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ABSTRACT 

Bifurcation analysis is used to systematically detect unrealistic dynamic behaviors of 

two predator-prey models that have recently received support and attention. 

Comparisons with other existing models are also made, in order to show that the 

singularities of the two examined models are due to some biological weakness of their 

functional forms. 



BIFURCATION ANALYSIS OF TWO 
PREDATOR-PREY MODELS 

Alessandra Gragnani 

I .  INTRODUCTION 

During the last decades, a great number of predator-prey models have been 

proposed and used for descriptive and management purposes. Nowadays, it is 

clear that there is a need for serious analyses of all of these models, because 

many of them are somehow equivalent, while others are unreasonable from a 

biological point of view. In the first case, one should retain only one model 

(perhaps the most analytically tractable) for each equivalence class, while in the 

second case, one should simply disregard the model. 

In a recent paper, Yodzis (1994) has pointed out how the analysis could 

proceed. First of all, before making any sort of computation, there should be a 

critical focus on the functional form of the model, in order to detect, a priori, if 

there is some biological weakness in the underlying assumptions. This is very 

clearly done by Yodzis in two cases: the model with predator interference 

applied by Hassel and Varley (1969) to parasitoids (recently supported by Arditi 

and co-workers (Arditi and Ginzburg (1989), Arditi and Akpkaya (1990), Arditi 

and Benyman (1991), Arditi et al. (1991a), Arditi et al. (1991b)) and the model 

proposed by Leslie (1948) and employed in a very influential paper by May et al. 

(1979) and later by Flaaten (1988) to typify the strategic approach to 

multispecies management. 

The a priori analysis of a poor model is not always sufficient to identify its 

weaknesses, because bugs might be very difficult to find. Thus, a second step is 

needed, by means of which the bug can be detected, perhaps confirming some 



do.ubts that emerge from an a priori analysis. For this, a formal analysis can be 

performed, in order to check, a posteriori, if the model can behave properly by 

suitably tuning its parameters. For example, in Yodzis (1994), the dependence of 

the equilibrium of the Leslie model upon the harvesting effort is computed and 

shown to be unreasonable from a biological point of view. This confirms, a 

posteriori, that such a model is not sound. 

In order to detect singularities and weaknesses of a model, a very general 

and classical approach is followed in this paper: namely, bifurcation analysis. In 

the ecological context, this approach was pioneered by Bazykin (1985), who 

analyzed and compared a great number of models of interacting populations. In 

the next section, the bifurcation analysis of an extended version of Leslie's model 

is performed and it is shown that tangent bifurcations of cycles may arise. This 

means that such a model can have, for a given parameter setting, two alternative 

attractors (an equilibrium and a limit cycle). This is a real surprise, because 

standard predator-prey communities have only one attractor, as pointed out by 

May (1976), who, by the way, considered this model in some detail without 

noticing its singularity. This finding reinforces the criticism of Yodzis (1994) of 

Leslie's assumption (logistic predator with carrying capacity proportional to prey 

density). Then, in Sect. 3, a model with predator interference is studied and it is 

shown that, indeed, this model has a very particular mode of behavior, called 

tangle. Moreover, it is demonstrated that the tangle can not be present if a 

particular pathology of the functional response is removed. 

2. THE LESLZE-HOLLZNG MODEL 

In the predator-prey model originally formulated by Leslie (1948), the prey 

is logistic, the functional response of the predator is linear and the predator is 



logistic, with carrying capacity proportional to prey density. In Yodzis (1994), 

this model is criticized and shown to be "not easily defensible" from a biological 

point of view. Here a slightly more complex model, called the Leslie-Holling 

model (because the predator has a Holling type I1 functional response (Holling 

(1965)), is considered. Thus, the model is the following 

where x and y are indicators of abundance of prey and predator, and r, K, a, b, s 

and h are positive and constant parameters. 

Both models have one, and only one, strictly positive equilibrium for any 

parameter setting, but in the Leslie model this equilibrium is always 

asymptotically stable, so that there are no limit cycles, while in the Leslie- 

Holling model the equilibrium can be unstable and surrounded by a stable limit 

cycle, as noticed by May (1976). In this respect the Leslie-Holling model seems 

to be similar to the most famous and most often used predator-prey model 

sometimes called the Rosenzweig-McArthur model, in recognition of their 

pioneering work (Rosenzweig and McArthur (1963)). (See also: Rosenzweig 

(1971), Gilpin (1972), May (1972), Shimazu et al. (1972), Hsu et al. (1978)). 

Model (1) is very often used by practitioners because logistic growth and type II 

functional response are well established notions. It is sometimes preferred to the 

Rosenzweig-McArthur model because its limit cycle (when it exists) is not stuck 

on the x, y axis as the limit cycle of model (2). The Leslie-Holling predator 



equation (lb) coincides with that of the Leslie model, so that the criticisms raised 

by Yodzis to this equation also apply in the present case. The critique can be 

summarized by noting that the predator described by equation (lb) can live 

forever on arbitrarily small amounts of resource, indeed, a biological absurdity. 

It is now shown, by means of standard bifurcation analysis, that model (1) 

has an unexpected and unsound dynamic behavior for some parameter values. In 

other words, the pathology of the functional form of the model gives rise to 

pathological dynamics. 

Model (1) has the general form of positive dynamical systems 

and for any parameter setting there exists one, and only one, strictly positive 
+ + equilibrium (x ,y ) given by 

+ -(ahK - rK + rb) + J(ahK - rK + rb)2 + 4r2Kb 
X = ( 3 4  

2r 

y+ = hx + 
(3b) 

+ + The Jacobian matrix J evaluated at (x ,y ), i.e., 

can then be easily computed. By annihilating the trace of J ,  the explicit 

relationship among the parameters that characterize a Hopf bifurcation can be 

found, provided the determinant of J is positive (Guckenheimer and Holmes 

(1983)). Such a condition is 



where x+ is given by (3a). Equations (3a) and (4) allow the determination of 

Hopf bifurcation curves in any two-dimensional parameter space. Fig. 4.2 at 

page 54 of May (1976) shows one example of such a curve. Another example is 

shown in Fig. la,  where the Hopf bifurcation curve is drawn in the parameter 

space (a,K) for the parameter values specified in the caption. The figure shows 

that the Hopf bifurcation curve is split into two parts. The first, H-, is a 

supercritical Hopf bifurcation: crossing this curve from region 1 to region 2 the 

equilibrium ( x ' , ~ ' )  becomes unstable and surrounded by a stable limit cycle that 

is initially very small. The second, H+, is a subcritical Hopf bifurcation: crossing 
+ + this curve from region 2 to region 3, the unstable equilibrium (x  ,y ) becomes 

stable and is surrounded by an unstable limit cycle. Thus, just below the curve 

H+ in region 3, the system has two limit cycles around the stable equilibrium 
+ + (x ,y ): the internal cycle is unstable while the external cycle is stable. Fig.lb 

shows this situation: trajectories starting inside the unstable limit cycle tend 

towards equilibrium, while trajectories starting outside tend towards the stable 

limit cycle. Since in region 1 the two cycles do not exist, there must be a line, 

rooted at point Z, on which the two cycles disappear. This is the tangent 

bifurcation curve T: coming from above, the two cycles collide on this curve and 

disappear. 

The point Z, where the three bifurcation curves H-, H+ and T are rooted, 

can be determined by finding the point on the Hopf bifurcation curve where the 

so-called Liapunov number is annihilated (Guckenheimer and Holmes (1983)). 

In the present case, this has been done by means of a standard package for 

algebraic manipulation. Then, starting from point Z, the tangent bifurcation 

curve has been obtained by means of LOCBIF, a specialized program 

implementing an adaptive continuation procedure for bifurcation analysis 

(Khibnik et al. (1993)). 



The existence of a zero Liapunov number, i.e., the possibility of having two 

distinct stable modes of behavior (see Fig.lb), is not consistent with the 

premises. In fact, the model pretends to describe the simplest case of interactions 

between a prey and a predator and in such a framework alternative attractors can 

hardly be imagined (May (1976)). On the contrary, it is known that a predator- 

prey model can have multiple attractors if the predator is harvested by a Holling 

type I1 superpredator (Muratori and Rinaldi (1989)). But in no way, not even in 

an approximate or weak sense, eq. (lb) can interpret the dynamics of such an 

exploited population. 

3. THE HASSEL - VARLEY MODEL 

The best known formulation of the influence of predator interference on 

functional response is that of Hassel and Varley (1969). The corresponding 

predator-prey model, here called Hassel-Varley model, is (in the simplest 

formulation) the following: 

From a formal point of view, this model looks very similar to the much more 

known and applied Rosenzweig-McArthur model (2). Indeed, the only difference 

is that the parameter b in (2) is replaced by Py in (5). Such a term (Py or b) is 

proportional to the so-called searching time of the predator, namely, the time 

spent by each predator to find one prey. Thus, in the Rosenzweig-McArthur 

model the searching time is assumed to be independent of predator density, while 

in the Hassel-Varley formulation the searching time is proportional to predator 



density ( i . . ,  predators strongly interfere). Different (but equivalent) 

interpretations of the parameter p have been suggested by Arditi and co-workers 

in a series of papers dealing with ratio-dependent predators (Arditi and Ginzburg 

(1989), Arditi and Akpkaya (1990), Arditi and Berryman (1991), Arditi et al. 

(1991 a), Arditi et al. (1991b)). 

Although the Hassel-Varley model is quite convenient for data analysis and 

for sensitivity analysis of the equilibrium (see above mentioned papers by Arditi 

and co-workers) it contains (as remarked by Yodzis (1994)) a biologically 

unreasonable assumption, namely that the searching time of the predator tends to 

zero when the predator density tends to zero. Obviously, this has no serious 

consequences if the model is used to interpret field and laboratory data collected 

during periods of relatively high abundance of predator. On the contrary, this 

assumption might have pathological consequences on the dynamic behavior of 

the model as shown below through bifurcation analysis. 

It is easy to check (for example, by drawing isoclines) that model (5) has 

always two trivial equilibria ((x,y)=(O,O); (x,y)=(K,O)) and at most one strictly 
+ + positive equilibrium (x , y ) given by 

+ K x =- 
Per 

[e(Pr - a) + d] 

+ ea-d y =- x+ 
Pd 

(6b) 

For (ea-d) tending to zero, y+ tends to zero and the strictly positive equilibrium 

+ + (x ,y ) collides with the trivial equilibrium (K,O), so that 

+ + is a bifurcation (transcritical bifurcation). The equilibrium (x ,y ) can be either 

stable or unstable and the two situations are separated by a Hopf bifurcation, 

which can be detected by annihilating the trace of the Jacobian, thus obtaining 



which is easy to check. The associated Liapunov number, computed with 

software for algebraic manipulation, turns out to be very complex. It is, 

therefore, practically impossible to formally prove that the Liapunov number is 

always negative, i.e., that the Hopf bifurcation is always supercritical. 

Nevertheless, a huge number of randomly generated numerical tests on the sign 

of the Liapunov number, and a greater number of simulations of model (5) allow 

a strong conjecture that the Hopf bifurcation is always supercritical. This means 

that this model is, as far as the Hopf bifurcation is concerned, similar to the 

Rosenzweig-McArthur model, for which the Hopf bifurcation has been proved to 

be supercritical by Sarkar et al. (1991). In conclusion, the model cannot have the 

two alternative attractors shown in Fig. lb. This situation is summarized in Fig. 

2a, where the Hopf bifurcation curve (see (7)) is drawn in the parameter space 

(e,a) for the parameter values reported in the caption. In region 1 all trajectories 
+ + tend towards the strictly positive equilibrium (x ,y ), while in region 2 such 

equilibrium is unstable and trajectories tend towards a limit cycle. 

By "continuing" the limit cycle in region 2 of parameter space, it is easy to 

verify that the period of the limit cycle is very sensitive to the parameters and 

becomes very large when approaching a heteroclinic bifurcation curve. In 

addition, the limit cycle becomes quite peculiar when this curve is approached: it 

passes closer and closer to the two trivial equilibria (0,O) and (K,O), and this is 

why the period of the limit cycle increases so much. The reason for this is that 
+ + the strictly positive equilibrium (x ,y ) tends towards the origin when the 

parameters (e,a) tend towards the heteroclinic bifurcation curve, thus forcing the 
+ + limit cycle (which surrounds the equilibrium (x ,y )) to pass very close to the 

origin. The heteroclinic bifurcation curve is, therefore, the combination of 



+ + parameter values at which the equilibrium (x ,y ) collides with the origin and is 

identified (see (6)) by 

This bifurcation is very particular: not only does it correspond to the collision of 
+ + two equilibria ((0,O) and (x ,y )) but can also be viewed as the appearance of a 

kind of heteroclinic connection (i.e., a trajectoriy connecting two saddles). 

Indeed, for small positive values of e(pr - a)  + d ,  the unstable manifold of the 

+ + saddle (K,O) tends to the limit cycle or to (x ,y ), and therefore comes very 

close to the saddle (0,0), while for e(pr - a) + d  = 0 it tends towards the origin. 

Nevertheless, for e(pr - a) + d  5 0 the origin is no longer a saddle. This can be 

proved by studying the sign of dy / dx=y / x in the vicinity of the origin. From 

eq. ( 5 ) ,  neglecting higher order terms, 

j (ea - d)x - pdy _ - _  - 

is obtained, and the function on the right-hand side is positive close to the x and y 

axis because condition e(pr - a)  + d 5 0 implies ea - d > 0 and pr  - a < 0. This 

means that the origin is not a saddle, because otherwise y / x would be negative 

everywhere. The state portraits in region 3 (i.e., for e(pr - a)  + d < 0)  are like 

those in Fig. 2b, which corresponds to point P in Fig.2a. All trajectories inside 

the region delimited by the stable and unstable manifolds of the saddle (K,O) tend 

towards the origin for t+ - and for t-+ - -, while all other trajectories tend 

towards the origin for t+ -. This means that the origin is a global attractor 

(although it is an unstable equilibrium in the sense of Liapunov). Such an 

attractor is called tangle. Biologically, the tangle of Fig. 2b makes absolutely no 

sense; it says that both predator and prey become extinct no matter what initial 

conditions are, while any reasonable model should predict that the prey tends 



towards its carrying capacity if the predator becomes extinct. Surprisingly, Arditi 

and Berryman (1991) interpret this unusual attractor by saying that it explains 

"repeated quasi-extinctions experienced by populations" (!?). On the contrary, 

they should have concluded that the model is meaningless, at least when it gives 

rise to the tangle. 

It is interesting to note that the absurd behavior already pointed out 

disappears as soon as the model is corrected by introducing a base component E 

to the searching time of the predator. Thus model (5) becomes 

where E is small if interference is relevant. This model, proposed for different 

reasons by Beddington (1975) and De Angelis et al. (1975), cannot have a tangle, 

because close to the origin the system is described by i = rx, y = -dy, which are 

the equations of a saddle. This means that model (9) has only transcritical and 

Hopf bifurcations, just like the Rosenzweig-McArthur model (2). In other words, 

model (5) is not "robust", since even a small perturbation (the introduction of a 

small E) destroys one of its possible modes of behavior, namely the tangle. 

4. CONCLUDING REMARKS 

This paper demonstrates how bifurcation analysis can be systematically used 

to discover weaknesses of a predator-prey model. The method has been applied 

to two models (Leslie-Holling (eq. (1)) and Hassel-Varley (eq. (5))), which have 

received, even recently, support and attention. The determination of the 

bifurcations of the models has allowed the discovery of hidden niches in 



parameter space (see region 3 in Fig. la and 2a), where the dynamic behavior of 

the system is biologically absurd (multiple attractors in the first case (Fig. lb), 

and extinction of both prey and predator in the second (Fig. 2b)). This agrees 

completely with the criticisms recently raised by Yodzis (1994) to these and 

analogous models. 

The comparisons of the bifurcations of the Leslie-Holling model (1) with 

those of the Rosenzweig-McArthur model (2), have led to the conclusion that the 

second model should definitely be preferred to the first one. This suggestion 

should be followed, in particular, when the model is used to derive general 

theories or to build up larger models (e.g., food chains), or to interpret the role of 

seasons in predator-prey communities (see, for example, Hanski et al. (1993)). 

Similar comparisons have also been performed for the Hassel-Varley model (5), 

used by Arditi and co-workers, and for model (9), used by Beddington (1975) 

and De Angelis et al. (1975) many years ago. Model (9) has the same bifurcation 

structure as the Rosenzweig-McArthur model (2) and can certainly fit field data 

and support meaningful theories, at least as well as model (5). Moreover, it 

cannot produce unrealistic modes of behavior, such as the tangle depicted in Fig 

2b, which, on the contrary, characterizes model (5). Therefore, model (9) should 

be preferred to model (5) when dealing with predators with relevant interference. 
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Fig. 1 The Leslie-Holling model: (a) Hopf and tangent bifurcation curves in the 

parameter space (a, K) ; (b) trajectories of the system corresponding to 

point P in region 3 (the values of the parameters are -5.4, s=2.8, b=2, 

h=O.Ol, a=1000, K=120). 



Fig. 2 The Hassel-Varley model: (a) transcritical, Hopf and heteroclinic bifurcation 

curves in the parameter space (e,a); (b) trajectories of the system (tangle) 

corresponding to point P in region 3 (the values of the parameters are t=4, 

K=l, e=0.3, a=15, k 2 ,  d=l). 


