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Abstract 

A class of non-cooperative constrained games is analyzed for which the Ky Fan function 
is convex-concave. Nash equilibria of such games correspond to diagonal saddle points 
of the said function. This feature is exploited in designing computational algorithms for 
finding such equilibria. 

Key words: Noncooperative constrained games, Nash equilibrium, subgradient projec- 
tion, proximal point algorithm, partial regularization, saddle points, Ky Fan functions. 
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I .  Introduction 
We shall consider noncooperative games on the following strategic (normal) form: each 
individual i belonging to a finite set I seeks, without any collaboration, to minimize his 
private loss (cost) L;(x) = L;(x;, x-;) with respect to his own strategy x; E Xi c Rnt . In 
doing so the players are jointly restricted by the coupling constraint that x E C c Rn, 
n := CiEI n;. Were x-; := is short notation for actions taken by player 2's 
adversaries. Our problem is finding a Nash equilibrium s*. By definition, such outcomes 
satisfy, for all i E I ,  the optimality condition that xf minimizes L;(X;,X'_;) subject to 
x; E Xi and (xi,  xTi) E C. A normalized equilibrium is a point x* E X that minimizes 
CiEI Li(xi, x:;) subject to x E X := niEI Xi n C. Obviously, normalized equilibria are 
Nash equlibria, but the converse is not true in general, unless C > niEI X;. 

Points of this particular sort are available under reasonable conditions. Indeed, sup- 
posing throughout that niEI Xi and C are convex with nonempty intersection X, we have 
- slightly generalizing (Rosen 1965, Thm.1) - the following result. 

Proposition 1. (Existence of normalized equilibria) Suppose X is compact. Also 
suppose that all functions L;(x;, x-;) are jointly continuous on  X and quasi-convex i n  xi. 
Then there exists at least one normalized equilibrium. 

Proof. Consider the multi-valued mapping F : X + X given by 

F ( x )  := {x' I x' minimizes Li(xi, x-i) over X).  
i 

This mapping is upper semicontinuous with nonempty convex values. Whence, by 
Kakutanis fixed point theorem (see, e.g., (Aubin and Ekeland, 1984) , thm. 6.4.19), there 
exists an x* E X such that x* E F(x*). Evidently, such a point x* is a normalized 
equilibrium. 

Our concern here is with computation of such equilibria, not their existence. So hence- 
forth, we take existence for granted and find it expedient that each cost function Li(xi,  x-;) 
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be convex in x; and finite-valued near X. Equilibrium is then fully characterized by es- 
sential marginal costs, that is, by partial subdifferentials Mi(x) := a,,L;(x) and normal 
cones. Indeed, letting N(.)  be the normal cone correspondence of X; P the orthogonal 
projection onto X, and M(x)  := (Mi (~) ) ;EI ,  we have by standard optimality conditions of 
convex programming (Rockafellar 1970), the following necessary and sufficient conditions. 

Proposi t ion  2. (Equil ibria  occur  where  essential marginal  cos ts  a r e  zero)  
The following three statements are necessary and suficient for x* E X to be a normalized 
equilibrium: 

(a)  39 E M(x)  such that (g, x - x*) > 0 for all x E X ;  

(b)  0 E M(x*)  + N(x*);  

(c) x* E P[x* - sM(x*)]  for all s > 0. 

Conditions (a)-(c) beg the use of established techniques. In particular, (a) calls for 
algorithms applicable to  solve variational inequalities (Harker and Pang 1990). Likewise, 
(b) directs attention to proximal point procedures (Rockafellar 1976), and especially, to 
splitting methods (Eckstein and Bertsekas 1992). Finally, (c) indicates that subgradient 
projections might offer a good avenue (Ermoliev arid Uryasiev 1982), (Cavazzuti and 
F l im 1992). In any event, to  make good progress along any of these lines, it is desirable 
that the marginal cost correspondence x + M(x)  be monotone in some appropriate 
sense. However, even with x -+ M(x)  maximal monotone, each of the said approaches 
suffers from some difficulties. To wit, proximal point procedures, including those using 
splitting techniques - while yielding good convergence - are often difficult to implement. 
They typically require iterative solutions of similar perturbed games, each being almost 
as difficult to handle as the original one. Subgradient projection has opposite properties: 
implementation tends to come easy, but the method often produces exceedingly slow 
convergence. 

These observations lead us to specialize on the data of the game, and to approach com- 
putation along different lines. Namely, first recall that x* E X is a normalized equilibrium 
if and only if the Ky Fan function 

satisfies 
sup L(x*, y) 5 0. 
YEX 

Second, when solving this last inequality system for x*, it largely helps that L(x, y) be 
convex in x. These last facts organize the inquiry below, and they make us focus on 
a special class of games, declared convex. These are the ones having a convex-concave 
Ky Fan function L(x, y) (1.1). It turns out that such games admit Nash equilibria that 
furnish diagonal saddle points of the Ky Fan function. For motivation, some important 
examples are exposed in Section 2. Thereafter we proceed to our main object, that is, to 
compute equilibria for such games. Thus Section 3 brings out new algorithms, using partial 
regularizations, relaxed subgradient projections and averages of proposed solutions. The 
algorithms are specialized versions of general methods for saddle point seeking discussed 
in (Kallio and Ruszczyriski, 1994). 



2. Convex Games 

As said, focus will be on games having convex-concave Ky Fan functions L ( x ,  y )  (1.1). 
Such games may serve as standard models in their own right or as approximations to 
more complex data. The class at hand is more rich than might first be imagined. 

Proposition 3. Any zero-sum, two-person game with convex-concave cost A ( x l ,  x 2 )  of 
player 1, is convex. 

Proof. Since L ( x ,  y )  = A ( x l ,  y Z )  - A(yl ,  x 2 ) ,  the conclusion is immediate. 

Proposition 4. (a) Suppose the marginal cost correspondence x + M ( x )  is monotone 
and diferentiable. If each cost function L ; ( x )  is replaced by its second order approx- 
imation 1 

1 
L~(." + (L;  (x", x - xO)  + - ( x  - xO, L : ~ ( x O ) ( X  - x O ) )  , 

2 

then the resulting approximate game is convex. 

( b )  Conversely, suppose each cost function L i ( x )  is exactly linear-quadratic in  the sense 
that 

L i ( x )  := C [ a F  + X ? B ~ ~ ] X ~  

3 € Z  

for vectors aij and matrices Bij of appropriate dimensions. Then, if the matrix 

is positive semidefinite, the game is convex. 

( c )  More generally, suppose individual loss equals 

with A i ( x i )  convex and satisfying 

for all xi ,  x: and g;(x;)  E dAi (x i ) .  If, after replacing the i-th diagonal element of 
the matrix (2.1) by 2Bi i (x i ) ,  we get a positive semidefinite matrix, then the game is 
convex. 

Proof. In instance (b) define 



and 

to have 

L(x, y) = [h;(x;) + x'B~x-; - Ai(yi) - y r ~ ; x - i ]  , 
icZ 

this form covering both cases (ii) and (iii). Case (i) also yields a form fitting (2.2). 
Evidently, the latter function L(x, y) is concave in y, and upon differentiating twice with 
respect to x, partial convexity in that variable follows. 

We notice that any saddle point (x*, y*) of L furnishes a normalized equlibrium x*. This 
simple observation makes us inquire whether a normalized equilibrium x* can be dupli- 
cated to constitute a saddle point (x*, x*). As brought out in the next proposition, the 
answer is positive. 

We start from the following technical result. 

Lemma 1. Assume that the game is convex. Then for every point x E X 

dxL(x, x)  = -dyL(x, x). 

Proof. Define h = x' - x with x' in a small neigborhood of x. By convexity of L with 
respect to x, for every a E (0, l),  

a L ( x  + h,  x + a h )  + (1 - a )L(x ,  x + a h )  2 L(x + a h ,  x + a h )  = 0. 

Dividing by a and passing to the limit with cr 0 we obtain 

L(x + h ,  x)  + lirn [ a - ' ~ ( x ,  x + a h ) ]  2 0. 
010 

By concavity of L in the second argument, for every g E dyL(x, x) ,  

l im[a - 'L (Z ,X+ a10 ah)]  5 (g,h) .  

Thus 

L(x + h,  x) 2 (-g, h). 

Since x+  h can be arbitrary in a sufficiently small neighborhood of x (such that all function 
values in the analysis above are finite), -g E dxL(x, x). Consequently, 

d,L(x, x)  3 -dyL(x, x).  

In a symmetric way, we can prove the converse inclusion. 

We can now state the main result. 



Propos i t ion  5. If the game is convex, then the following statements are equivalent: 

(a) x* is a normalized equilibrium; 

(c) infxEX L(x,x*) = 0; 

(d)  (x*,x*) is a saddle point of L on X x X .  

Proof .  

( a ) w ( b ) .  The equivalence follows directly from the definition of a normalized equilibrium. 

( b ) ~ ( c ) .  From (b) it follows that there is g E d,L(x*, x*) such that ( g ,  x - x*) 5 0 for 
all x E X. By Lemma 1, -g E dxL(x*, x*), so 

L(x,  x*) 2 (-g, x - x*) 2 0 = L(x*, x*) 

for every x E X. The converse implication can be proved analogously. 

( (b )  A (c) ) ~ ( d ) .  The equivalence is obvious, because L(x*, x*) = 0. 

We can use this result to  derive the following sufficient condition for the existence of 
normalized equilibria. 

P ropos i t ion  6. Assume that the game is convex and there exists a point 5 E X such 
that the function L(2, - )  is sup-compact. Then there exists a normalized equilibrium. 

Proof.  From theorem 6.2.7 of (Aubin and Ekeland, 1984) we conclude that there exists 
a point x* E X satisfying condition (c) of Proposition 5 .  

We end this section with two examples of convex games having normalized equilibria 
which furnish saddle points of the Ky Fan function. 

E x a m p l e  1: Cournot oligopoly 

An important instance of noncooperative games is the classical oligopoly model of Col~rnot 
(1838). This model remains a workhorse within modern theories of industrial organization 
(Tirole 1988). Generalizing it to  comprise k different goods, the model goes as follows: 
Firm i E I produces the commodity bundle z; E Rk, thus incurring convex production 
cost ci(xi) and gaining market revenues (p(CjEI xi), xi). Here p(CjEI x j )  is the price 
vector at which total demand equals the aggregate supply CjEI xj. Suppose this inverse 
demand curve is affine and "slopes downwards" in the sense that p(Q)  = a - C Q  where 
a E Rk and C is a k x k positive semidefinite matrix. Then 

Li(x) = ci(xi) - ( a ,  xi) + C ( x i ,  Cxj)  
j € I  



and the resulting Cournot oligopoly is convex. 

Example 2: Multi-person matrix games 

Suppose that each player i E I has a finite number n; of pure strategies. The cost of 
the ith player, when he uses strategy k; and other players j # i play strategies k j ,  equals 

where Bij(ki, kj) denotes the (k;, kj)-th element of the ~ay-off  matrix Bij. Passing to 
mixed strategies xi E Xi, where Xi is the standard simplex in Rn i ,  we get 

If the transfers for each pair of players sum to zero, i.e., if Bij = -Bz for all i # j, the 
game is convex. 

3. Partial Regularization Met hods 

Our purpose is to find a Nash equilibrium using only iterative, single-agent programming. 
In that endeavour, we shall adapt the general idea of a saddle point seeking procedure dis- 
cussed in (Kallio and Ruszczyhski, 1994). In our application the idea can be conceptually 
interpreted as follows. 

Besides the individuals i E I actually considering a profile y = E X, let there be 
a coordinating agent currently proposing the strategy profile x E X .  This agent predicts 
that individual i E I will select his next strategy 

y' E arg min L; (-, z-;) 

thus generating a private cost reduction Li(x) - L;(y+, x-;). The agent is concerned with 
the overall cost reduction or regret 

of implementing x. To reduce such regret he would, if possible, change x in a "descent" 
direction 

d, E -d,L(x, y+). 

Similarly, individual i E I predicts that the coordinating agent will propose a profile x+ 
satisfying L(x+,  Y) 5 0 or, a fortiori, 

x+ E arg min L(., y). 

Such beliefs induce a change of y;, if possible, in a "descent" direction 



These loose ideas were intended to motivate and advertise the subsequent algorithms. 
They must be refined at several spots. First, some stability or inertia is needed in the 
predictions. For that purpose we shall introduce regularizing penalties of a quadratic 
nature. Second, the directions must be feasible. In this regard we shall rely on projections, 
also designed to enforce global, non-decomposable constraints. Third, when updating x 
and y along the proposed directions, appropriate step sizes are needed. At this juncture 
some techniques from subgradient projection methods will serve us well. Finally, equality 
of the coordinating profile and the individual strategies is maintained by introducing a 
special compromise step which generates an average proposal. 

All the matters are accounted for and incorporated in the following algorithms. 

ALGORITHM 1 (Partial regularization in individual strategies) 

Initialization: Select an arbitrary starting point xO E X and set v := 0. 

Predict individual strategies: Compute 

Test for termination: If yu+ = xu ,  then stop: xu solves the problem. 

Predict the coordinating strategy: Find xu+ E X such that 

and llxu+ - xull 5 K for some constant K. In particular, xu+ = xu is one option. 

Find directions of improvement: Select subgradients gg E dXL(xu, y u + )  and gii E 
&,L~(x,",  x::), i E I, and define a direction du := (dz, d i )  with 

where P,", P," denote orthogonal projections onto closed convex cones T,", T," con- 
taining the tangent cone T(xu)  of X. 

Calculate the step size: Let 

with 0 < Ymin I ~u I Ymax < 2- 

Make a step: Update by the rules 

Yu+f := P [xu + r U d ~ ]  , 

where P is the orthogonal projection onto X. 



Make a compromise: Let 

Increase v by 1 and continue to predict strategies. 

The second version of the method is symmetric to the first one, but this time with a 
more exact prediction of the coordinating strategy. 

ALGORITHM 2 (Partial regularization in the coordinating variable) 

The method proceeds as Algorithm 1, with the only difference in the prediction 
steps, which are replaced by the following. 

Predict individual strategies: Find y"+ E X such that 

and 1 1  Y"+ - x" 1 1  < K for some constant K. In particular, y"+ = y" is an easy and 
acceptable choice. 

Predict the coordinating strategy: Compute 

P xu+ E argmin { ~ ( x ,  x u )  + -112 - xYI12 : x E X) . 
2 (3.2) 

Observe that in the absence of common constraints, i.e. with X = Xi,  the prediction 
(3.1) of individual strategies decomposes into separate subproblems, one for each player. 
To execute (3.2) is generally more difficult than (3.1),  given that L ( x ,  y )  typically is less 
separable in x than in y. 

4. Convergence 

It simplifies the exposition to single out a key observation; namely, that our algorithmic 
mapping is a Fejkr mapping (see (Eremin and Astafiev, 1976) and (Polyak, 1969)). 

Lemma 2. Assume that the game is convex and has a normalized equilibrium x*. Define 

where { x " )  is the sequence generated by any of the two algorithms defined in the previous 
section. Then, for all v 



Proof. Invoking the non-expansiveness of projection, we have 

(lx"++ - x*1I2 = Ilp[x" + ~"d:] - P [ x * ] ~ ) ~  

I llxV + ~"d: - x*1I2 
= IIx" - x*(I2 + 27;,(d:,xY - x*) + ~;11dzJ1~. 

Use now the orthogonal decomposition -g," = dg + nz, n; being in the negative polar 
cone of T,", and observe that x* - x" E T,", to obtain 

( 4 , ~ "  - x*) I (g,", x* - x") I L(x*, f+) - L(xV, f+).  

Whence, 

Similarly, 

By convexity of the squared norm, 

Combining the last three inequalities we have 

Since, by Proposition 5 ,  (x*,x*) is a saddle point of L, it follows that L(x*, y"+) 5 
L(xy+, x*). Therefore 

Here apply the stepsize rule to arrive at the required result. 

The first convergence result can now be stated forthwith. 

Theorem 1. Assume that the game is convex and has a normalized equilibrium x*. Then 
the sequence {x") generated by Algorithm 1 is convergent to a normalized equilibrium. 

Proof. Since L(xU+, x") 5 L(x", xu) = 0 and L(x", y"+) 2 L(x", x") = 0, from Lemma 1 
we obtain, 

1 
W"+l 5 W" - 27"(2 - 7")[L(~",~"+]ll~llld"l/~. 

Evidently {W,) is non-increasing, hence hounded. The sequence {d") is bounded, so 
L(x", y"+) -+ 0. By the definition of y"+, there exists a subgradient g E a,L(x", y"+) such 
that 

(9 - P(Y"+ - a"), h )  I 0, 



for every feasible direction h at yu+. Thus, with h = xu - yU+, one has 

Consequently, 
lim 11 yU+ - xu 1 1 2  = 0. 

u+OO 

Let i be an accumulation point of {xu) and y+ be the associated accumulation point of 
A .  

{yU+) .  Then y+ = x, i.e., 

This is necessary and sufficient for i to be a normalized equilibrium. Substituting it for x* 
in the definition of W,, we conclude that the distance to i is non-increasing. Consequently, 
i is the only accumulation point of the sequence {xu). 

Theorem 2. Assume that the game is convex and has a normalized equilibrium x*. Then 
the sequence {xu) generated b y  Algorithm 2 is convergent to a normalized equilibrium. 

Proof. Proceeeding analogously to the proof of Theorem 2 we arrive at the relation: 

lim lJxu+ - x"1I2 = 0. 
u+OO 

Let i be an accumulation point of {x") and x+ be the associated accumulation point of 
.. . 

{x"+). Then x+ = x, I.e., 

P i = arg min  xi, i - i )  + -11s - ill2 : x X} . 
2 

By Proposition 5 ,  this is necessary and sufficient for i to be a normalized equilibrium. 
Substituting it for x* in the definition of W,, we conclude that i is the limit of the 
sequence {xu). 

The preceding developments can accomodate several minor modifications. First, the 
proximal parameter p may vary, provided it remains bounded away from 0 and m. Second, 
when designing the compromise, instead of equal weights i, we may apply stage-varying 
weights a: > 0, a," > 0, a: + a; = 1, provided the weight of the variable for which the 
calculation of direction was more elaborate (with minimization in the prediction step for 
the other variable) is bounded away from 0. 

Finally, it should be stressed that instead of proximal operators in the prediction steps, 
we can use more general mappings with similar properties (see (Kallio and Ruszczyfiski, 
1994)). We choose to present the idea with the use of quadratic regularizations just for 
simplicity, to avoid obscuring it with technical details. 
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