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Foreword 

Stochastic approximation procedures are important general models of learn­
ing and evolution. The analysis of their limit properties helps to understand 
the nature of patterns that may emerge from learning. It also provides us 
with tools for estimating the speed of learning and the errors of the outcomes. 
This paper considers a particularly difficult and important class of stochastic 
approximation procedures in which the underlying regression functions can 
be nonsmooth or discontinuous. Such situations are typical for many practi­
cal situations, where the rules of behavior are different in various regions of 
the decision space. Non-standard limit distributions are derived, including 
the case of many potential equilibria. 

Andrzej Ruszczynski 
Leader 

Optimization Under Uncertainty Project 
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ABSTRACT 

The adaptive processes of growth modeled by a generalized urn scheme 
have proved to be an efficient tool for the analysis of complex phenom­
ena in economics. biology and physical chemistry. They demonstrate 
non-ergodic limit behavior with multiple limit states. There are two ma­
jor sources of complex feedbacks governing these processes: nonlinearity 
(even local. which is caused by nondifferentiabilit:-.· of the functions driv­
ing them) and multiplicity of limit states stipulated by the nonlinearity. 

\Ve suggest an analytical approach for studying some of the patterns 
of complex limit behavior. The approach is based on conditional limit 
t.!:J.eorems. The corresponding limits are, in general. not infinitely divisi­
ble. \Ve show that convergence rates could be different for different limit 
states. The rates depend upon the smoothness (in neighborhoods of the 
limit states) of the functions governing the processes. 
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80 KANIOVSKI AND PFLUG 

Since the mathematical machinery allows us to treat a quite general 
class of recursive stochastic discrete-time processes, we also derive cor­
responding limit theorems for stochastic approximation procedures. The 
theorems yield new insight into the limit behavior of stochastic approx­
imation procedures in the case of nondifferentiable regression functions 
with multiple roots. 

1 MOTIVATION AND FORMULATION OF THE 
PROBLEM 

As a conceptual example where the generalized urn scheme can be ap­
plied consider the following model of technological dynamics. Suppose 
that two firms, producing technologies A and B. compete for a market of 
infinite capacity. To achieve market domination. they use certain strate­
gies. Assume that prices of the technologies depend only on their market 
shares. Then the following strategy was introduced in [3]: until a certain 
level of market share (usually greater than 1/2) the price is a decreasing 
function, above that level it is an increasing function. Let us consider 
the simplest i.e. piecewise linear case of this policy. It is graphically 
represented in Figure 1. Let x A, respectively x B, be the proport.0n of the 
adopters of technology A and B , respectively (xA + xa = 1). PrA(xA) 
designates the dependence of the price of the technology A on x A. Also 
Pr B ( x A) designates the dependence of the price of the technology B on 
XA. By xA and x'B we designate the levels of market shares where the 
firms switch from falling- to rising-price rules. Hence the dependence of 
the price of the A (B) technology on its proportion of the market xA(xB) 
is given by four parameters: PrA(O), xA, PrA(.rA), PrA(l)(PrB(l) , x'S, 
PrB(l - x'S), PrB(O)). Note, that we allow also that Pr A(l) :=:; PrA(xA) 
(PrB(O) :=:; PrB(l - x8)) and that xA = l(or x8 = 0): in this case. 
firm A(B) still reduces the price on its product as its proportion of 
the market increases. Note that the model can account for all possi­
ble combinations of behaviors of the firms: both lower( increase) prices as 
their market shares increase, one increases and the other lowers price as 
the corresponding share increases, one increases(lowers) price while the 
other follows the above general strategy. These special cases can be ob­
tained by changing relations between Pr;1(0), Pr.4(xA), PrA(l)(Pra(l), 
PrB(l - x'S), Pra(O)). 

It is natural to suppose that in the case when the quality of the tech­
nologies is approximately the same and potential consumers know about 
it, the technology which is cheaper has more chances to be sold, i.e. the 
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FIG. 1. Dependence of prices of A and B on the market share of A. 
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technology A is bought if Pr A(xA)-PrB(xA) < 0. But if the prices differ 
only slightly or consumers have some specific preferences (which can be 
characterized only statistically or on average) , then sometimes the more 
expensive technology will be adopted. We formalize this situation in the 
following way: technology A is bought if PrA(xA) - PrB(xA) + ~ < 0, 
where~ is a random variable. Then the probability f(xA) of choosing the 
technology A, as a function of XA, equals P{~ < PrB(xA) - Pr A(xA)}. 
To avoid unnecessary sophistications of the model, we shall assume at 
the beginning that ~ has a uniform distribution on [-a, a]. In this case 
the probability of choosing A as a function of XA has the form 

{ 

1 if Pr B ( x A) - Pr A ( x A) 2'. a , 
f(xA) = 0 if PrB(xA) - PrA(xA)::::; -a , 

Pra (x 4 )-Pr4 (xA )+a if Pr (x ) - Pr (x ) E (-a a) 
2t> B A A A , · 
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FIG. 2 Probability of choosing A depending on its market share. 

For a> maxi=l,2,3,4 6; (recall that 61 = PrB(O)-Pr A(O), 62 =Pr A(l -
x8) - PrB(l - x3), 63 = PrB(xA.) - PrA(xA.), 64 = PrA(l) - PrB(l)) 
this is represented graphically in Figure 2. 

Now we put this problem into the framework of the generalized urn 
scheme and interpret the market as an urn, a unit of A(B) as a white 
(black) ball and the addition of balls into the urn as adoption of the 
technologies. By a generalized urn scheme we mean the following. 

Think of an urn of infinite capacity with balls of two colors, say black 
and white. Starting from w1 ~ 0 white balls and b1 ~ 0 black ones (11 = 
w1 + b1 ~ 1), a ball is added into the urn at time instants t = 1, 2, .... It 
will be black with probability f(X1) and white with probability 1- f(X1). 

Here J(-) stands for a function which maps [0,1] into itself and X 1 is the 
proportion of black balls already present in the urn at time t before the 
(11 + t)-th ball is added. The function f(-) is called the urn function 
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for this generalized urn scheme (see, for example, [5]). Consider some 
probability space (0, :F, P). For t ~ 1 and x E Q n[O, 1], let 

~ ( ) = { 1 with probability f(x), 
t x 0 with probability 1 - f(x), 

be (independent in t) random variables defined on (0, :F, P). Here Q 
stands for the set of rational numbers. Then the stochastic process {Xt} 
follows the dynamics 

1 1 
X1+1 = Xt + --[~1(Xt) - Xt] = Xt + --[f(Xt) - X1]+ 

II+ t II+ t 

1 
--ry1(X1), t ~ 1, Xi= b1/!1, 
11 + t 

(1.1) 

where ry1(x) = ~1 (x) - f(x). The recurrent process (1.1) can be consid­
ered as a particular case of the well known Robbins-Monro stochastic 
approximation procedure. 

Suppose that we are interested in finding a root of a continuous regres­
sion function g(x), x E R, the set of real numbers. We cannot observe 
g(·) itself, but only 

y(s,x) = g(x) + z5 (x), s ~ 1, x ER, (1.2) 

independent (in s) observations of g( ·) together with a random noise 
z8 (·). It is assumed that the noise has zero mean, i.e. Ez5 (x) = 0, finite 
variance, i.e. Ez;(x) = a;(x) < oo, and there is a mapping n(s, ·, ·), 
measurable with respect to 62, such that z5 (x) = n(s , x, ~8 ). Here 62 
stands for the a-algebra of Borel sets in the real plane R 2• Also ~s, s ~ 1, 
is a sequence of independent random variables on (0 , :F, P). Then the 
Robbins-Monro procedure gives successive approximations Xn, n ~ 1, to 
the root e of g(.) in the following form: 

Xn+1 = Xn - lnY(n, Xn), Xi = const, (1.3) 

where In stands for the step-sizes, i.e. deterministic positive numbers 
such that 

L In= OO, 
n;:::I 

I:: 1~ < oo. 
n;:::l 

Many results are known for the case of a unique root e. For In = an-1 

asymptotic normality of Jn(Xn - 8) was proved (see [2, 4, 11, 17)) for 
locally linear g(·) at e, i.e. g(x) = g'(8)(x - e) + o(i x - e I) as 
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x ---+ e, and ag'(e) > 1/2. Also /f!ii(Xn - 6) is asymptotically normal 
if ag' ( e) = 1 /2 [10]. But for the simplest case, when g( ·) is not locally 
linear at 8, i.e., as x - 8 

(x) _ { a1(x - 8) + 01(x - 8), 
g - a2 ( 8 - x) + 02 ( 8 - x)' 

x ~ 0, 
x < 0, 

(1.4) 

yn(Xn - 8) converges weakly for 2amin(a1, a 2 ) > 1 to a non-Gaussian 
limit distribution [7, 9]. By o;(y) we designate a function of y such that 

lim jo;(y)j = 0. 
y~O y 

In this paper we study the limit behavior of properly normalized de­
viations of Xn from 8 for the case when, as x---+ 8, 

{ 
a1(x - 8)' + 01((x - 8)'), 

g(x) = -a2(6 - x)' + 02((8 - x)'), 
x ~ 0, 
x < 0, 

(1.5) 

for some a1 > 0, a2 > 0 and"/ E (~, 1). Also, we consider the cases where 
random processes of the form (1.3) demonstrate complex limit behavior 
caused by both the nonlinearity of the form (1.4) or (1.5) of functions 
involved and the multiplicity of their roots. Comparing (1.1) and (1.3), 
one sees that (1.1) is a special case of (1.3) with g(x) = J(x) - x and 
Zt ( X) = T/t ( X) . 

Returning to the above model of technological dynamics we observe 
that the roots 01 and 03 satisfy condition (1.4). Consequently the limit 
theorems we are going to derive will characterize the convergence rates 
in time of the proportion of A. on the market to 01 and 03 (it turns out 
that the probability that X 1 has 02 as a limit point is zero [5]). In the 
riext section we prove limit theorems for the random process (1.3). 

2 LIMIT THEOREMS FOR THE ROBBINS - MONRO 
PROCEDURE IN NON-STANDARD SITUATIONS 

We start with an auxiliary lemma (see [9], Lemma 2.1). 
Lemma 2.1. If {Yn} is a sequence of real numbers such that 

I Yn+l !:S IYn I (1 - bn) + Cn 1 

where I:n~l bn = oo, bn---+ 0, Cn ~ 0, bn > 0. Then I Yn I= o(l) or 
I Yn I= 0(1) depending upon whether Cn = o(bn) or Cn = O(bn). 
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Here, as usual, O(y) means that 

lim sup IO(y) I < oo. 
y-0 y 

85 

We study the algorithm (1.3) with (the unique root) 0 = 0 and /n = 
an- 1

, a> 0. For a real valued function h(-) we set II h II= supx I h(x)I. 
Theorem 2.1. Assume that 

1. xg(x) 2 aox2 for an ao > O; 

2. lg(x)I ~ Alxl + B for some constants A, B > O; 

3. g(·) has the form (1.5) with 0 = O and loi(Y)I = O(y1+"h) for v > 
l=_r. 
l+-y' 

4. E lzs(x) - zs(O)l 2 ~ klxl", where v > P;~~
2

; 

- f 0 d , l l=_r h . 1. IE (0)2 2 1 K - O· ::i. or some a> an r;, > 2t+-y one as Ims~oo Zs - a s - , 

6. sups El-=s(OW < 00 for someµ > 2 + n"' 
1
:-;., ". 

Then for ~ < / < 1 

_l_ __ W r 

n 1+>.\n ~ .\, 
1!-"'00 

where X has the density 

{ 
2a x 1+>} 

l exp -~ t+r ' 
f(x) = C . {-fQ:.z (-x)lh } , 

exp acr 2 l+r 

x 2 0, 

x < 0. 

Here C stands for a normalizing constant. 
The first two conditions here are standard. They can be easily relaxed 

(see Remark 2.1). The third condition specifies the nonlinearity we are 
dealing with. If we formally put here I = 1, which corresponds in the 
simplest situation to the conventional case (of a differentiable regression 
function). this con di ti on. requiring a certain rate of decrease for the small 
term. proves to be somewhat stronger than usual (see (1.4)). We cannot 
relax it because of purely technical reasons. Conditions 4, 5 and 6 pos­
tulate that the noise term can be approximated by independent centered 
random variables with equal variances and having some higher moments. 
If. as in the conventional case. we formally set here I = 1, this require­
ment of higher moments converts in to Liapounov's con<lition. which is a 
little stronger than the conventional Lindeberg's one. Now let us prove 
the theorem. 
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Proof. Set /3 = 1 ~-r, i.e. ~(;3 = 1 - ;3, and let Un = n/3 Xn. Then 

Fn+1 =Un - a;hn(Un) + anzn(n-f3Un), (2.1) 

where 

an= an- 1(n + 1)/3 = an/3-l(l +En), En= O(n- 1
), hn(u) = 

-a~2 [(1 + ~) f3 - l]u+a~ 1 g(n-f3u) = -a-2/3n 1
-

2f3(l +77n)u+ 
n 

a- 1n 1
-

3 (1 + En)-
1g(n-f3u), Tln = O(n- 1

). 

We will replace the functions hn (-) by simpler functions h~ (-) and show 
that this has no effect on the asymptotic distribution. 

Set kn = nf3+o- l / 2 , n ~ 1, with 0 < o < b to be fixed later. Then 
kn ---+ oo since f3 > 1/2. Our assumptions imply that n 1 1 2 - 0Xn~O for 
every o > 0 (c.f. [4], Lemma 2.3) , and consequently k-;; 1 Un~O. 

We construct functions h~( ·) with the following properties 

roo r-oo 
h~(u)sgrn1;?: 0, Jo h~(u)dtL =Jo h~(1t)d1l = oo, (2.2) 

llh~ll llh ~' ll = o(a~ 1 ) , (2.3) 

sup lh~"(u)I = O(n€(2--rl), sup lh~"'( u)I = O(n£( 3--rl ), (2A) 
lul:Skn lul:Skn 

a; inf lh~'(u)I ~ cn- 1!2!3, (2.5) 
lul:Skn 

a; sup lhn(u) - h~(u)I = o(n- 1!2f3), (2.6) 
lul:Skn 

where E > 0 will be chosen later. To this end. let h~ (-) be a smoothed 
modification of 

C (I) 1l > n/3-£ 
n ' ' 

~u'Y n-[ < u < n P-€ 
a ' - ' 

hn( ll) = 
cc2lu 

n ' 
0 ::; u ::; n - € , 

-CC3lu -n-[ < u < O 
n ' - ' 

_Q:.2.l ·ui -r -nf3-€ < u < -n-€, 
a ' -

-C~4 l, u < -n/3-€. 
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Here C~i) are chosen in order to make hn( ·) continuous and the smoothing 
is done to make h~(·) three times differentiable. Relations (2.2) and (2.4) 
are obvious. Also (2.3) follows by 

llh~ll llh~ll = O(n'(/1-<l)O(n<(l-i)) = 0 (n1-l1-<(2i-1l) = o (a;;-1) 

and (2.5) follows from the fact that there is a constant c1 with 

inf h~
1

(u) > c1n-(1- 1l
2
!1/2 . 

llul l'.Okn -

In order to show (2.6) notice that for 0 :::; u :::; kn 

jn1- 11g(n - 11u) - a1iu'll = n1-/30((n-11u)'+v) = 

O(nl-/1+(,+v)(6-l/2)) = O(n-~} (2.7) 

Since, by assumption, v > 2/3 - 1 we may choose b so small that -~ = 

1 + /3 - ('-y + v)(b - 1/2) < 2 - 2/3 - 1/2/3, i.e. 

n-~a; = o(n- 11211 ). 

The same is true for -kn :::; u :::; 0. Consider now the recursion 

Wn+l = Wn - a;h~(Wn) + anZn, n ~ N, (2.8) 

with W N arbitrary (but it does not depend on zn(-), n ~ 1) and N some 
positive integer. 

Let T be the stopping time 

T = inf{n ~ N: max(IUn l, IWnl) >kn}· 

Since k-;; 1Un---+ 0 and k-;; 1Wn--+ 0 a.s., P{T = oo} can be made arbitrarily 
close to 1 by choosing N large. On the event { T = oo}, using the bounds 
(2.5) and (2.6), we get 

IUn+l - lVn+il :::; IUn - Wn - a;[hn(Un) - h~(Un)]+ 

a;jh~(Un) - h~(Wn)I :::; !Un - W11 j(l - cn- 11211) + o(n- 112;3). 

By 2: 112 1 n- 1/ 2;3 = oo and the auxiliary lemma we get !Un - lVnl --+ 0 on 
{ T = ex)}. It is therefore sufficient to consider the asymptotic behavior 
of ff11 • 

In the next step we show that without affecting the asymptotic distri­
bution, the recursion (2.7) can be replaced by the following 

Fn+l = l-;, - a;h~(Vn) + a 11 ::~, n ~ N, VN arbitrary, (2.9) 
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where z~ = zn(O) and VN does not depend on z~, n > N. Introduce 
T* = inf{n ~ N: max(IVnl, IWnl) >kn}· 

Using condition 4, one has 

E[(zn - z~) 2 X{r">n}] :::; kE[(ni31Wnl)"X{r•>n}] :::; kn(b-l/2Jv. (2.10) 

Here \'A stands for the indicator function of the event A. Also there are 
constants c2 and c3 such that 

lh~(u) - h~(v)I:::; c2 + c3lu - vi. (2.11) 

If f; is so small that (8 - 1/2)v < -(1 - 1)2/3/2, then from (2.5), (2.9) 
and (2.10) we have 

E(Wn+I - Vn+1) 2X{r·>n+I}:::; E(Wn - Vn) 2X{r•>n}-

2a;E(H/n - Vn)[h~(Wn) - h~(Vn)]X{r•>n}+ 

a;E(zn - z~) 2 X{r">n} + a;E[h~(Wn) - h~(Vn)J2X{r•>n} :::; 

(1 - c4n-l/2i3)E(Wn - Vn) 2X{r•>n} + o(n-l/2/3). 

Hence due to Lemma 2.1 

E(Wn - Vn) 2X{r·>n}--+ 0 as n--+ oo, 

which implies that Wn and i,~ have the same limit distribution. 
Due to condition 5, arguments identical to the ones given above show 

that the recursion of the form (2.8) with z~ substituted by 

cr[Ezn ( 0)2t1/2 Zn (0) 

has the same limit distribution. Consequently, we can suppose that 
E(z~) 2 = cr2

• n ::.'.:'. N. 
\Ve will now replace z~ by truncated vectors z~**, n ::.'.:'. N. Consider 

** _ { z~ if lz~I:::; n
6

, 
4

n - 0 otherwise. 

Here b satisfies the inequality 

1 - "'( 
b > 2(1 + "f)2(JL - 2) 

By Markov's inequality 

IEz~*I :::; nb(l-JL) Elz~ll' 

(2.12) 

(2.13) 
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and 

IEz~*l2::; nb(2-µ)Elz~I'' . 

Consequently for z~** = z~* - Ez~* one has Ez~** = 0 and E(z~ - z~**) 2 = 
O(nb(2-µl). 

Due to (2.11), 

a;O(nb(2-µ)) = o(n- 11211) 

and we can replace z~ by z~** without changing the asymptotic distribu­
tion (the arguments are the same as above). 

Also we can substitute z~** by Zn= a(E( z~**) 2t 1 1 2 z~** without affect­
ing the limit behavior. This can be done by the same reasoning since by 
Markov's inequality 

IE(z~*)2 - a21 ::; nb(2-µ)Elz~Iµ 

and 

Var z~** = Var z~* = E(z~*) 2 
- (EZ~*) 2 

which, together with (2.12) implies that I Var z~** - a 2
J = O(n°(2-1'l). 

From now on we consider the recursion 

Vn+l = V n - a~h~(Vn) - anZn, n 2: N, 

where V N -arbitrary (but it does not depend on Zn, n 2: N). Notice that 
for large enough n 

Jinl::; 2nb a.s., Ezn = 0, Var Zn= a 2
. 

Consider the function Hn(x) = x - a;h~(x). Since supx JH~(.r) - lj < 
1/2 for sufficiently large n, we have by (2.3) 

IH;; 1(x) - [x + a;h~(x)] I ::; 2lx - Hn(x + a;h~(.r)) I ::; 

a~Jlh~ll llh~'ll = O(a~). (2.14) 

If Fn(-) stands for the distribution function of V~ , then Vn+I is distributed 
according to 

Tn(Fn)(x) = j Fn(H;; 1(::))dGn(X - z), 
an 

where Gn(-) is the distribution function of in. Let F;(-) be the distribu­
tion with density 

f~(x) = Cnexp[--;jx h~(u)du], 
a -oo 
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where Cn is a normalizing constant. We show that Tn(F;)(-) is close to 
F;(·), i.e. F;(-) is nearly a stationary distribution. We know from (2.13) 
that 

sup !F;(H; 1(x)) - F;(x + a;h~(x))I = O(a~). 
x 

By a Taylor expansion up to the order three, we get (xis some inter­
polation point) 

Tn(F;)(x) = j F;(z + a;h~(z))dGn(- 2
) + O(a~) = 

an 

J 
a x - z 

F;(x + a;h~(x)) + (x - z)-
8 

[F;(x + a;h~(x))]dGn(--)+ 
X an 

~ j (x - z )2

8

82
2 

[F;(x + a;h~(x ))JdGn(x - z )+ 
2 x an 

~ j (x - z)3
8

83
3 
[F;(.r + a;h~(i))]dGn(x - z) + O(a~) = 

6 X an 

F;(x + a;h~(x)) + ~0"2 8
82

2 [F;(x + a;h~(x))]+ 
2 x 

O(a~nbno:( 3- 1l) + O(a~) = 

(/2 
F;(x) + a;J;(x)h~(x) + a; 2 J;' (x) + O(a~nb+c(3-1l). 

Due to condition 6 we can choose b satisfying (2.11) such that 

21 - l 
b<--

1+ 1 

Then for small enough ~ 

L a~nb+o: (3-1) < oc. 
n?_,V 

Since J;'(x) = -}2 J;(x)h~1 (x) one gets from (2.14) and (2.15) that 

L llT,,(F,;) - F;11 < •)C, 

n?_}/ 

It is easy to see that llF,; - F;+i II = O(a~n- 1 ) and. therefore 

L llF,~ - F;+1ll < )C, 

n?_N 

Since for any distribution function F,,( ·) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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and 

llTn(Fn) - Tn(F;)ll ~ llFn - F;11 

llTn(F,,) - F:+1ll ~ llTn(Fn) -Tn(F;)ll+ 

llTn(F,;) - F;ll + llF: - F;+1ll, 

91 

we may take FJr( ·) as the distribution of VN and sum over N ~ k ~ n - 1 
to get 

llTn(Tn-i( .. . 1\r(F,\r)))-F;IJ ~ 

n-l n-l 

L llTn(F;) - F:ll + L llF: - F:+1ll· 
k=X k=N 

Due to (2.16) and (2.17), this is arbitrarily small for N large enough. 
Hence, denoting by F(-) the distribution function pertaining to the den­
sity f(-), we see that 

llF -Tn(Tn_i(·. ·TN'(F,\r))lll ~ llF- F:ll+ 

11 F - T; ( Tn - 1 ( · · · T',v ( F_,\r ) ) ) 11 

is arbitrarily small. Thus the theorem is proved. 

In the above theorem. the noise is given as a function of indepen­
dent random variables. Another approach in the literature on stochastic 
approximation characterizes the noise by means of its conditional distri­
butions. In this case. one considers a recurrent sequence 

X,,+i = Xn - /n 1-n , n 2: 1. X1 = const, 

and requires that the conditional distribution of 1~ for given X 1, X2 , ... , _,\ 
depends onl~· on Xn and E(l~IX11) = g(Xn). 

Set G(::J.r) = P{Zn < ::IXn = .r}, where Z 11 = Yn - g(X11 ). We wil 
show now that sufficient smoothness of G( ·Ix) on .r implies condition 4 

of Theorem 2 .1 (see also [ 1-±]). 
Corollary 2.1. Suppose that for some p > 0 

dist(G(·J.r) .G(·Jy)) ~ cJ.r -yJP, 

where dist ( ·. ·) is the Levy-Prohorov distance. If p > r7 and 

k = s~p j l::JµdG(::Jx) < 00 

for some 11 > 2 + k. then condition-± holds. /- p-11 
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Proof. Let Zn be distributed according to G(· lx) and Z~ be dis­
tributed according to G(- ly). By Strassen 's well known theorem [18], 
there is a joint distribution for Zn and Z~ such that 

P{IZn - Z~I > czP} ~ czP, 

where z = Ix - YI· Set o: = T· Consider 

E(Zn - Z~ ) 2 = E (Zn - Z~)2 X{ IZn-Z;l2'.czP) + 

E(Zn - Z~) 2 X{I Zn - Z;l>czP,max(IZnl,IZ;l):::;:- 0 ) + 

E(Zn - Z~ ) 2 X{IZn -Z;l>c:P , max(IZnl,I Z;l)>z- 0 } ~ 

c2 z2P + 2czP z- 2
0: + 2za(µ- 2) k ~ Ct z 11 . 

The corollary is proved. 
Remark 2.1 If X n converges to 0 with probabili ty 1, then conditions 

1, 2, 4 can be replaced by their local (on x) variants. 
Remark 2.2 If for some a> 0 and b > 1 the "tail' ' T (x) = l -F(x) + 

F(-x), x > 0 , of an infinitely divisible distribution is O(exp(- axb)) as 
x -t oo, then the distribution can be only a Gaussian one (including 
the degenerate case with zero variance) [16]. Consequently the limit 
in Theorem 2.1 (along with limits from [7] and [9]) is not an infinitely 
divisible distribution. One should not expect here convergence to an 
infinitely divisible distribution since the limit is generated by a nonlinear 
transformation of sums of small independent random variables. 

Theorem 2.1 shows that the rate of asymptotic convergence increases 
as smoothness of the regression function (at the solution) decreases. More 
interesting observation can be done for the case when the regression func­
tion has several roots in which the function has different smoothness. To 
this end we omit the basic assumption that g( ·) has the unique root . In­
stead of this we assume that , among the roots, there are a finite number 
ei, i = 1, 2, . .. ,N, of stable ones. We call a root e stable if (1.4) or (1.5) 
holds. 

Consider the following conditions: 

A. for each 8 ; ( 1.4) or ( 1.5) holds with its own o:)i), 'Yi E ( 1/2, 1 ]1 , o)il( · ), j = 
1, 2; 

B. if "(;< 1, then 

(a) o(_i)(x) = O(x 1+vJr•) for v- > l-1; 
J I I 1+1i l 

1 If ( 1.4 ) holds for 8;, we set 1i = l. 
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(b) in a neighborhood of 8; 

Elzs(x) - zs(8;)1 2 ~ k;lx - 8;j'7i 

where n· > (l--y;)
2 

• .,, l+-y; , 

(c) for some a;> 0 and K.; > ~~~~'. one has 

lim IEz (8·) 2 
- a 21s"; = O· 

S-t>OO S t l ' 

(d) sups2'.l Elzs(8;)1µ; < oo for someµ;> 2 + 'Hu_!~iL_n; 
C. if /i = 1, then 

(a) lims-oo limx-e;IEzs(x) 2 
- all= 0 for some al > O; 

(b) limR-oo lims-oolimx-e;Elzs(x )12X{lz,(x)l2'.R} = O; 
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(c) either aaii) = aa~i) = 1/2 and oY)(x) = O(xl+6),j = 1, 2, for 

some 8 > 0, or 2a min (ali), a~i)) > 1. 

Theorem 2.2. Suppose that the sequence {Xn} given by (1.3) con­
verges with probability 1 and conditions A, B, C hold. Then 

lim P{r(il(X - 8) < x lim X = 8·} = F(x)P{ lim X = 8}. n-+oo n n z ' s-+oo s z t s-oo s 1 

Here 

l 
n 1/l+-y; if /i < 1, 

r~i) = vr: ~f /i : 1 and 2a min (a(i) a(i)) > 1 
1 ' 2 ' 

~ if /1 - 1 and aaii) = aa~i) = 1/2. 

Also :F;( ·) stands for a distribution function such that: 
a) for /i < 1 

(i) 

{ 

{ 
2n xi+>;} > Q 

:F' ( ) - . exp - adf 1 +-y; ' x - ' 
I X - c, 2n~•) lxllh; 

exp{ - --;;;;; l+"f; } , x < 0, 

b) for /i = 1 and 2a min( aii), a~i)) > 1 

{ 

• { 2an(i) _l _ 2} 
1 _ . exp - 2a~o-f x , x ~ 0, 

:F; ( X) - c, . 2an~i ) _ l 2 . 
exp{- 2a 20-; x }, x < 0, 

c) for/;= 1 and aali) = aa~i) = 1/2 

1 x 2 

:r;(x) = J2 2 2 exp{--2 2 2}, 
Ira a; a a; 

where c; stands for a normalizing constant. 
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Proof. Set 

_( ) { g(x) for Ix - 8;1 :Sc;, 
g x = a;(x - 8;) for Ix - 8;1 > c;; 

_ ( ) _ { z5 (x). for Ix - 8;1 :Sc;, 
Z 5 X - I zs(8;) for Ix - 8; > c;; 

X- N,y - vN,y [-(x- N ,y) + - (X- N,y)] > :\T -VN,y -n+i-•\.n -"(n9 n Zn n ,n_lv,AN -Y· 

Here a; > 0 and c; is so small that the condition b) from B holds. Also 
y does not depend on z5 (x), s 2 N. By Theorem 2.1 or corresponding 
results from [4, 7, 9, 10, 11, 17] 

lim P{r~il(_,Y~V,y - 8;) < x} = .F;(x). 
n--->oo 

(2.19) 

Introduce the events An,6 = {IXn - 8;1 < 8} and Bn,6 = {IXs - 8;1 < 
8, s 2 n }, where n 2 1, 8 E (0, 1). By hypothesis Xn converges with 
probability 1. Therefore, for any O' > 0 we find 8 and n(8) such that for 
n 2 n(8) 

P{ {Ji.~Xs = 8;}.6.Bn,6} < O' 

and 

P{An,6.6.Bn,6} < O'. 

Here the sign .6. denotes the symmetric difference. 
Using (2.18), the Markovian property and the Lebesgue Dominated 

Convergence Theorem, we have for n 2 n(8) 

lim P{r}ni)(Xm - 8;) < x, lim Xs = 8;} < 
m-oo s-oo -

J~P{r~)(Xm - 8;) < x, Bn,6} + O' = 

lim P{r(i)(.Yn.Xn - 8·) < X B •} + O' < m-oo m m i ' n,u _ 

-1.-P{ (i)( \'"'.-n ,Xn 8·) < .t } + _ n!...111 Tm " m - 1 X, .'1.n,6 O' -

limEP{r~l(.Y~·xn - 8;) < xlXn}xAni + O' = 
n-oo · 

.F;(x)P{An.6} + O' :S .F;(x)P{}i_~Xs = 8;} + 30'. 

Similarly, 

Ji_~ P {r~l(Xm - 8;) < x, }i!J1 Xs = 8;} 2 
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F;( x )P { lim X s = 8;} - 3a. 
s-oo 

Since a is arbitrarily small, these inequalities yield the required result. 
The theorem is proved. 
Remark 2.2. Conditions which ensure positivity of P{limn_.00 Xn = 

8;} are known [8]. 
Suppose now that the process (1.3) converges with positive probability 

to each of the stable roots (which are called attainable) and to all other 
roots (which are called in this case unattainable) with zero probability 
(see for particular cases of this (touch points and unstable points) [11] and 
[13] correspondingly). Then 

N 
l:P{Xn--+ 8i} = 1 
i=l 

and the asymptotic behavior of our process can be imagined in the fol­
lowing way. By chance one selects a stable point (to which the process 
will converge) and a "convergence mechanism" (depending upon the local 
properties of the process at the point) switches on to drive the process 
to the point. 

Theorem 2.2 covers only the cases when limit distributions are "nice" 
(remember that, except Gaussian, the distributions are not infinitely di­
visible). Other cases known in stochastic approximation [10, 11] can be 
treated in the same way. 

3 COMPLEX LIMIT BEHAVIOR IN URN SCHEMES AND 
TECHNOLOGICAL DYNAMICS 

Returning to the model of technological dynamics presented in section 1, 
we can find , using the given results, the rates of convergence to the two 
stable roots. 

We give now a lemma which ensures reformulation of the above theo­
rems for the generalized urn scheme. 

Let T;, i ~ 1, be independent random variables uniformly distributed 
on [O , l]. Set 

(;(x) = X{r;<x}> i ~ 1, XE [O , 1]. 

Elementary manipulations ensure the following result. 
Lemma 3.1 One has E[(;(x)-(;(y)]2 = x + y - 2min(x, y) :S Ix -yl. 

Also 

{ 
1 with probability x , 

(;(x) = 0 with probability 1 - x. 
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Now designating (i(J(x)) by ~;(x) and using the recursion (1.3), we 
can derive analogs of the above theorems for the generalized urn scheme. 

Returning to the urn scheme formulations, for the model of technolog­
ical dynamics there are three roots B1, B2 and B3 of the function f ( x) - x 
on [O, l]. The root B2 proves to be unattainable, while B1 and B3, being 
stable, are attainable, i.e. the process X 1 converges to each of them with 
positive probability for any initial amounts of the technologies on the 
market. Using the above results we can find the rates of convergence to 
the both attainable roots 

e _ (a + ~ 1) ( 1 - Xs) 
i- 2a(l-xli)+~1+~2' 

B
3
=l- (a+~4)(l-xA) 

2a(l - xA) + ~3 + ~4 

In particular, for every y 

lim P{ Vt(Xt - B;) < y, Xs _... B;} = 
t-oo 

P{Xs _... ei}P{N(O, o}) < y }. (3.1) 

Here /v(O, CJ[) stands for a Gaussian distribution with zero mean and 
variance 

2 B;(l - B;) 
CJ; = 1 - 2f'(B;)' 

(3.2) 

where J'(-) denotes the derivative off(·). It can be shown that 

J'(B1) = - ~ 1 + ~: 
2a(l - X3) 

(3.3) 

and 

~3 + ~4 
2a(l - xA)' 

J' (B3) = (3.4) 

From ( 3.1) - ( 3..!) one sees that convergence to both B1 and B3 occurs with 
the rate r 112 but the random fluctuations (which are determined by the 
variances of the corresponding limit distributions) around this dominant 
tendency can be different. 

Now we conclude that the above dynamics of prices, together with 
the described behavior of adopters, generate multiple limit patterns with 
slightly different rates of convergence. With such dynamics of prices and 
assumptions concerning the behavior of adopters, one can have even more 
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complicated limit market structure where the ratio between the initial 
amounts of the technologies on the market influences the structUre [3]. 
Also the considerations concerning the convergence rate are applicable 
(with corresponding modifications) to the more complicated situation 
analysed in [3] . 

The situation with deterministic choice can also be treated within this 
framework. It corresponds to ~ = 0. In this case for any initial proportion 
belonging to (0, 12] one has (deterministic) convergence to 11 with the rate 
of the order of r 1 (more precisely limsup1_ 00 tlXi-111 = max(/1 , l-11)). 
Also for initial proportions belonging to ( 12, 1) - convergence to 13 with 
the same rate. Consequently in this case the limit behavior is essentially 
the same as previously, but the limit depends upon the initial state and 
the convergence is faster. 

Formally speaking the main difference between the deterministic choice 
and the random choice is that the corresponding measures (search for al­
ternatives) are concentrated at one point or in some non-singleton set 
(usually an interval). The above measure corresponding to the uniform 
distribution, is proportional to the Lebesgue measure. The intermediate 
case between the measure concentrated at one point and a measure uni­
formly distributed among an interval, would be a measure such that for 
some interval [a, b] 

mes([a. b]) -+ 
00 

(3.5) 
mesL([a. b]) 

as a -+ b. Here mes(·) stands for the measure under consideration and 
mesL(·) - for the Lebesgue measure on the real line. As an example 
consider the following distribution function for ~ 

G(x) = { 1/2 + a1x1
, 0::; x::; (1/2a1)

1h , (3 6) 
1/2 - a21xl ' , -(1/2a2) 1h ::; x < 0, · 

where a1 > 0, a2 > 0, / < 1. Then for any [a , b] containing 0 prop­
erty (3.5) holds. The above decision rule with this particular distribution 
function of ~ does not bring in general anything new into our considera­
tions. We still have the convergence rate of order r 112 as t -+ oo to both 
attainable roots 81 and 83 , with Gaussian distributions in the correspond­
ing formulae similar to ( 3.1). But if one of the attainable roots 81 or 83 
coincides with 1/2, we can observe a substantially different convergence 
rate to it. This can be the case when the dynamics of prices has the form 
given by Figure 3. Conceptually this situation means that the producers 
of B are so .. optimistic., that switch from lowering to increasing the price 
of B until the level of market share equals to 1/2. 
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FIG. 3. Dynamics of prices of A. and B in the case of optimistic expecta­
tions of the producers of B. 

The corresponding function f(·) is given on Figure 4. Here ()1 = 1/2 
and ()3 are attainable roots and ()2 is unattainable . Using the results of 
section 2 we have for every y 

lim P{ Vt(Xt - ()3) < y , Xs --.. ()3} = 
t-oo 

P{Xs ___.. ()3}P{N(o,a-n < y} (3 .7) 

and 

lim P{t111+1 (X1 - 1/2) < y, X s --.. 1/2} = P{Xs--.. l/2}F(y) , (3.8) 
t-oo 

where 
2 ()3( 1 - ()3) 

0"3 = 1 - 2j'(() ) ' 
' 3 
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FIG. -L Probability of choosing _-l depending on its market share in the 
case when the "search-factor'' ~has the distribution of form (3.6). 

J'(fh) = - -yai[Pr A(l13) - Prs(l13]"-1 ~3 + ~4 
. (1 - xA) ' 

l { 2s+1 a1~7 x'+1} 
exp - 1+1 ' 

F'(x ) = C {-25+1 a2D.?(-x)l+1}, 
exp 1+1 

x 2: 0, 

x < 0, 

and C is a normalizing constant. Also relation (3.8) follows from the 
results of Section 2 only for / > 1/2. In contrast to the previous case, we 
have faster rate of convergence, t1h+l (to the root 1/2). This corresponds 
to the intermediate situation between deterministic and regular random 
search for alternatives. What is very important conceptually, is that for 
the same process we can observe different convergence rates for different 
attainable limit states. The limit market structure corresponding to the 
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root 81 = 1/2 will be faster emerging than the structure corresponding 
to 83, although both are feasible. 

If we introduce certain hypothesis about statistical frequences (prob­
abilities) of the producers of A.( B) who follow a particular shape of the 
above price dynamics and/ or hypothesis concerning statistical frequences 
of the adopters who use a concrete variant of the above decision making 
mechanism, we can construct much more complicated functions f ( ·). 

4 CONCLUSIONS 

Not only the diffusion of innovations studies [1, 3], but also other impor­
tant problems such as autocatalytic chemical reactions [1 , 12] and some 
biological populations [6] can be treated within the framework of the 
generalized urn scheme. In these conceptual problems the limit theorems 
given before serve as a means for the analysis of the rates of convergence 
to attainable components of the terminal set (which resemble rates of for­
mation of the final market shares in the diffusion of innovation studies or 
the rates of conversion of initial ingredients into the final products in the 
autocatalytic chemical reactions or the rates of origination of new species 
in the biological studies). The results show that in the case with multiple 
limit states2

, the rates are different and depend upon the smoothness of 
the urn function f (-) in neighborhood of the states. The rate of develop­
ment of the predominant trend. in general, does not exist for a process 
with multiple limit states - some of the tendencies develop quicker, others 
slower. 

All phenomena mentioned above demonstrate the essential nonlinear­
ity of the stochastic processes generated by the generalized urn scheme 
in the case of multiple equilibria. Also one can see that the theorems 
given here represent a powerful and convenient tool for studying and 
demonstrating the nonlinear effects pertinent to the processes. 
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