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Abstract 

Prediction of future economic behavior is increasingly important for both public and pri- 
vate economic planning. This prediction is, however, increasingly fraught with difficulties 
because of the uncertainty surrounding the future state of so many key economic parame- 
ters. In this paper we consider how stochastic programming may be a valuable tool in the 
analysis of these kinds of problems. Using the U.S. region of Alan Manne and Richard 
Richels Global 2100 five region world trade model and a set of eight future state-of-the- 
world scenarios, we observe how the development paths of several key variables predicted 
by stochastic programming differ in interesting ways from the paths predicted using de- 
terministic methods. We conclude that the explicit way in which stochastic programming 
models uncertainty may prove useful to economic analysis efforts and provide additional 
insight into the nature of economic development in an uncertain environment. 

Key  words: Economics, environment, stochastic programming 
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1. Introduction 
Multistage economic models are tremendously important for decision makers, both in 
government and industry. They are essential when planning how present resources should 
be allocated because these decisions affect the present state of commerce, as well as the 
future, in complicated ways. One such model is Alan Manne and Richard Richels' large 
scale deterministic macroeconomic model, Global 2100 [MaRSl]. It is to this model we 
have chosen to  apply stochastic programming techniques. 

2. Deterministic Economic Model Description 
Manne and Richels developed this model to investigate how different carbon dioxide emis- 
sions restriction proposals might impact the world's economy. In particular, what the cost 
of such proposals would be in terms of reduced GNP, what the level of carbon tax would 
have to be within each of the world regions included in their model to induce compliance 
with an emission ceiling, and how differences in this carbon tax rate between regions 
would make attractive an international market in carbon emission rights trading. 

The Global 2100 model divides the world into the five separate regions shown in table 
1. Each region is independently described by a deterministic nonlinear optimization 
model, and is connected to the other regions via the exchange of crude oil and carbon 
emission credits on the international market. The carbon market allows those regions 
producing less than their quota of C 0 2  to sell the residual to  those regions wishing to 
relax their carbon restriction. 

The economy of each region is summarized by the following sectors: Nonelectric and 
electric energy, capital and labor. Aggregate economic output in each period is a function 
of the activity in these sectors and is divided into two age classifications. The first is 
the old output that is the result of inputs to production from previous periods. I t ,  along 
with these old inputs to production, decrease at a fixed depreciation rate over time. The 



Region: 
USA 
OOECD 
USSR 
CHINA 
ROW 

Table 1: World Regions 

second is new production which is a concave function (Cobb-Douglas/CES type) of four 
aggregate inputs to  production in the present period as shown in the following equation: 

where: 
t 
E' Nt 
K N t  
L  Nt 
ENt  
N Nt 
A 
B 
K P V S  
E L V S  
P 

period t 
New output 
New capital 
Labor force - new vintage 
New elec. energy cap. 
New nonelec. energy cap. 
Const. for cap./labor index (parameter) 
Const. for elec./nonelec. energy index (parameter) 
Capital value share (parameter) 
Electric value share (parameter) 
Elasticity between K-L & E-N (parameter). 

These inputs are new labor, new capital stocks, and the new electrical and nonelectrical 
energy capacity installed during that period. This division of output and input into classes 
based on age is meant to model the inertia an economy exhibits; its inflexibility to  changes 
in the price signals from inputs to  production. Economists refer to  this construct as the 
putty-clay characteristic of the model because existing capital and energy use patterns, 
like hard baked clay, are fixed, unable to respond to  price and availability changes, while 
new capital and energy use patterns are malleable, like putty, in that they can be modified 
by the model in response to changes in resource price and availability. 

The total aggregate output in each period is allocated amongst the following: Sat- 
isfying final consumption in the present, maintaining or expanding the stock of capital, 
payment for energy utilized during the present period, and net carbon rights purchases. 

The mixture of capital and energy inputs to production is influenced by the by-product 
of energy production, COz. Carbon dioxide emissions are required to lie below the sum 
of that regions quota plus the net of its carbon rights transactions on the world market. 

Because Manne and Richels developed the Global 2100 model to explore the interaction 
between the world's economy, the energy that fuels it, and how the evolution of energy use 
pat terns change in response to environmental pressures, the energy sectors are modeled 
in much greater detail than the nonenergy sectors. 



Technology name Identification 
Existing: 
HYDRO Hydroelectric, geothermal, and other renewables 
GAS-R Remaining initial gas fired 
OIL-R Remaining initial oil fired 
COAL-R Remaining initial coal fired 
NUC-R Remaining initial nuclear 
New: 
GAS-N Advanced combined cycle, gas fired 
COAL-N New coal fired 
ADV-HC High-cost carbon free 
ADV-LC Low-cost carbon free 

Table 2: Electrical Technologies 

Technology name Identification 
OIL-MX Oil imports minus exports 
CLDU Coal-direct uses 
OIL-LC Oil-low cost 
GAS-LC Gas-low cost 
OIL-HC Oil-high cost 
GAS-HC Gas-high cost 
RNEW Renewables 
SYNF Synthetic fuels 
NE-BAK Nonelectric backstop 

Table 3: Nonelectrical Technologies 

Broadly, they've included both electrical and nonelectrical energy producing tech- 
nologies. Within each of these categories they've included those technologies which are 
presently considered conventional and those which are only now being developed and will 
fill the void in energy capacity left when present technologies are no longer sufficient for 
whatever reasons. Those that are conventional typically require less capital than new 
technologies and rely on the availability of easily obtainable natural resources that exist 
in finite quantities, such as oil, gas or coal. In most cases the pool of any one kind of 
resource is not homogeneous in its ease of discovery, extraction or refinement. Thus, each 
resource is divided into grades and the grades are, roughly, used in order of increasing 
cost incurred in bringing them to market. Those technologies being developed to  replace 
existing conventional sources not only require more capital, but usually rely on an energy 
supply that is less easily captured. Hence, they are typically more expensive. A listing of 
both the electrical and nonelectrical energy producing technologies used in the model are 
shown in tables 2 and 3. Also, the equation representing the total energy cost of all 
energy technologies being used during a given period in Global 2100 is as follows: 



where: 
E Ct 
E T  
N T  
E X  
N X  
PE," 
PNP 
ECSTf 
NCSTP 
OGPD 
GNt 
CARPt 
M X D I F  
CARM, 
CARXt 
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F(4, G(.) 

CeEET PE," * ECSTte 
CnENT PNtn * NCSTP 
+OGPD * GNt 
+(CARPt + .5 * MXDIF)  * CARMt 
-(CARPt - .5 * MXDIF)  * CARXt 
+.5 * CeEEX ECSTte * F ( X P E f )  
+.5 * CnENX NCSTP * G(XPNtn) 

Energy costs (1012 $) 
Set of elec. tech. (table 2) 
Set of nonelec. tech. (table 3) 
Subset of elec. tech. 
Subset of nonelec. tech. 
Elec. produced by tech. e 
Nonelec. produced by tech. n 
Elec. cost coef. - mills per KWH (parameter) 
Nonelec. cost coef. - $ per GJ (parameter) 
oil-gas price differential - $ per GJ (parameter) 
Gas consumed to meet nonelec. demands 
Int. carbon prices ($  per ton) (parameter) 
Carbon tax (parameter) 
Carbon imports - lo9 tons 
Carbon exports - 10' tons 
Additional expansion of elec. 
Additional expansion of nonelec. 
Quadratic functions. 

For a more detailed explanation of the component parts of this equation, consult 
[MaR92]. 

Manne and Richels also account for the role that energy efficiency improvements can 
play in the economy. They model this with a parameter representing autonomous energy 
efficiency improvements. These are efficiency improvements made irrespective of energy 
cost. That is, they are made not as a way to  avoid the use of costly energy supplies, but 
automatically over time as the economy matures. This parameter appears in the model 
as follows: 

CeEETPE: > Et*AEEIFACt 

C ~ E N T  PNA 2 Nt*AEEIFACt 
where: 
t period t (2.3) 

Et Total electric energy 
Nt Total nonelectric energy 
AEEIFACt Autonomous energy effic. improvement (parameter) 

The system of equations, summarized above, describes the set of all feasible develop- 
ment paths for each regional economy. The path which is ultimately followed is assumed 
to be the one which maximizes the utility of consumption within that region. This utility 
is the discounted sum of logs of consumption in each period. In order to reduce end-of- 



study effects [Man811 [Gri83], post terminal consumption, a function of the investment 
during the later periods, is included in the objective function. 

The entire Global 2100 model is available from Manne and Richels as a collection 
of command files and GAMS [BKM92] program and data files. By invoking the name 
of appropriate command files at the operating systems prompt, the model describing 
the entire world or separate subregions within it can be run for several different carbon 
constraint futures. Different scenarios can be explored by changing appropriate data 
within the GAMS data files. As GAMS is a portable modeling language, versions of 
Global 2100 can be run on either a PC or Unix-based workstation. 

3. Economic Modeling under Uncertainty 
Clearly, much uncertainty exists in a model of this type. The model has a very long 
horizon and, as such, users must assign data values to characteristics of the economy that 
will only be known with certainty in the distant future. Even in the present, statistical 
data collection techniques are required to approximate key parameters which strongly 
influence solutions returned by the model. As deterministic optimization, the technique 
by which Global 2100 is solved, typically returns an extreme point solution from the 
set of feasible possibilities, small changes in data values can often dramatically change 
the values of important decision variables within the model. As a result, solving the 
deterministic model with only one data set can only approximate how the system will 
evolve when faced with a multitude of different possible futures. We desire to employ 
techniques that explicitly take this uncertainty into account when solving the model; 
preferably techniques that approximate the way economic agents make their decisions 
when faced with uncertainty about the future, as this is what the model is attempting to 
predict. 

3.1 Scenario Analysis 

One common technique for dealing with uncertainty in data is to run the model many 
times using different data sets representing different possible scenarios. By doing this, one 
can observe how key decision variables change as a function of the scenario, and proba- 
bility distributions can be constructed based on the likelihood of the different scenarios. 
This method is known as scenario analysis and has been used successfully by many prac- 
ti tioners of modeling. Along with the derivation of probability distributions, it is useful 
for determining which uncertain parameters have the largest impact on present decisions, 
and for deducing how future uncertainties will impact long term trends in the economy. 
One characteristic of the economy which this method does not attempt to explicitly model 
is decision making under uncertainty. That is, decisions made in the present which are ro- 
bust against a variety of future scenarios. The solution returned by each run of a scenario 
analysis is the string of economic decisions that are optimal for that particular scenario. 
As such, scenario analysis may return a multitude of different present decisions, each opti- 
mal for a different scenario. The real problem being modeled, though, often requires that 
one present decision be made based on a multitude of different possible futures before 
it is known with certainty which of those futures will occur. This one present decision 



cannot be trivially constructed from all the present decisions returned from each run of a 
scenario analysis. In the next section, we suggest a method for deriving what this optimal 
present decision should be. We also consider some additional uncertainties that this new 
method will introduce. 

3.2 A Stochastic Programming Model 
We can picture the decision process modeled by stochastic programming as the scenario 
tree frequently used in decision analysis. Travel along a particular path in the tree cor- 
responds to  the realization, over time, of one scenario, and nodal points along that path 
correspond to points in time when decisions must be made. Each path in the tree typ- 
ically starts from an initial node; a decision that must be made prior to any specific 
knowledge of the future. From this initial node, paths branch off from one another as 
the scenarios represented by those paths, over time, become distinguishable. The process 
continues until one has reached the limits of the horizon and the single limb has repeat- 
edly branched into the forest of different possible scenarios. The relationship between 
the original independent scenarios and the decision tree that embodies the information 
structure is illustrated by the example in figure 1. At the top of the figure is pictured the 
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Figure 1: Scenario Tree 

four time lines designating the stream of decisions made during each period based on each 
scenario. During periods one, two, and three, it is not yet known in which scenario one 
will be. Thus, the dashed boxes surrounding and connecting the nodal decision points of 
the four different scenarios during these periods require that decisions be the same. This 
type of constraint enforces nonanticipativity on decision variables [RoWSl]. The set of 
points surrounded by each dashed box is mapped to a single point in the decision tree. 



During period four, the decision maker learns that he is in one of two groups of scenarios 
(the group containing scenarios 1 and 2 or the group containing scenarios 3 and 4). The 
two dashed nonanticipativity boxes surrounding the decision nodes at this point indicate 
that the decision maker can make this distinction. The mapping results in a branch in 
the decision tree. Finally, in period five, all information is revealed and the decision tree 
branches again into the four possible scenarios. To see how the constraints of the new 
stochastic program are constructed from the original deterministic model, equation 3.1 
shows how the constraints in equation 2.3 become stochastic for a simple two period case 
with two scenarios. 

C~EET PE:(s) Et(s) * AEEIFACt(s) V t = 1,2 V s = 1,2 

C ~ ~ N T  PN:(s) > Nt(s) * AEEIFACt(s) V t = 1,2 V s = 1,2 

pE,'(l) = PE,'(2) 
PN;(~) = PNA(2) Nonanticipativity constraints 
El(1) = El(2) 
Nl(1) = Nl(2) 

A decision tree is a good method for modeling the way in which decisions are made 
under uncertainty. In order to  weigh one scenario against another, though, each scenario's 
likelihood must still be considered, and this is where the complexity of this method intro- 
duces additional uncertainty. The original deterministic utility function must be replaced 
by an expected utility function for the stochastic program. This expected utility function 
is the convex combination of independent scenario objectives, weighted according to  their 
subjective probabilities. These probabilities must, ideally, be the aggregate weighting of 
the beliefs of all decision makers within the economy regarding the likelihood of all of the 
scenarios. Clearly, summarizing all decision makers beliefs about the likelihood of each 
scenario with a single probability is difficult, if not impossible. Thus, the probabilities that 
are used are only an estimate of this ideal aggregate weighting and, hence, are uncertain. 
This additional uncertainty is in some sense inevitable as the stochastic program attempts 
to  model more of the problems complexity. One reason for proceeding with stochastic 
programming in spite of this seeming difficulty is that even without a completely accurate 
description of the likelihood of all the scenarios, the stochastic programming solution will 
still be of an entirely different quality than the deterministically derived solutions. It will 
suggest strategies not obtainable solely through determinisitc means and, as such, will 
provide additional insights into the impact of uncertainty [BiR93]. It is our belief that 
this type of modeling, along with scenario analysis, will increase our understanding of 
the underlying decision process, and that this increased understanding will improve our 
decision making in the present as we better describe the interactions of decision makers, 
environment and technology within the economy. 

Construction and Solution of Stochastic Model 

4.1 Stochastic Elements of Model 
The solution of a stochastic programming version of Global 2100 provides a first order 
approximation of the world economy's evolution in the face of uncertainty. To build 



such a model, we have developed an assortment of scenarios based on the suggestions 
of energy/economic experts working on the ECS (Environmentally Compatible Energy 
Strategies) project a t  IIASA. Based on extensive knowledge they have accumulated from 
their work with this and many other models, they have found the following parameters 
to be both uncertain and to profoundly impact the solution returned by the model: 

Cost estimates of energy technology (esp. Advanced Coal and Gas) 

The nonelectric base price of energy for each region 

The extent to which non-cost justified energy efficiency improvements are and will 
continue to  be made 

The first uncertainty is important because coal and gas tend to be substitutes for one an- 
other in the production of electrical power. Uncertainty in future cost streams may lead 
decision makers, contemplating the construction of power facilities with long planning 
periods and lifetimes, to develop capacity in both technologies. This diversified portfolio 
of electrical production technologies provides a hedge against the uncertainty surround- 
ing which technology will ultimately dominate the other in terms of price. The second 
uncertainty is important because the nonelectric base price of energy, a figure that must 
be estimated each year from the world's energy markets, characterizes how important 
nonelectric energy is to economic output. It reflects the functional relationship that ex- 
ists between factors of production and aggregate output each year. Its estimation helps 
energy producers predict how much of what kind of capacity should be developed to meet 
consumer and producer demand. Finally, the extent of efficiency improvement has an 
impact on the rate at which capacity should be developed for all types of energy supply 
technology. These sources of uncertainty impact the constraints of the model in equations 
2.1, 2.2 and 2.3. 

4.2 Augmented Lagrangian Decomposition Method 

In order to solve the stochastic model we have constructed, we use an implementation of 
the Augmented Lagrangian Decornposition Algorithm. What follows is a brief description 
of the general algorithm. For a more complete explanation, please consult [MuR92], 
[MuR91] and [Rus92]. 

As already informally discussed in an earlier section, a stochastic programming prob- 
lem whose uncertainty is fully described by a finite number of scenarios can be conceived 
of as a finite number of independent deterministic models, each of whose structure and 
data set correspond to a different scenario. These submodels are connected to one another 
by a constraint requiring that decisions made in scenario problems whose scenarios are 
identical up until a certain time stage be identical until that time stage. This requirement 
is known as a nonanticipativity constraint. This is formalized in the following fashion. 

Suppose that in the multistage stochastic programming problem xi represents the 
sequence of decisions that are made at each time step t = 1,2 , .  . . , T 



within each scenario i = 1,2 , .  . . , L. Each scenarios system dynamics are independently 
and completely described by some nonempty closed convex subset Xi of Rn'. As well, 
the objective driving the scenario problem to a self-consistent and optimal solution is de- 
scribed by some concave function fi(x;) : Rni -t R, i = 1,2, . . . , L. The nonanticipativity 
constraint which binds the separate scenario decision vectors together can be described 
by a specialized system of sparse linear equations [MuR92]: 

Each row of this matrix sum contains a relation of the form 

where j is a scenario indistinguishable from scenario i in period t as in ( 3.1). All this, 
together with the fact that each scenario has an associated probability pi, gives us the 
following problem to solve: 

such that 
L 

xi E Xi, 2 = 1,2, . . . ,  L 

x = X1 x X 2  X . . .  XXL 

Several successful techniques have been developed for solving problems of similar structure 
using the ordinary lagrangian: 

The fundamental results of duality theory for convex programming [Roc73], [Row911 
show that a solution to 

min g(7r) 
?rERm 

where 
g(7r) = sup L(x, 7r) = 

xEX 

is a solution to  the original problem. This method has merit because the relaxation of 
the nonanticipativity constraints leads to  a natural separability of the scenario problems. 
This allows them to be solved independently of one another, making possible the use of 
parallel computing techniques. Unfortunately, the solution of (4.2) typically requires that 
an outer linearization of g(7r) (master problem) be constructed from solutions to (4.4). 



The number of cutting planes in this outer linearization that are necessary to adequately 
approximate g ( s )  grows unmanageable as the number of scenarios in the problem becomes 
large. Hence, the growing master problem creates a bottle neck that reduces the benefits 
intrinsic in the separability of the subproblems. 

In order to get around the aforementioned problem, we consider the augmented la- 
grangian 

L L 1 2 
A(x, s) = C fi(xi) + sT C ~ i x i  - ( 1  'EL1 Aixi 1 1  

i= 1 i=l  

with penalty parameter p > 0. Analogously to the ordinary lagrangian, one can solve the 
problem 

min (-y(s) = sup A(x, s)) 
.RE Rm x E X  

to obtain a solution to ( 4.1). In this case, though, the solution procedure requires no 
master problem and, hence, no attending bottle neck. The solution is obtained via the 
"Method of Multipliers" algorithm which follows: 
Step 1. Given sk, determine xk, a solution to 

max A(x, s k ) .  
x E X  

Step 2. If ~ f = ~  A , X ~  = 0, stop. Otherwise 

iterate k and goto Step 1. 
The addition of the quadratic regularizing term in ( 4.5) makes A(x, s) inseparable in 

xi. To restore this separability and make the solution of ( 4.7) decomposable, consider 
the set i = 1 , 2 , .  . . , L of functions Ai : Rni x Rn x Rm + R,  

Given a sk, we can use this set of functions to obtain the minimizing x of ( 4.7). This 
is done via a Jacobi type algorithm. An initial 2", s = 0, is chosen. Each A;(x;, jis, s) 
is maximized in xi, independent of all other Aj(xj, Xs, s) maximizations, j # i. The 
resulting vector of optimal xf from the subproblems, x* = (x:,i = 1,2 , .  . . , L), is used 
to construct a new gsfl  = 2" + T(X*  - XS).  This process repeats until the vector x* is 
identical to 2'. [Rus92] establishes that the structure of the nonanticipativity matrix 
allows us to set the step size T = i. This makes the Jacobi algorithm convergent at a 
linear rate. In addition, because the Ai(xi, 2, s) functions are separable, the algorithm 
can be implemented in parallel. It is this algorithm that I have implemented to solve our 
stochastic model. 

4.3 Implementation of Stochastic Model under GAMS 

We have developed two different computer codes, using the Augmented Lagrangian De- 
composition method, for solving the stochastic economic model. 



Our first code runs entirely within the confines of GAMS, using the L O O P ,  assign- 
ment and SOLVE facilities provided therein '. As such, it is accessible to  any modeler 
having equipment no more sophisticated than a PC running GAMS and a suitable math- 
ematical programming solver like MINOS [MuS87]. To protect against the possibility of 
a system crash, we ensure that models that terminate prematurely can be restarted from 
an advanced point by maintaining an updated copy of the multiplier values in a file at 
all times. Finally, all results from the model are output in a form readable by popular 
spreadsheets like Excel. In this way, results can be quickly and easily analyzed. 

Our (see figure 2 ) second code is a C program that runs in parallel on a network of 

Figure 2: Parallel GAMS stochastic programming solver 

UNIX workstations using the software library of routines, PVM. Like the first program, 
the model is solved using GAMS and an available mathematical programming solver. The 
linkage between GAMS and the parallel program is affected via the system level UNIX 
routines, fork(), exec(), and wait(), that enable the C program to spawn the GAMS 
program as a temporary child process and wait for it to  finish. The spawned GAMS 
process reads input files, suitably modified by the C program, and produces results in 
an output file which is subsequently read by the C program. The input files that are 
repeatedly read by the GAMS process during the algorithm play the role of restart files in 
the event of a system crash or node failure within the virtual parallel machine constructed 
by PVM. 

Regarding our design criteria for the second implementation, our chief aim was to 
create a flexible stochastic program modeling system. By keeping all the specifics of the 
particular model within the confines of separate deterministic dynamic GAMS modules, 

'A portion of the GAMS code, showiilg the inain loops of the algorithm, is shown in the appendix 



Constraints 398 
Nonlinear Constraints 25 
Variables 610 
Nonlinear Variables 85 
Multipliers 408 

Table 4: Scenario Model Characteristics 

modifying the system to work with a completely new model requires only a modest amount 
of time. In this way, practitioners who are working with deterministic GAMS models can 
very quickly supplement their investigation of deterministic model behavior by performing 
an explicit stochastic analysis. 

In addition to the modeling flexibility afforded to the practitioner by our systems 
use of the GAMS modeling language, our use of PVM allows the modeler to flexibly 
take advantage of what ever access he has to  a network of workstations. Depending on 
the size of network available, he can use any number of machines he wishes to boost 
the algorithms performance. Of course we don't pretend that our system will perform 
anywhere near that level attained by systems that have been tailored t o  their particular 
problem structure. We feel, though, that the ease of model development more than makes 
up for this deficiency. In the next section, we present results we obtained while running 
our stochastic energy model. 

4.4 Algorithm Performance 

The stochastic energy model we solved had eight separate scenarios. The characteristics 
of each of these individual scenario models is summarized in table 4. 

Using a stopping criteria for the outer loop of E = a stopping criteriaof half of this 
for the Jacobi steps in the inner loop, a cold start 2,  and three SUN 4 workstations running 
the operating system SOLARIS and coordinated via PVM, we were able to  consistently 
obtain solutions to the problem in 18-20 hours. In a representative run, the algorithm 
performed 59 outer loops and 705 inner loops, each inner loop requiring the solution of the 
eight separate GAMS scenario models. The inner loops were mainly concentrated at the 
beginning of the algorithm as indicated in figure 3 because of the cold start. This suggests 
one obvious means of speeding up the algorithm: Using problem structure and intuition 
to locate a good initial solution. The maximum relative error in nonanticipativity over 
the course of the algorithm is displayed in figure 4. The algorithm initially converges 
linearly as the changing multipliers on the relaxed nonanticipativity constraints move the 
solution along linear constraints. The progress is later impeded by the presence of the 
nonlinear constraints and variables whose properties slow the search for the appropriate 
penalties. Finally, figure 5 plots the number of nonanticipativity constraints violated at 
each multiplier step. Again, very fast progress at the start is followed by a slower linear 
rate of convergence until the end. 

2multipliers and Jacobi updates all set to zero 
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Figure 3: Number of Jacobi steps in each outer loop 

Maximum Relative Error in Nonanticipativity 
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Figure 4: Max. relative error 



Nonanticipativity Constraints Violated 

Figure 5 :  Number of nonantic. violated constraints 

As is clear from the numbers displayed, a quick solution time is not one of our systems 
virtues. Its performance suffers on a number of fronts. Most significant is the requirement 
that GAMS be restarted from binary files each time an individual scenario problem is to 
be solved. A modification here would lead to an appreciable improvement in overall 
performance. 

As already stressed though, our systems main strength is the ability it gives prac- 
titioners to quickly explore the impact stochastic programming has on deterministically 
formulated GAMS models. In the next section we consider this impact on the results 
returned by our energy model. 

5. Policy Analysis 
We have applied stochastic programming methodology to the USA region of the Global 
2100 model, leaving the other regions in the model, and the resultant trade issues (oil 
and carbon credits), for a future study. We have solved two versions of the stochastic 
programming model. The first is with the C 0 2  constraints suggested by Manne and 
Richels [MaR92] and the second is with no C 0 2  constraint. This will help us to  establish 
whether there is any relationship between the expected value of perfect information (the 
difference between the expected return with perfect information and under uncertainty) 
and the restrictiveness of the carbon emissions constraint. 

For both cases we included eight scenarios to form a three-stage stochastic program- 
ming problem. As mentioned before, the sources of uncertainty we included are the future 
costs associated with coal and gas sources of both nonelectric and electric energy, the rate 
of autonomous energy efficiency improvement expected, and the structural importance of 
nonelectric energy in the production function over time. This last uncertainty is summa- 
rized by the reference nonelectric price of energy ($/GJ) which is used, along with the 
assumption that the price of an input is equal to its marginal productivity, to derive all 



Scenario AEEI PNREF Cost(Coa1) Cost(Gas) 
1 0.5% 1.0 low high - 

2 0.5% 1.0 high low 
3 0.5% 4.0 low high 
4 0.5% 4.0 high low 
5 2.0% 1.0 low high 
6 2.0% 1.0 high low 
7 2.0% 4.0 low high 
8 2.0% 4.0 high low 

Table 5: Scenarios of the Stochastic Model 

the parameters that control the specific shape of the production function. 
After consulting with the energy experts at IIASA about the timing and level of 

uncertainty, we decided that in period 2020 the rate of efficiency improvement will either 
increase or remain constant a t  its base case value. Also in this period we assume that the 
reference price of nonelectric energy will either increase or decrease from the level assumed 
in the base case. This translates into four branches of the tree. We assume that each 
of these branches will occur with equal probability. After the resolution of uncertainty 
regarding efficiency improvements and the structural form of the production function, we 
assume the ultimate costs of gas and coal technology are revealed in 2030. We consider 
only two possibilities. Coal becomes 20% less expensive and gas 25% more expensive 
than the base case or vice versa. These two cases, also occurring with equal probability, 
correspond to an additional branch at the end of each of the first four branches, leading 
to  a total of eight scenarios. We make the assumption that each of these branches also 
occurs with equal likelihood. Because we've assumed for this initial study that these 
uncertain events are independent, we can conclude that each of the eight scenarios is 
equally probable. The scenarios are summarized in table 5. 

5.1 Carbon Limits 
As the world economy evolves over time, decision makers attempt to develop investment, 
consumption, and production strategies that are optimal in the face of the uncertainty they 
perceive regarding the future. These strategies are optimal in the sense that they hedge 
against the many different possible states that important economic parameters may be in 
over the horizon. The objective that they frequently maximize to produce these strategies 
is the expected value of the figure of merit, whether it be profit or utility. Stochastic 
programming is a tremendously valuable tool for modeling this very phenomena. We 
use this in the U.S. submodel of the macroeconomic model with which we are working 
and show that it produces results that differ markedly from those returned by scenario 
analysis. We stress that our results are only indicative of the additional information that 
a stochastic programming analysis can offer to the policy debate. They are not themselves 
policy suggestions. 
Energy Capacity Development: 



One of the principal problems that modelers have when using deterministic models to 
derive hedging strategies is the sensitivity of these models solutions to the scenario being 
considered. Scenarios that are identical in the early part of the horizon and differ only 
later on may still give rise to initial period decisions that are quite different. This makes 
it difficult to derive initial policy decisions that are robust for a wide variety of scenarios. 
The energy modelers at IIASA, having encountered this so-called "bang bang" property 
of deterministic models in some of their work, have devised various methods for dealing 
with it. We now investigate how stochastic programming may also be able to help in this 
endeavor. 

The USA submodel that we worked with exhibited this "bang bang" behavior. For 
example, we observed that the system, under scenario 4, a high cost coal/low cost gas 
outcome, invested almost exclusively in its capacity of new gas technology while investing 
nothing in its advanced coal technology (Figure 6). Conversely, under scenario 1, a 
high cost gas/low cost coal outcome, the coal technology was developed while the gas 
technology languished (Figure 7). This phenomena arises in part because of the putty 
clay nature of the Manne and Richels model. A technology that is in use cannot suddenly 
be turned off. Its capacity declines gradually as it becomes obsolete. As a result, a scenario 
which might have preferred to use a technology for only a short period of time does not 
use it at all if the cost of maintaining the technology during the period of decline is too 
great. Clearly, this "bang bang" behavior of the model was not helpful for determining 
a here and now strategy of capacity expansion. The stochastic program provides this 
"here-and-now" solution by balancing the needs for investing in low cost technology with 
the uncertainty regarding what that technology will be (Figures 8, 9). 

Similarly, we observed that under scenarios for which nonelectric energy was assumed 
to be highly productive (scenario 4), the nonelectric backstop technology was introduced 
early in the horizon, while in scenarios for which nonelectric energy was less important to 
the economy (Scenario I) ,  it is not introduced until later. In both of these scenarios, the 
stochastic programming solution suggests more rapid initial development (Figure 10). 
Later, when it is learned just how critical nonelectric energy is to economic growth, the 
nonelectric back stop technology can be scaled back or expanded. Interestingly enough, 
for the case of synthetic fuels development the solutions for scenarios one and four differ 
very little. This would seem to suggest that the hedging strategy would also be similar. 
As can be seen from Figure 11, this is not the case. 

Increased investment occurs in both of these alternative nonelectric energy technologies 
because of the uncertainty regarding the future price of all grades of gas for nonelectric 
energy use. The uncertainty is just large enough to make it beneficial to invest, at 
least to some extent, in synthetic fuels and the nonelectric backstop because their price 
structure is known with certainty. The extreme expense of both the advanced electrical 
technologies means that even with the uncertain price of coal and gas electrical generating 
technologies, they are still not pursued until later in the horizon. In this latter case, the 
price of certainty is higher than the price of uncertainty. 
Energy Mix in the Economy: 

These differences in the rates of development of various technologies lead to a sizable 
difference in the mix of electrical and nonelectrical energy within the economy as seen 
in figures 12 and 13. In particular, the optimal hedging strategy emphasizes electri- 



cal energy over nonelectrical energy because of the uncertainty regarding the structural 
importance of nonelectrical energy to economic output in the future. 
Imports of Oil: 

In the model, oil is imported into the USA region from the world market a t  a price 
that changes over time based on estimates made by energy/economy experts. As we 
consider only the USA region, the region is supplied with as much of this resource as 
it desires at the given price. There is no attempt to balance supply and demand as we 
consider only the one region. Our scenario analysis suggested that oil imports would 
remain constant until the turn of the century, at which point it would likely increase. 
The path from this point on was dependent upon which scenario would ultimately occur 
(figure 14). In contrast to this, the stochastic hedging strategy suggests that the level 
of foreign oil use decreases from 1990 levels until the turn of the century. At this point, 
oil use either increases or continues to decrease depending on future uncertain events. In 
all cases, though, it remains below that predicted by scenario analysis for the next half 
century. This difference between the predicted level of foreign oil use returned by scenario 
analysis and the actual hedging strategy is most probably the result of the accelerated 
development of alternative energy forms, the decreased reliance on nonelectric fuel types 
that occur in the economy as a result of uncertainty regarding the ultimate importance 
of nonelectric fuels to  economic output, and the greater application of natural gas to 
nonelectric applications as seen in figure 15. 
Natural Resource Utilization: 

Another area in which our scenario analysis began to  exhibit the "bang bang" property 
of deterministic programming was in modeling the utilization of domestically produced 
low and high cost oil and gas. Figures 16, 17, 18, and 19 show the time path of the 
stock of these resources as returned by our scenario analysis solution and the optimal 
hedging solution. Scenario analysis indicated that the path of resource utilization is not 
impacted by the scenarios in question. The low cost resources are used first and as they 
are depleted, the higher cost resources are developed. In contrast to this, the hedging 
strategy dictates that higher cost resources start to be used earlier along with the lower 
cost resources in order to partially conserve the lower cost resources for the future, and 
offset losses due to decreased imports of foreign oil. In the future, the lower cost resources 
can then be used more quickly in order to offset the increased cost of alternative energy 
forms. The hedging solution is qualitatively quite different from the scenario analysis 
solution. 

It is quite clear from the examples listed above that the hedging strategy, derived 
using stochastic programming, can be fundamentally different from the strategies observed 
using scenario analysis. For this reason it is profitable to supplement traditional scenario 
analysis of large scale economic models that are known to have uncertain data with this 
technique. Of course, the benefits of analyzing a model with stochastic programming vary 
with the structure of the model. That is, depending on the structure of the model, the 
uncertainty inherent in the data may or may not significantly impact present decisions. 

In the next section we consider the results of a stochastic programming analysis of the 
United States with the constraint on carbon dioxide emissions removed. One principal 
question will be whether the absence of these constraints reduces the impact that uncer- 
tainty over the future has on present decisions and, thus, reduces the need to perform a 



stochastic programming analysis. 

5.2 No Carbon Limits 

We consider this model in order to determine how the U.S. economy will develop in the 
absence of constraints on C 0 2  emissions. It can be considered as a sort of base case 
against which to measure the losses to economic output of varying emissions constraint 
regimes. We make all the same assumptions originally made by Manne and Richels 
in their deterministic model regarding the development of oil trade, and the path that 
nuclear power and other existing conventional technologies follow. We also assume the 
same future as described by the previous decision tree. 
Energy Capacity Development: 

As with the previous case, the hedging strategy capacity expansion plans differ from 
those of the individual scenario strategies, but with some interesting differences. 

Unlike the previous case, the predicted path of electrical power production using ad- 
vanced coal and gas generation techniques differs almost not at all between the two solu- 
tion methodologies. In fact, in the case of new gas production, the evolution is the same 
across all scenarios (figures 22 23). New gas production peaks shortly after the turn of 
the century and then declines as stocks dwindle. Electricity production from new coal 
technology grows steadily until the early part of the next century without the concern 
for carbon emissions. After 2010, coal use declines given an expensive coal future and 
continues to increase otherwise (figure 33). 

The generic advanced low cost electricity generating technology becomes the chief 
competitor to coal use. In those scenarios for which coal is expensive (i.e. scenarios 
1,3,5,7), the alternative dominates (figure 34). The robust strategy returned by the 
stochastic programming solution indicates early development of this technology, identical 
to the results returned by those scenarios for which coal is expensive. If it becomes known 
with certainty in 2020 that coal will be inexpensive, the robust strategy removes the 
existing capacity as do the strategies returned by those scenarios for which coal is cheap 
which only develop a small amount of the alternative technology in 2010 (figure 24). 
Apparently it is better to over invest in the alternative than be caught short of electrical 
generating capacity and have to make up the difference with prohibitively expensive new 
coal technology. 

The hedging strategy methodology suggests more rapid development of the renewable 
nonelectric energy technology than any of the separate scenario strategies (figure 30). 
Along with this, it suggests a rate of synthetic fuels production that lies closest to that 
suggested by scenario four (i.e. expensive coal) (figure 31). This makes sense in light 
of the uncertainty regarding the future pricing of both coal and gas which are both so 
critical to nonelectric energy production. 
Energy Mix in the Economy: 

The robust strategy predicts that the development of both overall electrical capacity 
and nonelectrical capacity is very similar to the rate of development predicted by the 
scenario solutions (figures 20 and 21). Though this is similar, the individual technologies 
producing the two forms of energy differ. In particular, the robust strategy predicts that 
greater quantities of nonelectrical energy will be produced via the burning of natural gas 



Scenario 

Expected Value 

Scenario 
59793.3 
59755.9 
59556.9 
59487.5 
59949.2 
59920.8 
59819.5 
59766.3 

Hedging 
59772.8 
59734.9 
59537.9 
59467.7 
59928.7 
59899.9 
59800.3 
59746.4 

Table 6: Utility in Each Scenario and Expected Value - No C 0 2  Limits 

during the early part of the next century (figure 25). This, together with greater reliance 
on renewables, leads to an appreciably lower level of carbon emissions during this same 
period (figure 35) than that predicted by scenario analysis. 
Imports of Oil and Domestic Natural Resource Utilization: 

Because of the accelerated development of synthetic and renewable fuels, and a utiliza- 
tion curve for domestic gas and oil resources which is similar to the constrained emission 
case (figures 26, 27, 28, 29), the predicted level of oil imports from the present until 
the early part of the next century is lower for the robust strategy (figure 32) than any of 
the individual scenarios looked a t  during the scenario analysis. 

All the examples listed above demonstrate that the presence of uncertainty has a 
profound effect on the predicted hedging strategy even for this unconstrained case. In 
other words, the hedging strategy cannot be trivially reconstructed by looking at each of 
the scenarios independently. 

5.3 Expected Value of Perfect Information 

It is often interesting to determine from a model an upper bound on the value of having 
a perfect state of knowledge regarding the future. This upper bound is referred to as the 
expected value of perfect information and is the absolute difference of two quantities: The 
expected objective value corresponding to the optimal hedging strategy and the expected 
value of the optimal objective values returned from the scenario analysis. This value is, 
of course, greater than zero as one can always develop superior planning strategy when it 
is known with certainty what the future holds. 

We first consider the case of no carbon limits. Table 6 contains the utility values 
of scenarios from both the scenario analysis and the stochastic programming problem. 
As predicted by theory, the scenario analysis utility values are higher for each scenario 
because they correspond to decisions made under perfect information. This leads to a 
higher expected utility and to an expected value of perfect information equal to 20.1 utils, 
a value only 0.03 % of the optimal return obtained when the hedging strategy is used. 
It is clear that in using the hedging strategy, one is doing almost as well as is possible. 
This, coupled with previous discussion regarding the differences between the economic 



I Scenario 
1 
2 
3 
4 
5 

Expected Value 

Scenario 
59663.4 

Hedging 
59607.4 

Table 7: Utility in Each Scenario and Expected Value - C 0 2  Limits 

path of evolution predicted by the robust strategy and that predicted by the scenario 
strategies indicate that there is much value in using stochastic programming to model 
decision making under uncertainty. 

Table 7 shows the corresponding values for the case in which C 0 2  emissions are 
limited. 

In this case, the expected value of perfect information is now 61.7 utils which is 0.1 % 
of the expected return when one follows the hedging strategy. This value is three times 
greater than the previous case and is approaching the magnitude of difference expected 
between the unconstrained and constrained C 0 2  cases (59756.2 - 59565.7 = 190.5 (0.3 
9'0)). It is clear that the increased pressure on the economy caused by emissions limits 
accentuates the impact of uncertainty. The economy has less room in which to maneuver 
and, hence, is less able to effectively hedge against all the possible scenarios. 

6. Conclusion 

Prediction of future economic behavior is fraught with difficulties given the monumental 
uncertainty regarding the future state of many key economic parameters. In this paper we 
have used stochastic programming to model how uncertainty regarding this might impact 
decisions made by economic agents. In so doing we have seen that the predicted path of 
economic development can change in rather dramatic ways, depending on the problem, 
from those paths predicted by scenario analysis. For this reason, we feel that stochastic 
programming is a valuable supplement to scenario analysis in the analysis of economic 
systems over time and under uncertainty. 

Also in this paper, as a way to ease the development cost for modelers of all disciplines 
who are interested in exploring what impact the explicit consideration of uncertainty might 
have on their deterministic problems, we have developed a modest parallel stochastic 
programming solver, based on the Augmented Lagrangian Decomposition algorithm, that 
incorporates the commercially available GAMS modeling system. The system, though still 
in the development stage, allows for a relatively quick stochastic analysis of dynamically 
formulated deterministic GAMS models. Experience thus far indicates that,  while solution 



times are much slower than those obtained for solvers designed for particular problem 
structures, its generality makes it valuable as a research tool in the analysis of uncertainty 
on a variety of problems. 
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A Stochastic Programming GAMS Code 

* Outside loop controlling the changing pi values 
LOOP(ITEROUT$(continueou EQ I ) ,  

* Inside loop controlling the changing x values 
LOOP(ITERIN$(continuein EQ I) ,  

* Solving each scenario problem 
LOOP(SCEN, 

$INCLUDE initparam 

$INCLUDE logicreg 

* This file contains two solves: One for the Carbon Limit with No trade 
* One for the Carbon Limit with Trade 
* One of these should be commented out for the duration of a run 
*$INCLUDE logicpl2 
* This file contains the instructions for running the unconstrained 
* business-as-usual case. 
$INCLUDE logicp3 

* update xi values for each scenario 
$INCLUDE logicsetxi 

1; 
*end of SCEN loop 

* If xi is not sufficiently close to x, continue iterating in the inner loop 
LOOP(SCEN, 
$INCLUDE checkxstep 

>; 
*end of SCEN loop 

* Update values of x based on values of xi 
LOOP(SCEN, 
$INCLUDE logicsetx 

>; 
*end of SCEN loop 

); 
*end of ITERIN loop 

* If the nonanticipativity constraint is not sufficiently approximated, continue iterating 
in the outer loop 



LOOP(SCEN, 
$INCLUDE checkpstep 
1; 
*end of SCEN loop 

* Update values of pi based on x values 
LOOP(SCEN, 
$INCLUDE logicsetp 
1; 
*end of SCEN loop 

1; 
*end of ITEROUT loop 
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