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Foreword

In this paper the authors use the method of characteristics to extend the
Jacobi conjugate points theory to the Bolza problem arising in nonlinear
optimal control. This yields necessary and sufficient optimality conditions
for weak and strong local minima stated in terms of the existence of a
solution to a corresponding matrix Riccati differential equation. The same
approach allows to investigate as well smoothness of the value function.
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1 Introduction

Consider the Hamilton-Jacobi equation

v ( v
t,z,———

oy + H ’_3.’1:) = 0, V(T,')=(P(‘) (1)

The classical method of characteristics applied to this equation exhibits
shocks, which justify that its solutions should be nonsmooth. Then different
criteria are used to get continuous (or even discontinuous) solutions, by
eliminating some “pieces” of characteristics (cf. the entropy and Rankine-
Hugoniot conditions [15] or the properties of one sided limits [7]). In this
paper we shall consider the Hamiltonian H associated to the Bolza problem
in optimal control theory. Then, in the same way than [6], the solution to
(1) is the value function of the Bolza problem, which may be nonsmooth. To
study characteristics of (1) in the context of optimal control is particularly
rewarding because the characteristic system

) o(T) = zr
- (2)
- = a_z(t’“”’) AT) = -Ve(zT)

is Pontryagin’s first order necessary condition for optimality, which performs
in the optimal control theory the same role as the Euler-Lagrange equation
in the calculus of variations.

As long as there is no shock the value function remains smooth and
characteristics are the optimal state-costate pairs. What happens when a
shock does occur? We provide an answer based on the use of conjugate point
along a solution (z, p) to (2).

To be more precise consider the Bolza problem

T
minimize / L(t,2(t), u(t)) d + (2(T)) 3)
to
over trajectory-control pairs (z,u) of the control system

o' = f(t,z,u(t)), z(to) = zo,  u(t)€U (4)

It is well known that any optimal trajectory-control pair (Z,%) of the above
problem satisfies the maximum principle : There exists an absolutely contin-
uous function p : [to,T] — R™ such that (Z,p), called optimal state-costate




pair, solves the Hamiltonian system

0H

g = %(t,x,p) z(to) = zo
- (5)
- = St p(T) = —Ve(z(T))
where H : [0,T] x R* x R® — R is given by
H(t,z,p) = sgg((p,f(t,z,u))—L(t,x,u)) (6)

In general, the system (5) does not have an unique solution because the ini-
tial condition for p(-) at tp is not known. For this very reason, the necessary
condition for optimality given by the maximum principle is not sufficient.
In the other words, (Z, p) solves the characteristic system (2) for zr = Z(T).
But since only the initial condition for Z at ty is fixed and since a shock
may happen, i.e. two different characteristics (z;,p;), ¢ = 1,2 may verify
z;(to) = zq, so that the necessary condition (5) is not sufficient.

It can, however, be shown that p(-) may be chosen in such way that
—p(to) is equal to the gradient with respect to z of the cost function V :
[0,T] x R* — R associated to the above problem provided ¥ (ty,zo) does
exist. We may consider then the Cauchy problem

, _ OH

z = ap (t’ z,p) .’E(to) = Zo
OH 1%
—y = — - ——
p 9z (tv z,p) p(tO) Oz (th -TO)

When V H is locally Lipschitz, it has at most one solution and, in this way,
the necessary condition (5) becomes a sufficient one. When V (to,-) is not
differentiable at zo, the gradient of V has to be replaced by any element from
the Painlevé-Kuratowski upper limit Limsup,_, ., ;¢ {%%(t, z)} to express
sufficient conditions for optimality (see section 6). An easy consequence of
the above is the following interesting behavior of solutions to (1): V(to,-) is
differentiable at z¢ if and only if the optimal trajectory of the Bolza problem
(3), (4) is unique.

Optimal solutions help to distinguish between “the good and the bad”
characteristics. Indeed, when H is strictly convex in the last variable and V
is semiconcave, which happens under an appropriate smoothness of data (see
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for instance [3,4]), then for all t > to, V is differentiable at (¢,Z(t)), i.e. the
optimal trajectory enters immediately into the domain of differentiability of
V (see section 6). Consequently, for allt > to, p(t) = —§%(t,%(t)). The first
results in this direction in the context of Mayer’s problem were obtained in
[3].

In this paper we go beyond the necessary condition (5), by further in-
vestigating characteristics of (2). Namely, we associate to a given solution
(z,p) of (2) the matrix Riccati differential equation

0’H

P8 )P + P o), 000) +
apoz " T\ P dzap P

+P a2plf(t,z(t),p(t))P + %;g(t,x(t),p(t)) =0, P(T)=-¢"(=(T))

0
(7)
whose solution P(-) may escape to infinity in a finite time ¢ < T'. This equa-
tion was used in [2] to investigate the global regularity of the value function
and sufficiency of (5) to provide global minimum to the Bolza problem. We
define the conjugate point (to T') along (z,p) by

t. = tel[ﬁi:ﬂ {P is defined on [t,T]}
If t. > tq, then ||P(t)|| — 400 when t — t.+.

The conjugate point performs an identical role than the Jacobi conjugate
point in the calculus of variations [11,12]. Namely, we introduce the notion
of weak (respectively strong) local minimum of (3), (4) by saying that a
trajectory-control pair (Z,%) is a weak (resp. strong) local minimum if and
only if there exists € > 0 such that for every trajectory-control pair (z,u) of
the control system (4) satisfying ||z — Z'|| 1, ) < € (resp. ||z — Z||, <€)
we have

T T
PET) + [ Lo 5@ uo)ds < ola(T)+ [ Lsa(e) u(s)ds

and show that results similar to the Jacobi conjugate points theory hold true
also in this context. We underline that our notion of weak local minimum is
different from those used in [13,14,18,19]. We prefer it for several reasons.
On one hand the maximum principle in this case is exactly (5), while in the
above papers another (localized) necessary conditions, not related to charac-
teristics, are given and it is often required that 7 is an interior control. Also




in [16,20] two different Hamiltonians are considered, one to state sufficient
conditions and a different one to formulate necessary ones, while here we
use only the Hamiltonian defined by (6).

In contrast with the classical calculus of variations (and [18,19]), our
results rely on the dynamic programming principle rather than the compu-
tation of second order variations (with respect to controls) and consideration
of a Jacobi equation, as it was done in [13,14,18,19], where the interested
reader can get as well a further bibliography on this subject. Relations be-
tween properties of solutions to the Jacobi and Riccati equations were often
observed both in the calculus of variations and optimal control (see for in-
stance [12,13,17]). However the global existence of a solution to the Riccati
equation here is rather related to the preservation of the regularity of the
value function along optimal solutions, than with the Jacobi equation.

The outline of the paper is as follows. Section 2 is devoted to the re-
lationship between the matrix Riccati differential equations and shocks of
characteristics. Section 3 provides necessary and sufficient conditions for
local minima of the Bolza problem. Smoothness of the value function is
investigated in section 4.

2 Matrix Riccati Equations and Shocks

We relate here the absence of shocks of the Hamilton-Jacobi-Bellman equa-
tion with the existence of solutions to matrix Riccati differential equations.
For this aim we shall use the following tool:

Definition 2.1 For a locally Lipschitz around zo € R"™ function ¢ : R" —
R define the compact set

0"y(20) = Limsup,_,., {Vi(z)}
where Limsup denotes the upper set-valued limit (see for instance [1]).

Theorem 2.2 ([5]) Consider a locally Lipschitz around zo € R™ function
Y :R* = R. If 0*y(zo) is a singleton, then v is differentiable at z.
Let H : [0,7] x R* X R" — R be such that H(t,-,-) is differentiable.

We associate to it the Hamiltonian system

z'(t)

(630, p(0)), 2(to) = 70
®)
-p'(t)

o (6,20, plta) = po
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It is called complete if for every (to,zo,po) € [0,T] x R™ x R", the
solution to (8) is unique and defined on [0, T]. The Hamiltonian system (8)
is complete if for instance

¥Yr>0,3v € L'(0,T) such that for almost every ¢ € [0,T],

(9)
oH ) o
m(t,-, .) is 4,.(t) — Lipschitz on B,(0) x B,(0)

and has a linear growth: for some k € L'(0,T)

OH
Yz, peR", n——t,z, NSkt z|| + +1
P a(z,p)( p)|| < k(&) (=l + llpll + 1)
Example — Consider
f:[0,T]xR"—R", ¢g:[0,T] x R* » L(U,R"), :[0,T] x R" » R

where U is a finite dimensional space and let R(t,z) € L(U, U) be self-adjoint
and positive for every (,z) € [0,T] X R". Define

1
H(t,2,8) = (5, S(6,2)) + sup ((9.9(t,2)0) = 5 (Rt 2 ) = 1(62)
Then it is not difficult to check that

H(t,2,p) = (p, f(t,2)) + (R(t,2) ' g(t,2)’p, 9(t,2)*p) — I(t,2)

An appropriate smoothness of f(t,-), g(t,-), I(t,*), R(t,-)~" implies differentiabi-
lity of H(t,-,-) and completeness of the associated Hamiltonian system. O

Consider 9 : R™ — R"™ and the Hamiltonian system

() = %(t,zm,p(t)), 2(T) = a1
(10)
_p(1)

o (1 a(t),p(0)), 9(T) = (ar)

Definition 2.3 The system (10) has a shock at time ty if there ezxist two
solutions (z;,p;)(-), i = 1,2 of (10) such that

z1(to) = z2(t0) & p1(to) # Pa(to)




Theorem 2.4 Assume that ¢ is locally Lipschitz on an open setQ, H(t,-,-)
is twice continuously differentiable, the Hamiltonian system (8) is complete
and (9) holds true. Define the sets

M. () = {(z(2),p(t)) | (z,p) solves (10), zr € Q}
where t € [0,T]. Then the following two statements are equivalent:
i) Vte[0,T], the set
D, = {z(t) | (z,p) solves (10), zT € 2}
is open and M,(§2) is the graph of a locally Lipschitz function.

1) V (z,p) solving (10) on [0,T] and Pr € 0*¢(zr), the matriz Riccati
equation

2 2
P+ e () pO)P + P g (ta(t), plt) +
+ P ?Tg(t,x(t),P(t))P + ?szl(t,z(t),p(t)) =0, P(T)=Pr

(11)

has a solution on [0,T).

Furthermore, if i) (or equivalently ii)) holds true, then
¢ is differentiable = M,;(Q) is the graph of a differentiable function

YpeC! = M) is the graph of a C! — function

Corollary 2.5 Under all assumptions of Theorem 2.4, suppose that Q) =
R™ and that for every (z,p) solving (10) on [0,T] end Pr € 3*y(z(T)), the
matriz Riccati equation (11) has a solution on [0,T]. Then the Hamiltonian
system (10) has no shock in [0, T].

The proof uses the variational equation of ODE to express the tangent
space to My(Q) at (z(t),p(t)).




3 Bolza Optimal Control Problem

Consider the Bolza minimization problem

T
(P)  min [ L(t,2(8), w(t)dt + p(z(T))
to
over solution-control pairs (z,u) of the control system
z'(t) = f(t,2(t),u(t)), z(to)=z0, u(t)eU (12)
where tg € [0,T], zo € R", U is a complete separable metric space,
¢:R"—R, L:[0,T]xR*"xUw~R, f:[0,T]xR*XU —~R"

are continuous functions. We denote by U the set of all measurable controls
u : [0,T] — U and by z(-;to, Zo,u) the solution to (12) starting at time
to from the initial condition z¢ and corresponding to the control u(-) € Y
(the assumptions we shall impose below imply that it is at most unique). In
general not to every u € Y corresponds such a solution. For all (%o, zo,u) €
[0,T] x R™ x U set

T
q)(tO’zO’u) = -/t L(tvz(t;th zO’u)’u(t))dt+ (P(z(T’ to, Zo, u))
0

if this expression is well defined and ®(to, zg,u) = +00 otherwise.
The value function associated to the Bolza problem (P) is given by

V(to, .’L‘o) = infueuQ(to, Zo, u)
when (29, z¢) range over [0,T] x R".

Definition 3.1 A trajectory-control pair (Z,%) of (12) is called weakly lo-
cally optimal for the problem (P) if there ezists € > 0 such that for every
trajectory-control pair (z,u) of (12)

I’ - 2 ory <€ = +00 # ¥(to, 20, %) < B(to, Zo, u)

It is called strongly locally optimal if there ezists € > 0 such that for every
trajectory-control pair (z,u) of (12)

”.’L‘ - E”oo <€ = 4+ # Q(tO’:L‘O’i) < Q(to,l‘o,’u)

It is optimal if € can be taken equal to +oo.




To express necessary conditions for optimality we use the maximum prin-
ciple in its Hamiltonian form with the Hamiltonian H defined by (6).

Proposition 3.2 ([9]) Assume that H(t,-,-) is differentiable. Then

0H

%(t,z,p) = {f(t,x,u) | (p, f(t,z,u)) - L(t,:v,u) = H(tvz,p)}

and

0 0
aa_f(t,zvp) = {a_i(t7z,u)*p - a_f(t’zvu) I (p, f(t,x,u)) - L(t,z,u) = H(t,z,p)}

Throughout the paper we will use the following (global) hypothesis con-
cerning the dynamics and the Hamiltonian, although in many theorems
below such assumptions are needed only around a reference trajectory.

H;)Vr>0, 3k, € L'(0,T) such that for almost every t € [0, T,
VueU, (f(t,-,u),L(t,-,u)) is k.(t)— Lipschitz on B,(0)
H;) The functions ¢, f(¢,-,u), L(t,-,u) are differentiable for all v € U
Hj3) For all (¢,z) € [0,T] x R™, the set
{(f(t,z,u),L(t,z,u)+ r)|u € U, r > 0} is closed and convex

H,) The Lipschitz condition (9) holds true
H;) The Hamiltonian system (8) is complete
Hg) The Hamiltonian H is continuous in all variables

H7) The partial derivative %% is continuous in all variables

From Proposition 3.2 it follows that if the assumptions Hy) and Hs) are
satisfied and H(-,0,0) is integrable, then there exists at least one trajectory-
control pair of (12) such that ¢t — L(t,z(t),u(t)) is integrable. Thus, if in
addition L and ¢ are bounded from below, then V(tg,z¢) is finite for all

(20, Zo)-

Theorem 3.3 (First Order Necessary Conditions) Assume H;)—Hj3)
and let (Z,%) be a weakly locally optimal trajectory-control pair of (P). If
H(t,-,-) is differentiable, then there ezists p : [tg,T] — R™ such that (Z,p)
solves the Hamiltonian system (5).

10




The proof uses the ideas similar to the one from [9] but adapted to the weak
minima and Proposition 3.2.

Definition 3.4 (Conjugate Point) Let (z,p) be a solution to the Hamil-
tonian system (2) and P be the solution to the matriz Riccati differential
equation (7). A point t. € [0,T] is called conjugate to T along (z,p) if and
only if P is well defined on )t.,T| and can not be extended (by continuity)
on [t.,T).

From Proposition 3.2 it follows that, for every solution (z,p) of the
Hamiltonian system (2) if there exist two controls u;, uz corresponding to
z, then

f(s,2(8),ur(8)) = f(s,2(s),uas)) & L(s,2(s),m(s)) = L(s,2(s), us(s)) ae.

Thus the cost associated to (z,p) does not depend on the choice of the
corresponding control.

Theorem 3.5 Assume Hy)—Hy), that ¢ € C? and H(t,-,-) is twice contin-
uously differentiable. Let (Z,P) be a solution to (2) and U be a corresponding
control. If there is no conjugate to T along (Z,P) in the time interval [to, T,
then (Z, %) provides a strong local minimum to the problem (P).

The proof uses the method of characteristics and the dynamic programming
principle associated to (1).

Corollary 3.6 Assume H,)—Hy), that ¢ € C? and H(t,-,-) is twice contin-
uously differentiable. Let (Z,P) be a solution to (2) and U be a corresponding
control. If ¢"(Z(T)) > 0 and %’;{-(t,f(t),i(t)) < 0 for allt € [ty,T], then
(z,7) provides a strong local minimum to the problem (P).

Since a trajectory-control pair providing a strong local minimum is a weak
local minimum as well, the sufficient condition can be applied to study weak
local minima. We next give a necessary condition for a trajectory-control
pair to be a weak local minimum, which (of course) is also necessary for
strong local minima.

Theorem 3.7 Assume H,), Hy), that H(t,z,-) is strictly conver and %};’—
is continuous. Further suppose that ¢" is locally Lipschitz and for every

11




r > 0 there exzists I, € L'(0,T) such that for all u € U and almost all
t €[0,7T],

2
or oH 2(t7 "y ) are Ir(t) - LipSChitZ

of
&(ta *y u)7 a_z(tv "y u)7 W

on the ball of center zero and radius r.

Consider a solution (z,p) to (2) and a corresponding control w. If there
exists a conjugate point t. > tg, along (z,p), then (z,7%) is not weakly locally
optimal for the problem (P).

The proof uses several technical lemmas given below and the Taylor decom-
position of the cost functional .
Consider the system

v - aax—glp(t,x(t),p(t))(/+ %Ti’(t,z(t),p(t))v, U(T) = Id
V= G HOW + (450,60, V(T) = —g(a(T))

(13)
Then P(s) = V(s)U(s)~? for all s €]t.,T] and thus U(t.) is singular. Fix
wr € R of norm one such that U(¢,)wr = 0 and let (w, ¢) be the solution
to

W = gx—gp(s,z(S),P(S))w+ %Tg(s,z(s),p(s))q, w(T) = wr
2 2
¢ = anzl(s,x(S),P(S))w + gp;{c (5,2(5), p(s))g, ¢(T) = —"(2(T))wr

(14)

Lemma 3.8 There ezists ¥ > 0 such that for all t < t. sufficiently close to
123

(g(1), w(t)) < =7 [lw(t)]

Consider ¢y < t < t. sufficiently close to ¢, and denote by (zj,ps) the
solution to the Hamiltonian system (8) with ¢, = t, zo = z(t) + hw(t) and
po = p(t) + hq(t). From Proposition 3.2 there exists up € U such that z,
solves the system

y’ = f(s, y,’llh(S)) (15)

12




and p;, solves the linear system

0 oL
¥ = Lo o) mo) - gl mlshm(s)  (16)
Denote by P, the solution to (16) satisfying 5,(T") = —V(z4(T)).

Lemma 3.9 There exists M; > 0 independent from t such that for all small
h>0

lza = 2 = hwllo, + lln = p = hallo < Mah? (Jle(@I + lg(II)
lzh = 2’ = hw'lly o 1y + I — Balloo < Mzh? (I + lla()II?)
Lemma 3.10 Define
Ini= @(=za(D)) + [ (pa(r), 2h(7)) = H(,20(7), pa(7))) dr—
—p(=(T)) = T (p(r), 2'(7)) = H(r,2(r), p(r)))dr

There ezists M3 > 0 independent from t such that for all small h > 0

T+ (00, w(0) + % (o), w(0)] < Moh® (I + ()1

4 Smoothness of the Value Function

We shall use the following generalization of the derivative.

Definition 4.1 ([1]) Consider an eztended function g : R® - R U {+00}.

The contingent hypoderivative of g at zg € Dom(g) in the direction v € R™
is defined by

, —
D g(zo)(v) = limsup 9(zo + hl;z) 9(zo)
h—0+, v'—v

The superdifferential of g at z¢ is the closed, convez, possibly empty set

0+9(z0) = {p € R"| Vv eR", Dig(zo)(v) < (p,v)}

For globally optimal solutions we have an extension of Theorem 3.3:

13




Theorem 4.2 (Costate and Gradients of the Value Function) Assume
H,) — H3) and let (T,T) be an optimal trajectory-control pair of (P). If
H(t,-,-) is differentiable, then there ezists p : [to,T] — R™ such that (Z,p)
solves the Hamiltonian system (5) and

Vie [thT]a —p(t) € a+Vz(t,E(t))

where 04V;(t,z) denotes the superdifferential of V(t,-) at z. Consequently,
if V(to,*) is differentiable at zq, then the optimal trajectory of (P) is unique.
If in addition V is locally Lipschitz around Graph(Z), then for a.e. t €
[th T]:
(H(t,2(t),p(t)), —p(2)) € 04V (1,Z(t))

The proof is similar to [10], where the Mayer problem was considered. The
above theorem and corollary 2.5 imply the following result.

Theorem 4.3 Assume Hy) — H7), that ¢ € C? and H(t,-,-) is twice con-
tinuously differentiable. Further assume that for every (to,zo) € [0,T] x R™
the problem (P) has an optimal solution. If for every solution (T,p) of
(2) there is no conjugate to T in the time interval [to,T] along (T,P), then
V € C\([to, T] x R™), V(t,-) € C? and

Graph (—g—‘;(t, )) = {(z(t),p(t))| (z,p) solves (2), zr € R" }

Corollary 4.4 If all the assumptions of Theorem 4.2 hold true and V is lo-
cally Lipschitz around Graph(Z), then for almost allt € [to, T], 0+ V(¢,%(t)) #
@ and

v (Pta Pz) € a+V(t’ E(t))’ —P: + H(t’f(t)’ _pz) =0

The proof proceeds as in [3] where a similar result was proved for the Mayer
problem.

Theorem 4.5 (Sufficient Condition for Global Optimality) Assume H;)—
H;), that H(-,0,0) is integrable, V is locally Lipschitz around (1o,Zo) €

[0,T] x R™ and for every (to, zo) near (fy,To) the problem (P) has an opti-

mal solution. Then for every

_ - - . av
Po € =05V (fo,T0) = —Limsub, s, (7, { (2)}

the solution (z,p) to (8) with (to,zo,po) replaced by (to,To,Pp) is so that z
is optimal for the problem (P).

14




To prove this result we use Theorem 4.2 and the fact that the limit of optimal
solutions is again an optimal solution.

Remark — Sufficient conditions for local Lipschitz continuity of the
value function and for the existence of optimal solutions for (P) can be found
in [2,4,8].

Since the value function satisfies the Hamilton-Jacobi equation (1) at
points of differentiability Theorems 4.5 and 2.2 yield

Corollary 4.6 (Uniqueness and Regularity) Under all the assumptions
of Theorem 4.5 suppose that (P) has a unique optimal trajectory z(-) for the
initial time to and the initial condition To. Then V (o, -) is differentiable at
To and the set 05V (1o, Tp) is a singleton. Moreover if Hg) is satisfied and
for every x near Ty the set-valued maps L(-,z,U) and f(-,z,U) are upper
semicontinuous, then V is differentiable at (10,To) and the set 0*V (%o,%0)
is a singleton.

Furtermore we deduce from Theorem 4.5 and the variational equation of
ODE the following

Corollary 4.7 (Preservation of Smoothness of Value Function) Assume
H,)
— Hs), that H(-,0,0) is integrable, V is locally Lipschitz and for every
(to,zo) € [0,T] x R™ the problem (P) has an optimal solution. Let T be
an optimal trajectory of (P) for the initial time 1o and the initial condition
Zo.

If V(%o,-) is differentiable (resp. twice differentiable) at Zq, then for all
t > to, V(1,-) is differentiable (resp. twice differentiable) at Z(t). Further-
more, if V(o,) is C1 (resp. C?) around Ty, then for all t > to also V(t,-)
is C! (resp. C?) around Z(t).

When the Hamiltonian H is strictly convex in the last variable, then the
sufficient condition of Theorem 4.5 is necessary as well.

Theorem 4.8 Assume H;) — Hg), that V is locally Lipschitz and (P) has
an optimal solution for all (tp,z9) € [0,T] x R™. Further suppose that
H(t,z,-) is strictly convez and for every z the set-valued maps L(-,z,U)
and f(-,z,U) are upper semicontinuous. Let (Z,%) be a trajectory-control
pair of the system (12).

Then (Z,%) is optimal if and only if there ezists pg € —0%V (to,z0) such
that for the solution (z,p) to the Hamiltonian system (8) we have z = %.
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Proof — The implication <= follows from Theorem 4.5. Assume next
that T is optimal. By Corollary 4.4 for almost all t > tg, 94V (¢,Z(t)) # 0
and

V (pe,pz) € 04V (4,2(1)), —pe + H(2,Z(t),—pz) =0

If H(t,Z(t),-) is strictly convex, then from the last equality it follows that
for almost all t > tg, 34 V(t,Z(t)) is a singleton. By the Hamilton-Jacobi
equality satisfied by the value function and Hg), for all (¢, z)

V (pt,p:r:) € a*V(t7 Z), i + H(t,.’l:, _pz) =0

But 9;V(t,Z(t)) C €0 3*V(t,Z(t)) (see for instance [3]). Using again that
H(t,Z(t),-) is strictly convex we get

0,V (t,Z(t)) C 8*V(¢,Z(t))

for all t > to. Consider p as in Theorem 4.2. Thus for almost all ¢t >
to, —p(t) € 3xV(t,Z(t)). To end the proof it is enough to consider a se-
quence t; — to+. Since p(t;) — p(to) we obtain that —p(tg) € 3%V (to,Z(0))-
(]

Corollary 4.9 Under all the assumptions of Theorem 4.8 suppose in ad-
dition that 9,V (t,z) = €60*V(t,z) for all (t,z) €]to, T[xR™. If T is an
optimal solution to the problem (P), then for all t €]to,T[, V is differen-
tiable at (t,Z(t)).

Remark — The above assumption about superdifferentials of V holds
true in particular whenever V is semiconcave. Definition and sufficient con-
ditions for semiconcavity of V' (which are just smoothness assumptions on
the data) can be found in [4] and for the Mayer problem in [3].

Proof — Since 9,V (t,z) = @@ d*V(t,z) for all (t,z) €]to, T[xR™,
by the proof of Theorem 4.8 for almost every t > tg, ¢o *V (t,Z(t)) is a
singleton. This and Theorem 2.2 imply that V is differentiable at (t,Z(t))
for a.e. t € [tg, T]. From Corollary 4.7 we deduce that for all ¢t > tg, V(t,-) is
differentiable at Z(t). Hence, by Theorem 4.2, for all ¢t > ty, the restriction
of 7 to the time interval [t,T] is the unique optimal trajectory of problem
(P) with (to, zo) replaced by (¢,Z(t)). Corollary 4.6 ends the proof. O
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