unpredictable. The second relates to the 

computability and complexity of the decision procedures which agents should adopt and 

questions the possibility of reaching an equilibrium by means of an algorithmically 

implementable strategy. Some theorems have recently proved that in many economically 

relevant problems equilibria are not computable. 

A different approach to the problem of strategic interaction is a "constructivist" one. 

STLC~I a perspective, instead of being based upon an axiomatic view of human behaviour 

grounded on the principle of optimisation, focuses on algorithmically implementable 

"satisfycing" decision procedures. Once the axiomatic approach has been abandoned, decision 

procedures cannot be deduced from rationality assumptions, but must be the evolving 

outcome of a process of learning and adaptation to the particular environment in which the 

decision must be made. This paper considers one of the most recently proposed adaptive 

learning models: Genetic Programming and applies it  to one the mostly studied and still 

controversial economic interaction environment, that of oligopolistic markets. 

Genetic Programming evolves decision procedures, represented by elements in the 

space of functions, balancing the exploitation of knowledge previously obtained with the 

search of more productive procedures. 

The results obtained are consistent with the evidence from the observation of the 

behaviour of real economic agents. 



As Kenneth Arrow - himself one of the major contributors to rational decision theory 

- puts it, a system of literally maximizing norm-free agents "... would be the end of organized 

society as we know it" [Arrow (1987), p. 2331. And indeed one only rarely observes 

behaviours and decision processes which closely resemble the canonical view from decision 

theory as formalized by von Neumann, Morgenstern, Savage and Arrow. 

What are then the characteristics of norm-guided behaviours? And wii~r; i l i '  norms 

come from? Can they be assumed to derive from some higher-level rational choice? Or can 

one show different kinds of processes accounting for their emergence? 

In this work we shall discuss these issues and present an evolutionary view of the 

emergence of norm-guided behaviours (i.e. routines) in economics. 

We shall call & all the procedures linking actions and some representation of the 

environment. In turn, representations are likely to involve relations between environmental 

states and variables and require the fulfilment of certain conditions (IF-THEN rules). It is a 

familiar definition in Artificial Intelligence and cognitive psychology (see Newel1 and Simon 

(1972) and Holland et al. (1986)). Of course representations may encompass both 

environmental states and internal states of the actor; and the action part may equally be a 

behaviour in the environment or an internal state, such as a cognitive act 1. 

Further, we shall call norms that subset of rules which pertain to socially interactive 

behaviours and, in addition, have the following characteristics: 

1) they are context-dependent (in ways that we shall specify below), and 

2) given the context, they are, to varying degrees, event independent, in the sense that, 

within the boundaries of a recognized context, they yield patterns of behaviour which are not 

contingent on particular states of the world. 

This definition of norms is extremely broad in scope and encompasses also 

behavioural routines, social conventions and morally constrained behaviours 2. Thus our 

definition includes the norm of not robbing banks, but excludes robbing or not robbing banks 

according to such criteria as expected utility maximization; it includes the "rules of the 

games" in game theoretical set-ups, but excludes the highly contingent behaviours which 

rational players are supposed by that theory to engage in thereafter. 

Our argument is divided into two parts. First, we ask what is the link between norms, 

so defined, and the "rational" decision model familiar in the economic literature. In particular 

we shall address the question whether, whenever one observes those types of norm-guided 

1 Clearly, this very general definition of rules includes as particular cases also the procedures for decision 
and action postulated by "rational" theories. 
2 These finer categorization are quite familiar in political sciences: see for example the discussion in Koford 
and Miller (1991). On the contrary, the broader notion of norms adopted here includes both moral constraints 
and positive behavioural prescriptions (i.e, both "morality" and "ethicality" in the sense of Hegel). 



behaviours, they can be referred back to some kind of higher-level rational act of choice 

among alternative patterns of action. We shall claim that this is not generally the case. The 

empirical evidence, even in simple contexts, of systematic departures of judgements and 

actions from the predictions of the rationality model is now overwhelming 3. Here however 

we are not going to discuss such evidence, rather we shall pursue a complementary line of 

enquiry and show that, with respect to an extremely broad set of problems, a 'rational' choice 

procedure cannot even be theoretically constructed, let alone adopted by empirical agents. 

Drawing from computation theory and from the results of Lewis (1985a) and (1985b), it can 

be shown that many choice set-ups involve algorithmically unsolvable problems: in other 

words, there is not and there cannot be a universal rational procedure of choice. An 

optimization procedure cannot be devised even in principle: this is the negative part of the 

argument. 

But what do people do, then? We shall suggest precisely that agents employ problem- 

solving rules and interactive norms, which: 1) cannot be derived from any general 

optimization criterion and, 2) are "robust", in the sense that they apply to entire classes of 

events and problems (Dosi and Egidi (1991)). 

The second part of this work considers the origin and nature of these rules. The cases 

we shall consider regard the emergence of corporate routines applied to the most familiar 

control variables in economics, i.e. prices and quantities. However, there appear to be no a 

priori reason to restrict the applicability of the argument to economic behaviours. In fact, a 

similar analytical approach could be applied to several other forms of patterned behaviour in 

social interactions. 

Concerning the origin of behavioural norms, we develop a model broadly in the 

perspective outlined by Holland (1975) and Holland et al. (1 986): various forms of inductive 

procedures generate, via adaptive learning and discovery, representations or "mental models" 

and, together, patterns of beha-v:uur: "the study of induction, then, is the study of how 

knowledge is modified through its use" (Holland et al. (1986), p.5). In our model, artificial 

computer-simulated agents progressively develop behavioural rules by building cognitive 

structures and patterns of action, on the grounds of initially randomly generated and 

progressively improved symbolic building blocks and no knowledge of the environment in 

which they are going to operate. The implementation technique is a modified version of 

Genetic Programming (c.f. Koza (1992) and (1993)), in which agents (firms) are modelled by 

sets of symbolically represented decision procedures which undergo structural modifications 

in order to improve adaptation to the environment. Learning takes place in an evolutionary 

fashion, and is driven by a selection dynamics whereby markets reward or penalize agents 

according to their revealed performances. 

3 Cf., for instance, Kahneman, Slovic and Tversky (1982), Kahneman and Tversky (1979), Herrnstein and 
Prelec (1991). 



A major point in the analysis which follows is that representations of the world in 

which agents operate and behavioural patterns co-evolve through the interaction with the 

environment and the inductive exploratory efforts of agents to make sense of it (actually, in 

our model, they cannot be explicitly distinguished) 4. Indeed, we show that, despite the 

complexity of the search space (technically, the space of h-functions), relatively coherent 

behavioural procedures emerge. Of course, none of us would claim that empirical agents do 

learn and adapt in a way which is anything like Genetic Programming, or, for that matter, any 

other artificially implementable formalism (but, similarly, we trust that no supporter of more 

rationalist views of behaviour would claim that human beings choose their course of action 

by using fixed-point theorems, Bellman equations, etc.). We do however conjecture that there 

might be a sort of "weak isomorphism" between artificial procedures of induction and the 

ways actual agents adapt to their environment. 

The final question that we address concerns the nature of the behavioural patterns that 

emerge through our process of learning and market selection. In particular, in the economic 

settings that we consider. are these patterns algorithmic approximation to the purported 

rational behaviours which the theory simply assumes? Or, do they have the katures of 

relatively invariant and context-specific norms (or routines) as defined earlier? It turns out 

that, in general, the latter appears to be the case: surviving agents display routines, like mark- 

up pricing or simple imitative behaviour (of the type "follow-the-leader") in all environments 

that we experimented, except the simplest and most stationary ones. Only in the latter do we 

see the emergence of behaviours not far from what supposedly rational agents would do (and, 

even then, cooperative behaviours are more likely to come out than what simple Nash 

equilibria would predict 5 ) .  The context dependence of emerging routines can be given a 

rather rigourous meaning: the degrees of complexity of the environment and of the problem- 

solving tasks can be mapped into the characteristics of the emerging routines. Interestingly 

enough, it appears that the higher the complexity, the simpler behavioural norms tend to be 

and the more potentially relevant information tends to be neglected. In that sense, social 

norms seem to be the typical and most robust form of evolutionary adaptation to uncertainty 

and change. 

In section 2 we shall show that, in general, it is theoretically impossible to assume that 

the rationality of behaviours could be founded in some kind of general algorithmic ability of 

the agents to get the right representation of the environment and choose the right course of 

action. Section 3 presents a model of inductive learning where representations and actions co- 

evolve. Finally, in section 4 we present some results showing the evolutionary emergence of 

4 On the evolution of representations, see also Margolis (1987). In economics, such a co-evolutionary 
perspective is held by a growing minority of practitioners. More on it can be found in Nelson and Winter 
(1982), Dosi et al. (1988), March (1988), Marengo (1992), Dosi and Marengo (1994), Arthur (1992). 
5 This is of course in line with the findings of Axelrod (1984) and Miller(1988). 



behavioural routines, such as mark-up pricing. In the appendix, we provide a more detailed 

treatment of some of the propositions of section 2. 

2 - Rational vs. norm-guided behaviour. 

Let us start from the familiar view of rational behaviour grounded on some sort of 

linear sequence leading from 1) representations to 2) judgment, 3) choice and, finally, 3) 

action. Clearly, that ideal sequence can apply to pure problem-solving (for example proving a 

theorem, discovering a new chemical compound with certain characteristics, etc.), as well as 

to interactive situations (how to deal with competitors, what to do if someone tries to mug 

you, etc. ). 

At least two assumptions are crucial to this 'rationalist' view, namely, first, that the 

linearity of the sequence strictly holds (for example one must rule out circumstances in which 

people act and then adapt their preferences and representations to what they l.;1lje already 

done) and, second, that at each step of the process the agents are able to build the appropriate 

algorithm in order to tackle the task at hand. Regarding the first issue, the literature in 

sociology and social psychology is rich of empirical counterexamples and alternative theories 

6. Indeed, in the next section of this work, we shall present a model whereby representations 

and actions co-evolve. 

The second issue is even more at the heart of the 'constructivist' idea of rationality so 

widespread in economics, claiming that agents are at the very least procedurally rational7 . In 

turn this implies that they could algorithmically solve every problem they had to face, if they 

were provided with the necessary information about the environment and the degrees of 

rationality of their possible opponents or partners. Conversely, the very notion of rational 

behaviour would turn out to be rather ambiguous if one could show that, even in principle, 

the appropriate algorithms cannot be constructed. 

It happens in fact that computability theory provides quite a few impossibility 

theorems, i.e. theorems showing examples of algorithmically unsolvable problems. Many of 

them bear direct implications also for the micro assumptions of economic theory and, 

particularly, for the possibility of 'naturally' assuming the algorithmic solubility of social and 

strategic interaction problems 8. We can distinguish between two kinds of impossibility 

6 See for discussions , among others, Elster(1986), Luhmann (1979), and with respect to economics, also 
Dosi and Metcalfe (1991) 
7 The central reference on the distinction between 'substantive' and 'procedural' rationality is of course 
Herbert Simon: see especially Simon (1976), (1981), (1986). 
8 See Lewis (1985a) and Rustem and Velupillai (1990). Note that, loosely speaking, algorithmic solvability 
means that one is able to define a recursive procedure that will get you, say, to a Nash equilibrium. This turns 
out to be a question quite independent from proving a theorem which shows the existence of such an 
equilibrium. 



results. First, it is possible to show the existence of classes of problems which are not solvable 

by means of a general recursive procedure (c.f. Lewis (1985a) and (1 985b)). This implies that 

economic agents who look for efficient procedures for the solution of specific problems 

cannot draw on general rules for the construction of algorithms, because such general rules do 

not and cannot exist (c.f., also, Dosi and Egidi (1991)). Broadly speaking, we can say that 

nobody may be endowed with the meta-algorithm for the generation of every necessary 

algorithm. 

Second, it is possible to prove the existence of single problems whose optimal solution 

cannot be implemented by means of specific algorithms. Hence one faces truly 

algorithmically unsolvable problems: economic agents cannot have readily available 

algorithms designing optimal strategies to tackle such problems. Therefore, unless they have 

been told what the optimal solutions are by an omniscient entity, they have actually to find 

other criteria and procedures to solve them in a 'satisfactory' way. In fact, they need novel 

criteria to define what a satisfactory solution is and inductively discover new procedures to 

accomplish their tasks (see e.g. Dosi and Egidi (1991)). 

Let us briefly exarmilt: ~trese two kinds of impossibility results: Lewis (1985a) and 

(1985b) proves a general result about the uncomputability of rational choice functions (on 

computable functions see also Cutland (1980) and Cohen (1987)). 

Let P(X) be the set of all subsets of a space of alternatives X where an asymmetric and 

transitive preference relation has been identified, we can roughly define a rational choice 

function as a set function C:P(X)+P(X) such that, for every AE P(X), C(A) is the set of 

acceptable alternatives 9. Lewis considers some compact, convex subset of Rn\{O} as the 

space X of alternatives. Among these alternatives he takes into account only the set of 

recursive real numbers in the sense of Kleene and Post, i.e. the set of real numbers which can 

be codified as natural numbers by means of a particular Godel numbering (for more details 

see Lewis (1985a)). Moreover, one operates directly on the codified values (which are called 

R-indices). Given a preference relation defined only on the space of R-indices and 

numerically representable by a computable function and given some non-triviality conditions, 

Lewis does not only show that the related rational choice function is uncomputable but also 

that so is its restriction over the sole decidable subsets 10. Even more important than the 

proposition on undecidable sets (since in this case it may seem that the uncomputability of the 

function necessarily derives from the undecidability of the subsets), the result concerning 

only its restriction to the decidable subsets of Rn is quite powerful. It means in P~LL that the 

functions are uncomputable even if their domains are computable. 

9 Given a preference relation > on a set of objects X and a nonempty set A belonging to X, the set of 
acceptable alternatives is defined as: 

c(A,>) = {xEA: there is no YEA such that y>x}. 
10 Broadly speaking, we call a set decidable if there exist an algorithm which is always able to completely 
identify its elements, i.e. if the membership function which characterizes the set is computable. 



Obviously this result does not imply that the optimal solution cannot be 

algorithmically determined for every AE P(X). Lewis' theorems actually prove only that no 

automatic procedure can generate uniformly optimal solutions over the whole family of 

optimization problems identified by the set of all recursive subsets of R-indices of elements 

of X. This would be true even if there existed some specific solution algorithm for every 

single problem of this family (see Lewis (1985a), p. 67). This result shows actually that there 

exist small enough classes (i.e. not so broad to be meaningless from a decision-theoretic point 

of view) of well-structured choice problems whose solution cannot be obtained by means of a 

general recursive procedure. 

In economic theory, environmental or social interactions are usually represented by 

using subsets of Rn as spaces of alternative strategies. Thus, Lewis' results can be naturally 

extended to give proof of the generic uncomputability of the class of general economic 

equilibria and consequently of the class of Nash equilibria for games (see Lewis (1987)). 

Indeed every definition of General Equilibrium requires that agents be able to solve optimally 

some decision problems, Although Lewis' result is only a general impossibility one, which 

does not imply the uncomputability of single equilibria, its significance should not be 

underestimated. 

Concerning game theory, it is possible to find even stronger results about the 

computability of Nash equilibria for specific games. Rabin's theorem (see Rabin (1957) and 

Lewis (1985a)) shows that there is at least one infinite stage, two-person, zero-sum game with 

perfect information, whose optimal strategies are uncomputable. This is a particular Gale- 

Stewart game, which can be described as follows: let g:N+N be a predefined total function; 

player A moves first and chooses an integer i~ N; then player B, knowing A's choice, chooses 

j~ N; finally, A, who knows both i and j, chooses k~ N. If g(k)=i+j, A wins the game, 

otherwise B does. Gale-Stewart games admit always the existence of one winning strategy: if 

N\range(g) is infinite, whatever i has been chosen by A, B has at least one reply which let him 

win the game, otherwise A does. Consequently, it is easy to show that every Gale-Stewart 

game has infinite Nash equilibria, with at least a subgame perfect one among them. Now, let 

g be computable and let range(g) be a recursively enumerable set S such that N\S is infinite 

and does not have any infinite recursively enumerable subset 1 1. In such a case Rabin's 

theorem states that this game has no computable winning strategies. Moreover it is important 

to notice that the existence of simple sets has been proved (see Cutland (1980)), so that 

Rabin's theorern provides a strong result about the existence of games wherein there exist 

Nash equilibria which are not algorithmically realizable. 

Another example from the second group of results mentioned in the text can be found 

in the properties of Post systems. A Post system (Post (1943)) is a formal logical system 

11 A recursively enumerable set can be defined as a set whose partial characteristic function is computable 
or, equivalently, as the range of some computable function (see e.g. Cutland (1980) or Cohen (1987)). 



defined by a set of transformation rules, which operate on symbolic strings, and by a set of 

initial strings (for more details see Cutland (1980)). The problem of establishing whether a 

string can be generated by the initial set of a fixed Post system is called a 'word problem'. 

Through computability theory it is possible to show that there is an infinite number of Post 

systems whose word problems are unsolvable even by specific algorithms (see e.g. 

Thrakhtenbrot (1 963)). This result has a wide significance in the economic domain. Consider 

for example production theory: it is possible to show that there is no guarantee that optimal 

productive p~ocesses can be algorithmically identified, even under exogenous tech~lical 

progress. Therefore it is impossible to assume that economic agents make always use of 

optimal processes without giving a context-specific proof. 

It is worth emphasising that these impossibility results entail quite disruptive 

implications not only for the 'constructivist' concept of rationality, but also for the so-called 

as-ifhypothesis (see Friedman (1953) and the discussion in Winter (1986)). In order to 

assume that agents behave as if they were rational maximizers, one needs to represent a 

thoroughly autonomous selection process which converges to an optimal strategy equilibrium, 

i.e. one must be able to formalize something like an automatic procedure which ends up with 

the elimination of every non-optimizing agent (or behaviour). 

However, the first group of results mentioned above, implies that, for some classes of 

problems, we are not allowed to assume the existence of a general and algorithmically 

implementable selection mechanism leading in finite time to the exclusive survival of optimal 

behaviours. In addition, the second group of results provides examples where one can 

definitely rule out the existence of every such a selection mechanism. 

Moreover, the minimal prerequisite one needs for a selection-based as-ifhypothesis 

on behavioural rationality is the existence of some agents who use the optimal strategy in the 

first place (c.f. Winter (1971)). But, if the set of optimal strategies is undecidable, how can 

we be sure of having endowed some agent with one optimal strategy? An approximate easy 

answer could be that if we consider a sufficiently large population of differentiated agents, we 

can safely suppose that some of them play optimal strategies and will be eventually selected. 

But how big should our population be, given that we cannot have any idea about the size of 

the set of possible strategies? 

Finally there is also a problem of complexity which arises in connection with rational 

behaviour (both under a "constructivist" view and under the as-ifhypothesis). Broadly 

speaking, we can roughly define the complexity of a problem as the speed of the best 

computation processes we could theoretically use to solve it (c.f., e.g., Cutland (1980)). But 

then the speed of environmental change becomes a crucial issue: as Winter (1986) and Arthur 

(1992) pointed out, the as-ifview is primarily connected with a situation without change. In 

fact, even when the only kind of change we allow is an exogenous one, a necessary, albeit by 

no means sufficient condition for the hypothesis to hold is that the speed of convergence be 



higher than the pace of change. However, it is easy to find many examples of games whose 

optimal strategies, while existing and being computable, require too much time to be 

effectively pursued even by a modern computer 12. 

Even more so, all these results on uncomputability apply to non-stationary 

environments, wherein the 'fundamentals' of the economy are allowed to change and, in 

particular, various types of innovation always appear. Hence, in all such circumstances, which 

plausibly are the general case with respect to problem-solving and social interactions, agents 

cannot be assumed to 'naturally' possess the appropriate rational algorithm for the true 

representation of their environment (whatever that means) and for the computation of the 

correct action procedures (note that, of course, these impossibility theorems establish only the 

upper bound of computability for empirical agents). 

A fundamental consequence of these negative results is that one is then required to 

explicitly analyze the processes of formation of representations and behavioural rules. 

This is what we shall do in the next section, by considering the emergence of rules of 

cognition/action in some familiar economic examples of decision and interaction. 

3 - Genetic Proyramminy as a model of ~rocedural learning. 

Genetic Programming (cf. Koza (1992) and (1993)) is a computational model which 

simualtes learning and adaptation through a search in the space of representations/procedures. 

Similarly to John Holland's Genetic Algorithms (c.f. Holland (1975)), Genetic Programming 

(GP henceforth) pursues learning and adaptation by processing in an evolutionary fashion a 

population of structures which are represented by fixed length binary strings in the case of 

Genetic Algorithms and by symbolic functions in the case of GP. 

In GP the learning system (an artificial learning agent) is endowed with a set of basic 

"primitive" operations (such as the four arithmetic operations, Boolean operators, if-then 

operators) and combine them in order to build complex procedures (functions) which map 

environmental variables into actions. Each artificial agent is represented by a set of such 

procedures and learns to adapt to the environment through an evolutionary process which 

involves both fitness-driven selection among existing procedures and generation of new ones 

through mutation and genetic recombination (cross-over) of the old ones. 

General features of this model are the following: 

1 - Representations and rule behaviour: a common feature to many computational models of 

learning, including the one presented here, is that of modeling the learning process not just as 

acquisition of information and probability updating, but as modification of representations 

and models of the world. But contrary to other similar models (such as genetic algorithms and 

- 

12 Think for instance to the game of Chess or to the Rubik cube. 



classifiers systems), genetic programming (GP henceforth) models learning and adaptation as 

an explicit search in the space of procedures, i.e. functions in their symbolic representation, 

which link perceived environmental states to actions 13. 

2 - Adaptive selection: each artificial agent stores in its memory a set of alternative 

procedures of representationlaction and selects at each moment of time a preferred one 

according to its fitness, i.e. the payoff cumulated by each procedure in the past. 

3 - Generation of new rules: learning does not involve only adaptive selection of the most 

effective decision rules among the existing ones, but also generation of new ones. Learning 

and adaptation require a calibration of the complicated trade-off between exploitation and 

refinement of the available knowledge and exploration of new possibilities. GP uses genetic 

recombination to create new sequences of functions: sub-procedures of the existing most 

successful ones are re-combined with the cross-over operator in order to generate new and 

possibly more effective combinations. 

In GP symbolic functions are represented by trees, whose nodes contain either 

operators or variables. Operators have connections (as many as the number of operands they 

need) to other operators and/or variables, if they are variables they do ns t  have, of course, any 

further connection and constitute therefore the leaves of the tree. 

Thus, every node can be chosen in a set of basic function (e.g. the arithmetic, 

Boolean, relation, if-then operators) plus some variables and constants: 

BF = {+,-,*,+ ,......., OR,AND,NOT, >, <, = ,.... vl,v2,v3 ,... cl,c2,c3 ,......I 
But basic functions can be freely defined depending on the kind of problem which is being 

faced (see Koza (1993) for a wide range of examples of applications in different problem 

domains). 

The execution cycle of a GP system proceeds along the following steps: 

0) an initial set of functionltrees is randomly generated. Each tree is created by randomly 

selecting a basic function; if the latter needs parameters, other basic functions are 

randomly selected for each connection. The operation continues until variables (which can 

be considered as zero-parameter functions) close every branch of the tree. 

1) once a population of trees is so created, the relative strength of each function is determined 

by calcuting its own fitness in the given environment. 

2) a new generation of functions/trees is generated. Two mechanisms serve this purpose: 

selection and genetic operators. Selection consists in preserving the fittest rules and 

discarding the less fit ones. Genetic operators instead generate new rules by modifying and 

recombining the fittest among the existing ones. The generation of new (possibly better) 

functionsltrees in GP is similar to the genetic operators proposed by Holland for the 

13 A more general formal tool in the same spirit and which we intend to apply in the near future is presented 
in Fontana ( 1  992) and Fontana and Buss (1994), applied in the domain of biology to self-reproducing systems. 



Genetic Algorithms and is mainly based on the cross-over operators 14. Cross-over 

operates by selecting randomly two nodes in the parents' trees and swapping the sub-trees 

which have such nodes as roots. 

Consider for example the two parents functions: 

P I  := X + (Y*Z) - Z and P2 := Z I (Y*X) - A 

which are depicted below in their tree representation. Suppose that node 4 in the first 

function and node 7 in the second one are randomly selected: cross-over will generate two 

new 'off-spring' trees which correspond to the functions: 

OS1 : = X + ( A - Z )  and O S 2 : = Z / ( Y * X ) - ( Y * Z )  

Such off-spring substitute the weakest existing rules, so that the number of rules which are 

stored at every moment in time is kept constant. 

3) go back to I). 

14 For a discussion of the power of cross-over as a device for boosting adaptation, see Holland (1975) and 
Goldberg (1989). 



Parent 1 Parent 2 



4 - Learnin? pricin~ procedures in olieo~olistic markets. 

Let us consider one of the most typical problems of economic interaction, namely, an 

oligopolistic market. A small group of firms face a downward-sloped and unknown demand 

curve, and have to set simultaneously their prices at discrete time intervals. To do so they can 

observe both the past values taken by the relevant market variables (quantity and prices) and 

the current value of such firm-specific variables as costs. However, they do not know either 

the parameters of the demand function or the prices competitors are about to set. Ovce all 

prices have been simultaneously set, the corresponding aggregate demand can be determined 

and individual market shares are updated according to relative prices. 

This interactive set-up and the substantive uncertainty about both the exogenous 

environment (i.e. the demand function) and the competitors' behaviour require agents to 

perform a joint search in the space of representations and in the space of decision functions: 

GP seems therefore a natural way of modeling it. 

Let us examine more precisely the structure of the market we analyse in our 

simulations. There ex~st  an exogtrlous linear demand function: 

p = a - b q  a,b > 0 (1) 

and n firms which compete in this market by choosing a price pi. Firms are supposed to start- 

up all with the same market share si: 

~i (0) = lln i = 1, ...., n 

Price decisions are taken independently (no communication is possible between firms) and 

simultaneously at regular time intervals (t = 1,2, .......). Each firms is supposed to incur into a 

constant unitary cost ci for each unit of production. Once all decisions have been taken, the 

aggregate market price can be computed as the average of individual prices: 

p(t> = Xsi(t)pi(t) ( 2 )  

and the corresponding demanded quantity is thus determined. Such a quantity is devided up 

into individual shares which evolve according to a sort of replicator dynamics equation in 

discrete time: 

Asi(t> = r] [p(t)/ pi(t) - l)Isi(t-l) (3) 
where r] is the reciprocal of the degree of inertia of the market15. 

- - 

15 Note that this replication-type dynamics is consistent with the assumptions of homogenous-good c,u ,ti: 

whenever one allows for imperfect information or search cl i  111 inertial behaviour by consumers. Thc iatter 
are not explicitly modelled here but they implicitly underlay the system-level mechanisms of formation of 
industry demand and their distribution across firms as defined by eqs. (1) to (3). The possible metaphor of 
these mechanisms is the following sequence: i) each firm sets its price; ii) a "public statistical office" collects 
all of them and announces the "price index" of the period (as from eq. (2) ); iii) on the grounds of that index 
consumers decide the quantity they want to buy; iv) as a function of the difference between the announced 
average price and the price charged by their previous-period suppliers, consumers decide whether to stick to 
them or go to a lower-price one. Clearly, the stochastic reformulation of eq. form would be more adequate to 
describe the mechanism, but, for our purposes, the main property that we want to capture - namely, inertial 
adjustment of the market to price differential - is retained also by the simpler deterministic dynamics. Were 



Finally, individual profits are given by: 

n i ( t )  = [pi(t) - ci(t)I si(t) q(t) - Fi (4) 

where Fi are fixed costs, independent of the scale of production, but small enough to aloud 
the firms to break-even for an E excess of prices over variable costs, were they to pursue 
Bertrand-type competition. 

We model these firms as artificial agents, each represented by an autonomous GP 

system, which, at each time step t, must select one pricing rule among those which it 

currently stores. Each artificial agent can observe at each rnoment of time t the following past 

(i:e. the values taken at time t-1) variables: 

- average industry price p(t- 1), 

- aggregate demanded quantity q(t- 1), 

- individual prices of each agent pi(t-1), for i = 1,2, ... n 

- own unitary cost ci(t-1) 

- own market share si(t-1) 

mnrcover it can observe i t s  current unitary cost ci(t). 

Each agent is then endowed with a few basic "elementary" operations, i.e. the four 

arithmetic operations, if-then operators, Boolean operators and equalitylinequality operators, 

in addition a few integers are given as constant to each GP system. 

Each agent's decision rules are randomly generated at the outset, and a preferred one is 

chosen for action in a random way, with probabilities proportional the payoffs cumulated by 

each rule in the previous iterations. Periodically, new rules are generated through cross-over 

and replace the weaker ones. 

agents to behave as in conventional Bertrand models, eq. (3) would still converge, in the limit, to canonic 
Bertrand equilibria. 
It must be also pointed out that our model is not concerned with the population dynamics of the industry but 
primarily with the evolution of pricing rules. Therefore we artificially set a minimum market share (1 %) under 



In order to test the learning capabilities of the model we started with the simplest 

model with a single agent in a monopolistic mark.--:. ,"!is shown in Figure 1, in this case with 

constant costs and stable demand, price converges rapidly to the optimal one. Figure 2 

presents the behaviour l 6  of our artificial monopolist in more complex situations in which 

both costs and the parameters of the demand curve randomly shift. It can be noticed that, in 

spite of the complexity of the task, our artificial monopolist "learns" a pricing rule which 

behaves approximately like the optimal one l7. 

Figum 1 - Monopoly in a Stationary Environment 

which firms cannot shrink. According to the past performance record, firms may die, in which case they are 
replaced by a new agent which stocastically recombines some of the behavioural rules of the incumbents. 
16 For an easier interpretation, we plot in these figures only the last 100 iterations of the best emerging rule. 
17 In this case and in the following ones the pricing rules which are actually learnt by our artificial agents are 
usually long and difficult to semantically interpret, but they behave "as i f '  nearly optimal pricing rules. 
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Figure 2 - Monopoly: Random Costs and Demand 
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Let us now consider an oligopolistic market. We explore two different environmental 

and learning scenarios. In the first one we suppose that the demand function is fixed and 

equal to: 

p = 10000 - 10q 

Moreover, unitary costs, identical for every agent, are a random variable uniformly 

distributed on a finite support. Finally, on the representationlaction side, our artificial agents 

are allowed to experiment each set of rules, on average, for 100 iterations. 



In figure 3 we report the results of a simulation which concerns an oligopolistic 

market with 9 firms. The average price is plotted against costs, while in figure 4 we report 

some price series for individual firms. It appears that many firms, as for example firm 4 in the 

particular simulation that we show, follow a pricing strategy which strictly follows cost 

variations. 

Fig.3 - Oligopoly: Inertial Learning Case 
Av.Price and Average Unit Costs 
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Although emerging rules are usually quite complex l8,  they behave "as if" they were simple 

mark-up rules. Another typical behaviour tlxar we observe is a follow-the-leader type of 

Figure 4a - Oligopoly: Inertial Learning 
Costs and Prices of Agent '4' 
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Figure 4b - Prices of Agent '0' and Agent '2' 

pricing rule - in two out of nine firms (e.g. firm 0). Following the agent with lowest mark-up 

level is an extremely simple pricing rule (as other agents' prices in t-1 are directly observable) 
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which allows anyway a positive average rate of profit. Moreover, with a higher number of 

t- 

18 The complexity of the rules is at least partly due to the fact that our agents have to produce constants 
(such as mark-up coefficients) that they do not possess in their set of primitive operations and have therefore to 
be obtained by means of such operations on variables as to yield constant values (e.g. (X+X)/X = 2). 
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firms, the complexity of the coordination task increases and this, in turn, favours the 

emergence of simple imitative behaviour19. 

Figure 5 - Oligopoly: Continuous Adjustment Case 
Average Costs and Prices 
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Under the second scenario, the intercept of the demand function randomly fluctuates, 

drawing from uniform distribution on the support [8000 - 120001. In addition, the individual 

unitary costs are given by the ratio between two variables: a component which is common to 

the entire industry and is represented by a random variable uniformly distributed over the 

interval [0,8000] and an individual productivity component, different for each firm, which is 

a random walk with a drift. Finally, in this scenario, we allow agents to change stochastically 

their sequencies of rule at each period, i.e. to switch among the procedures of 

representationlaction which they store. In this way, one forces behavioural variability (and, of 

course, this decreases predictability of each and every competitor). This extreme learning set 

up prevents any rule from settling down and from proving its value in the long term, while 

facing rather stable behaviours of the competitors. Despite all this, the main conclusions 

reached under the former scenario hold: mark-up type policies still turn out to be the most 

19 Econometric estimates of the form: 

lnp, =a+p, Inp,-,+ ...+yo lnc, +y,  lnc,-,+ ... 
for the industry as a whole, always yield R2 above 0.90 with significant coefficients for current costs and the 
first lag on prices only, and always insignificant lagged costs. Conversely, for the majority of the firms, no 
lagged variable significantly adds to the explanation: firms appear to follow a stationary rule of the simplest 

mark-up type, pr  = ,, (C1). However, for some firms (the "imitators") current prices seem to be set as a log- 
I 1 

linear combination between costs and lagged average prices of the industry, or the lagged price of one of the 
competitors (as in the example presented in figure 4). 



frequent and most efficient response to environmental uncertainty20. Figure 5 and 6 illustrate 

costs and price dynamics for the industry 

In other exercises, not shown here, we consider similar artificial agents whose control 

variables are quantities rather than prices. Again, as in the example presented above, a 

monopolist facing a stationary environment does discover the optimal quantity rule. However, 

under strategic interactions the agents do not appear to converge to the underlying Cournot- 

Nash equilibrium, but, rather, cooperative behaviours emerge. In particular, in the duopoly 

cnst, the decision rule has "Tit-for-tat" features (cf. Axelrod (1984)) and displays a paltern of 

the type "do at time t what your opponent did at time t-1". 

Figure 6 - Oligopoly: Continuous Adjustment Case 
Costs and Prices of Market Leader 
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It has been already mentioned that a straightforward "semantic" interpretation of the 

procedures which emerge is often impossible. However, their inspection - in the simplest 

cases - together with the examination of the behavioural patterns that they entail, allows an 

assessment of their nature. Some remarkable patterns appear. First, procedures which "look 

like" optimization rules emerge only in rather simple and stationary environmea;!.;. Second, as 

the complexity of the representation/decision problem increases, rules evolve toward simpler 

20 As may be expected, estimates of the form presented in footnote 15 yield somewhat lower R2 as 
compared to the previous case - both for the industry aggregate and for the individual firms -, but still most 
often in the range between 0.6 and 0.8. 
Also the other properties of individual pricing procedures stand, and in particular simple stationary rules 
characterize the most successful players, as assessed in terms of cumulated profits or average market shares. 
Finally, in analogy to the previous learning scenario, the adjustment dynamics in aggregate prices - where the 
first lag on prices themselves turns out to be significant - appear to be due primarily to an aggregation effect 
over most often stationary rules (for a general theoretical point on this issue, cf. Lippi (1988)). 



ones, involving the neglect of notionally useful information and very little contingent 

behaviour. More precisely, the procedure which the evolutionary dynamics appear to select 

either neglect the strategic nature of the interactive set-up - thus transforming the decision 

problem into a game "against nature" - or develop very simple imitative behaviours. In all 

these circumstances the resulting collective outcomes of the interaction significantly depart 

from the equilibria prescribed by a theory of behaviours grounded on standard rationality 

assumptions (this applies both to the Cournot-Nash and to the Bertrand set-ups, 

corresponding to quantity-based and price-bascd decision rules). 

5 - Conclusions. 

In this work we have begun to explore the properties of the procedures of 

representationldecision which emerge in an evolutionary fashion via adaptive learning and 

stochastic exploration in a space of elementary functions. Following a negative argu~-,.:-*+ ;)n 

the general impossibility of endowing agents with scrmts genezrc. and natural optimization 

algorithms, we presented some preliminary exercises on the co-evolution of cognition and 

action rules. The results highlight the evolutionary robustness of procedures which - except 

for the simplest environments - have the characteristics of norms or routines, as defined 

earlier. Of course one can easily object that real agents indeed base their understanding of the 

world on a pre-existing cognitive structure much more sophisticated than the elementary 

functions we have assumed here, and that therefore our result might not bear any implication 

for the understanding of the actual evolution of norms. On the other hand, the problem 

solving tasks that empirical agents (and, even more so, real organizations) face are several 

orders of magnitude more complex than those depicted in this work. There is no claim of 

realism in the model we have presented, however we suggest that some basic features of the 

evolution of the rules for cognition and action presented here might well hold in all those 

circumstances where a "representation gap" exists between the ability that agents pre-possess 

in interpreting their environment and the "true" structure of the latter. This is obviously a 

field of analysis where stylized modelling exercises on evolutionary learning can only 

complement more inductive inquiries from e.g. social psychology and organizational 

sciences. 
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