
Working Paper 
Persistent Unstable Equilibria 

in Wonderland 

Alessandra Gragnani 
Alexandra Milik 
Alexia Prskawetz 

Warren C. Sanderson 

FQII lASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

E M 1  Telephone: +43 2236 807 Telefax: +43 2236 71 31 3 E-Mail: info@iiasa.ac.at 



Persistent Unstable Equilibria 
in Wonderland 

Alessandra Gragnani 
Alexandra Milik 
Alexia Prskawetz 

Warren C. Sanderson 

WP-95- 1 18 
November 1995 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute, its National Member 
Organizations, or other organizations supporting the work. 

re. 1 1 ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

Smd: Telephone: +43 2236 807 Telefax: +43 2236 71 31 3 E-Mail: info@iiasa.ac.at 



ABOUT THE AUTHORS 

Alessandra Gragnani is a Ph.D. student, Department of Electronics and Computer Sciences, 
Politecnico di Milano, Milano, Italy. 
Alexandra Milik has a master degree in Technical Physics from the Vienna University of 
Technology and is currently research assistant at the Institute for Econometrics, Operations 
Research and Systems Theory at the same university. 
Alexia Prskawetz has a Ph.D. in Technical Mathematics from the Vienna University of 
Technology and is currently research assistant at the Institute for Econometrics, Operations 
Research and Systems Theory at the same university. 
Warren Sanderson is a senior research fellow in the Population Project a t  IIASA. He is on 
sabbatical leave from the Department of Economics, State University of New York at Stony 
Brook, Stony Brook, New York, U.S.A. 



ACKNOWLEDGEMENTS 

The authors acknowledge financial support from the Austrian Science Foundation under 
contract No. P9608-SOZ. This paper was written while the first author visited the Institute 
of Econometrics, Operations Research and Systems Theory at the Vienna University of 
Technology. 

In particular the authors thank S. Rinaldi and P. Szmolyan for their helpful comments and 
explanations. 



ABSTRACT 

Models of the interactions between population, economy, and environment often contain 
nonlinear functional relationships and variables that vary a t  different speeds. These prop- 
erties foster apparent unpredictabilities in system behavior. Using a simple deterministic 
model of demographic, economic and environmental interactions, we illustrate the useful- 
ness of geometric singular perturbation theory and local bifurcation theory. In particular we 
show how it is possible to obtain analytic expressions for: (1) the level of emissions above 
which environmental deterioration begins, (2) the time it takes from reaching the critical 
level of emissions to the beginning of rapid environmental deterioration, and (3) the level 
of emissions at the time that rapid deterioration begins. Because our results are analytic, 
they make the outcomes of demographic, economic, and environmental interactions more 
predictable, and, therefore, potentially more manageable. 

vii 
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WONDERLAND 

Alessandra Gragnani 
Alexandra Milik 

Alexia Prskawetz 
Warren C. Sanderson 

1 Introduction 

One of the difficulties in managing complex environments is the appearance of phases of 
surprising behavior. One example of this is the appearance of the stratospheric 'ozone 
hole7 over Antartica. Surprises can result because we do not know the structure producing 
environmental changes, or because, although we know the structure, we cannot accurately 
estimate its parameters. Surprises can also occur when the structure and parameters are 
known. 

In a recent paper, Milik et al. (1995) studied the seemingly unpredictable occurrence of 
a rapid environmental deterioration in the context of a deterministic nonlinear model of 
the interactions between population, economic development, and the environment. Using 
local bifurcation theory, they were able to state the specific demographic, economic, and 
environmental conditions that separate the region where the environment could cleanse 
itself from the region where emissions were causing environmental damage. These conditions 
determine what they called the critical border. Even when an increasing emission flow causes 
the critical border to  be crossed, rapid environmental deterioration might begin only many 
years later. 

Surprising periods of rapid environmental deterioration do not have to occur in reality or in 
the simple model that we use here (see Sanderson (1994a) and Milik et al. (1995)). In this 
paper we assume that the model has parameter values that imply, after an initial period of 
environmental stability, a rapid environmental deterioration, and determine analytically the 
time it takes from crossing the critical border to the onset of rapid environmental change. We 
call this interval the environmental grace period. The environmental grace period is a time 
of persistent, but unstable equilibrium. From an environmental manager's viewpoint, it is 
a darigerous period because the system has become unstable, but changes in environmental 



quality are not yet signalling the seriousness of the pollution problem. Moreover, in the 
grace period we assume that there are no policy interventions. This corresponds roughly to 
the R-policies analysed in Rinaldi et al. (1995). 

Our calculations are based mainly on a paper of Rinaldi and Muratori (1992) on cyclic 
behaviour of predator-prey systems. In particular, we set up an integral equation relating 
the point where the system's trajectories cross the critical border and the point where rapid 
environmental deterioration begins. Once we know the date of the end of the grace period, 
it is easy to compute the polluton flow at that point. 

The paper is organized as follows. In Section 2 we present the model and its assumptions. 
Section 3 gives a first insight into the systern's dynamics. The analysis of the model in 
terms of slow-fast dynamics is presented in Section 4. Section 5 illustrates the calculation 
of the integral equation and the length of the grace period. How this length depends on 
the initial conditions of the environment and per capita output and the parameters of the 
model is presented in Section 6. Numerical simulations and discussions of sensitivity are 
given in Section 7. We close with some conclusions and a suggestion for further research 
(Section 8). Finally, the appendixes document some of the mathematical calculations. 

2 The model 

The world we shall step into now is a continuous version of Sanderson's Wonderland model 
(Sanderson 1994a) of economic, demographic and environmental interactions that has been 
studied in Milik et al. (1995) (Appendix A). To facilitate analytical derivation of the length 
of the grace period, we 

1. replace concave functions involving exponential terms with Monod type functions and 

2. omit the dynamics of the pollution flow per unit of output. 

The first modification poses no difficulties since the qualitative behaviour of Wonderland 
remains the same (see Section 3). The second assumption guarantees that the grace period 
will exist and have a strictly positive, finite duration (see Milik et al. 1995, p. 13). As the 
focus of the study is to determine the length of the grace period, the second assumption 
does not really constitute a severe restriction. 

The dynamics in our modified Wonderland model is characterized by three state variables: 
x( t )  . . . population 
y(t) . . .per capita output 
z( t)  . . . quality of environment (stock of natural capital) 

which evolve according to ' 

 or notational convenience we omit the time argument t in the following. 



where 

n(y, z) = b(y, z) - d(y 7 z) population growth rate 

- l ( l +  M b(y, 3) = PI [B PY(Y,Z)+~ ) 1 crude birth rate 

d(y, 3) = 61 [62 - $(I  + a)] (1 + 630 - z ) ~ )  crude death rate 

Y ( Y  7 z)  = Y - C(Y, z) net per capita output 

pollution control 

K CC(Y,Z)X pollution flow 

with 20 positive parameters, which can be grouped as follows: 

population: PI, P2, P, 61,62, 63, a,  

economy: y , 7, A, p 

environment: K , E ,  6, p ,  w, v 

environmental policy: 9, p 

and where the inequality 1 > 6 has to hold (Appendix B). 

Equation (1) states that population growth n(y ,z)  depends endogenously on per capita 
output y and the level of natural capital z. Natural capital is assumed to be bounded in the 
interval [ O , l ] .  If natural capital is not polluted a t  all, it takes on the value z = 1. On the 
other extreme, when the environment is so polluted that it produces the maximum possible 
damage to human health and to the economy, z = 0. 

The endogenous population growth rate is defined by the difference between the crude birth 
rate b (ratio of births to the population per unit of time) and the crude death rate d (ratio of 
deaths to the population per unit of time). Both crude rates decrease with increases in net 
per capita output y(y, z). Additionally, the death rate rises as the stock of natural capital 
decreases. 

Net per capita output y(y7 z) is defined as per capita output, net of per capita expenditures 
on pollution control C ( ~ , Z ) .  How polluted the environment is can be determined by the 



value of z. The lower the value z, the more polluted is the environment. Pollution control 
expenditures are assumed to depend on how polluted the environment is (i.e. on z)  and not 
on the current flow of emissions. For example, we spend money on reducing the amount of 
particulate matter in the air because the environment is polluted and we have difficulty in 
breathing. If we lived in a place where the wind always blew the particles away and we were 
always left with clean air, we would not spend any money on pollution control, even though 
there were pollution flows. In addition, per capita spending on pollution control increases 
with per capita output. 

The availability of natural capital also influences the growth rate of the economy as indicated 
by equation (2). The lower the stock of natural capital is, the lower the rate of per capita 
output growth will be. When the environment is totally polluted, i.e. z = 0, per capita 
output shrinks at the rate -q,  while per capita output increases at the rate y if environment 
is not polluted a t  all, i.e. z = 1. 

The growth of natural capital (see equation 3) is assumed to be logistic. The speed at which 
w f x,y,z -6zP natural capital regenerates (indicated by the term v [ - w  f ( ~ , v , z ~ ~ s z p + l  ] ) depends positively 

on the level of natural capital z and is negatively influenced by the amount of pollution flow 
f (x, y, z) ,  while v represents a positive scaling factor. This specification is based on the idea 
that nature has the ability to  cleanse itself, but that the strength of this ability diminishes 
as the stock of natural capital decreases. The function g(z) = :z~  transforms the stock of 
natural capital into a flow of cleansing services measured in the same units as the pollution 
flow; this cleansing flow diminishes as the stock of natural capital decreases. The difference 
between the two flows, [f zp - f (x, y, r)] , is the net effect of natural and human forces on 
the environment. When this net flow is zero, the level of natural capital remains constant. 
The pollution flow f ( x ,  y , z )  that sets the net flow equal to zero, and which, therefore, 
maintains constant the stock of natural capital, is called the critical pollution pow. Clearly, 
the critical pollution flow is :zp. If the actual amount of the pollution flow is above the 
critical flow the environment deteriorates, while, if it is below, the environment regenerates. 
The fraction : is the level of the critical flow when the environment is unpolluted (z = 1). 
The parameter p determines how quickly the critical flow decreases as the stock of natural 
capital falls. 

The pollution flow f (x, y, z )  - which refers to the emission of pollutants into the environment 
per unit of time - is determined by the impact on resources as given by the well known I-PAT 
identity pxy, where the constant p denotes the pollution flow per unit of output, and by 
the amount spent on pollution control c(y, z). If the environment is not polluted a t  all, the 
second term vanishes and the pollution flow equation becomes the I-PAT identity. 

2The I-PAT identity states that the impact on natural resources and environment, I, is related to the 
size of the population, P, to per capita output (afluence), A, and to technology, T, which refers to pollution 
flow generated per unit of output (Ehrlich and Holdren 1971). 



3 Numerical results 

To illustrate that the change in the functional forms as stated in the previous section does 
not alter the qualitative behaviour of Wonderland and to highlight the possibility of a 
sudden deterioration of the environment we illustrate the system dynamics given the same 
parameter values as in Sanderson (1994b, p.22): 

Population: PI = 0.04,Pz = 1.375,P = 0.16,S1 = 0.01,S2 = 2.5, S3 = 4 , a  = O.l8,29 = 15 

Economy: y = 0.02, q = 0.1, X = 2 ,p  = 1 

Environment: K = 2 , ~  = 0.02,S = 1 , p  = 2,w = 0 . 1 , ~  = 1 

Environmental policy: p = 0.5, p = 2 

with the initial conditions set a t  the values: x = y = 1, z = 0.7 and the time specified in 
years.3 We observe (Figure 1 a,b) that the system variables change with very different veloc- 
ities, i.e. they exhibit slow-fast dynamics. Initially, the quality of environment z increases 
very fast to  a high level while population x and output y remain nearly constant. After 
this phase of fast evolution, population and output increase with a slow speed, while the 
environment remains on its high level. Once output and consequently the actual pollution 
flow f (x, y, z) are too high, the environmental quality drops very fast. This environmental 
collapse stops a t  a very low value near z = 0 and is followed by a slow decline of pop- 
ulation and the economy. Surprisingly, even when we have crossed the critical pollution 
flow (at time TI), the decrease in natural capital, which will be unavoidable, might occur 
many time steps later (at  time T2). This is very important for practical purposes, because 
noticeable changes in the stock of natural capital may come only after the pollution flow 
is significantly above the critical value. Since the actual pollution flow always stays above 
the critical pollution flow from there on, environment continually deteriorates and we end 
up with no natural capital being left, i.e. near z = 0.4 The time span between TI and T2 is 
exactly what we denote as the environmental grace period. 

4 Analysis of the model in terms of slow-fast 
dynamics 

The observed slow-fast dynamics suggest analyzing the model using concepts of geometric 
singular perturbation theory. This has been already done in detail in Milik et al. (1995, p. 
9ff). We only summarize those results here. 

3The numerical calculations have been performed using the LOCalBIFurcation program LOCBIF (Khib- 
nik et al. 1993). For numerical integration we used a stiff fifth-order solver. 

41n Milik et al. (1995) it is shown that the actual pollution flow might well fall below the critical pollution 
flow again, if pollution flow per unit of output decreases over time and pollution control expenditures are 
increased. 
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Figure 1. Time series of a: population and per capita output, b: natural capital, actual and 
critical pollution flow, with initial condition x = 1 , y  = 1, z = 0.7. Parameters are at their 
reference values. 



Corresponding to  the orders of magnitude of the rate of change of the variables, natural 
capital can be regarded as the fast variable while population and economy move slowly over 
time. With an appropriate rescaling of parameters (y t ~ y ,  7 t €7, P1 t S1 t 
the system can be written as a singularly perturbed problem on the fast time scale, 

with E being the small perturbation parameter. 

Consideration of their slow manifolds is important for the analysis of such systems. These 
surfaces are defined by the equilibrium solutions of the layer problem given by system (4)-(6) 
with E = 0. They are Z,, Zo and Z1 defined, respectively, by z = z(x, y), z = 0 and z = 1 
where z = z(x, y) is implicitly given as the solution of the equation 

As can be seen in Figure 2, Z, intersects Zo along the x and y axes and intersects Z1 along 
a critical curve C given by the solution of equation (7) with z = 1: 5 

6 
xyp = -. 

W 

This last intersection corresponds to a transcritical bifurcation of equilibria for the layer 
problem. Crossing this curve, the equilibrium z = 1 changes its stability: for xyp < ! it 
is stable, while it is repelling for xyp > !. Similarly, it can be shown that the equilibrium 
z = 0 is stable for all x > 0 and y > 0. The basins of attraction of the two manifolds (Zo 
and the stable part of Z1) are separated by the repelling manifold Z, given by equation (7). 

For those parts of phase space where the manifolds Zo, Z1 and Z, are hyperbolic, i.e. away 
from bifurcation curves like C and for E sufficiently small the layer problem captures the fast 
evolution of the variable z towards or away from the slow manifolds while the slow variables 
x and y can be regarded as slowly varying 'parameters7 moving on the slow manifold. 

Around the transcritical bifurcation curve we observe an interesting and somewhat counter- 
intuitive phenomenon (see Figure 2). The trajectory is not repelled from Z1 immediately 
but follows closely the repelling part of the manifold Z1 for a while until it is ultimately 
repelled away. It seems as if the singularly perturbed system needs some time to Lfee17 the 

5 ~ e  have visualized the set of equilibria of the layer problem with numerical computations using the 
program package Mathematica (Wolfram, 1991). 



attracting manifold 

repelling manifold 

/ slow evolution of singularly perturbed system 

fast evolution of singularly perturbed system 

Figure 2. The invariant slow manifolds Zo, Z1 and Z, together with orbits of 
the singularly perturbed system obtained for three different initial conditions, i.e. 
(0.5,1,0.8), ( l ,1 ,  0.8), (1.5,1,0.8). Parameters are at their reference values. 



change in stability. This is related to the exponential attractiveness of the stable part of 
the slow manifold Z1. The trajectory is exponentially close to the slow manifold. Therefore 
it takes a considerable time interval 0 (1 )  until the trajectory leaves a small O(E) neighbor- 
hood of the now unstable slow manifold. This phenomenon is studied rigorously in Schecter 
(1985) for two dimensional singularly perturbed problenls with a transcritical bifurcation 
for the layer problem. 

In the following section we study the specific values of the slow variables x and y and the 
time needed until the fast variable z drops down once the manifold 2, has been crossed. 

5 Length of the environmental grace period in Won- 
derland 

The time span between the crossing of the orbit of the system with the manifold Z, and 
the beginning of the rapid environmental deterioration, when the trajectories are ultimately 
repelled away from the unstable manifold Z1, the grace period, can be calculated as follows. 
Equations (4)-(6) can be written as 

where G(x,y ,z)  = Y , ) ,  H(y ,z )  = y [y - (y  + q ) ( l  - z)*] and F ( x , y , z )  = 
w f (x,y,z)-6zP ' [- w f (x,y,z)-6zp+1 1 .  

Consider the orbit of system (9) - (11) that starts at AE = ( x I N , y ~ ~ ,  1 - E )  and where 
f (xrN, y r ~ ,  1 - E)  < i(l - E ) ~  holds, i.e. we start above the manifold 2,. In addition, in the 
following, the population growth rate is assumed to be positive. If E > 0 is small, this curve 
tends towards the manifold Z1, moves slowly to the right of the manifold Z, and leaves the 
&-tube of the manifold Z1 crossing the surface Z1-, at the point BE = (xbUT, yhUT, 1 - E)  

(see Figure 3). The point of intersection of the orbit with the manifold Z, has been denoted 
by DE = (ZE,ijE,Z). Even though Z depends upon E ,  for notational convenience, we have 
omitted the superscript E.  

To calculate the time span between D~ and BE we use the approach illustrated in Rinaldi 
and Muratori (1992) with one distinction. Since we are interested in the dependence of the 
grace period on the critical value 5 of the environment, i.e. the value of z where the orbit of 
the system crosses the manifold Z,, we consider the path DE B~ in the following calculations, 
and not the path AEBE as done in Rinaldi and Muratori (1992). 

We view 5 as the long-run value of the stock of natural capital in the absence of anthro- 
pogenic pollution. In the following we study only the time from D' to  BE. Had we begun 



Figure 3. The trajectory from ij" to BE along which the system is integrated. 

the analysis prior to D", it would have been impossible to  derive the relationship between 
the grace period and the parameters of the model, holding 5 fixed. 

From equation (11) it follows that 

while from equation (9) and (10) we have 

and 

so that by substitution of (13) or (14) into (12), we obtain, respectively 



Thus, we have rearranged terms such that the left and the right hand sides of equations 
(15) and (16) are of order 1. 

Integrating (15) or (16) from D" to BE yields respectively 

The right hand sides of equations (17) and (18) can be approximated with their limits for 
E going to zero, since each term of the integrant is of order 1, yielding 

where, for equation (19), y = y(x) is the solution of 2 = a given the initial condition 

i: or 6 ,  while, for equation (20), x = x(y) is the solution of d" = given the 
dy H ( Y , ~ )  

same initial condition. Vile have therefore approximated, only in the right hand sides of 
equations (17) and (18), the trajectory from A' to BE with the dashed line in Figure 3 
passing through points A = (xrN,yrN, 1) and R = ( X O U ~ , Y O U T ,  I ) ,  where D = (2,ij, 1) is 
its point of intersection with the critical curve C. 

Equations (19) and (20) can be used to express XOUT and y o u ~  - which are an approximation 
of x&uT and y&,,T for E t 0 - as a function of 2, i? or 2, ij respectively. In principle, it is 
sufficient to determine only either XOUT or YOUT and calculate the other value using the 
explicit form y(x) or x(y). 

Once we have calculated the values of XOUT and yo ,y~ ,  we can determine the time span, T, 
between the point of intersection, D", of the trajectory with the manifold ZT and the point 
BE of rapid environmental deterioration (see Figure 3). In particular we can calculate the 
grace period T as follows. 

Summing up, we can either use equations (19) and (21) or (20) and (22) to  obtain XOUT 

and T or YOUT and T, respectively. 

6We need either 2 or ij since we can calculate the other value by solving F(2, ij, 1) = 0. 



6 Sensitivity analysis 

Using the results of the previous section we can investigate the dependence of the grace 
period on the system's parameters and the critical values of the economy, i j  and the envi- 
ronment, 5 .  In particular, there are 11 parameters affecting the grace period which can be 
grouped as follows: 

economy: y, p 

environment: 6, w, v 

Regarding the parameters defining the population growth rate we shall restrict our sensitiv- 
ity analysis to the most important ones, which are the levels of the crude birth and death 
rate, ,Bl and S1 respectively. 

For analytical convenience we fix i j  in the following. To proceed we first calculate x ( ~ )  as 

the solution of = given the initial condition i j .  This yields 
dY YT 

where 

6 and Z = -. 
WPY 

We start by analyzing the effect of the parameters defining the critical border, i.e. p, S and 
W. 

The derivative of the grace period, T, w.r.t. the parameter p can be calculated as follows. 
Differentiating equation (20) w.r.t. the parameter p yields 

wpxy-6  
where F(x, Y, l )  = v[ -wpxy-6+l  ] and H(y ,  1) = yy. Substituting equation (23) one can show 
that the integrant in (25) equals zero. Since F(xouT,  you^, 1) is negative and H(youT, 1) is 
positive, it follows that dy::T equals zero. 

To determine the change in the grace period when the parameter p is varied, we differentiate 
T (22) w.r.t. the parameter p 



Since = 0, the grace period does not depend on the parameter p. 

Similarly, one can show that is equal to zero and consequently also g. 
Contrary, differentiating (20) w.r.t. the parameter S yields 

For y > $ the integrant is negative, so that dyzrT has to be less than zero since F(>g~::;ll) 
is negative. Together with (22) it follows that the grace period decreases with S. 

In a similar way one can calculate w, dzr and dygx. The same reasoning as before 
yields that the grace period decreases with increasing values of the speed at which natural 
capital regenerates, v, and increasing values of the birth rate level, P1, while it increases 
with increasing values of S1. 

To determine the change in the grace period when the parameter y varies we first differentiate 
equations (20) and (22) w.r.t. the parameter y, obtaining 

From the first equation we can explicitly solve for &-. Plugging this expression into 
the second equation yields 

For y > y" the integrant is negative since IF(x, y, 1)(  < I F(xOUT, YOUT, 1) 1 .  Therefore, an 
increase in y decreases the grace period. 

Similarly, one can determine the effect of changes in the level of the economy at the inter- 
section point of the actual and critical pollution flow, $,on the grace period, which yields 

Since F(xOUT, YOUT, 1) is negative and the integrant is positive, the sign of the derivative $ 
is indeterminate. Finally, the grace period changes with the critical level of the environment 
as follows 

Each term in the denominator is negative implying that the grace period increases with 
increasing values of 2 .  



7 Discussion 

The sensitivity analysis in the previous section has revealed two surprising results. First, the 
grace period (T) does not depend on pollution flow per unit of output (p) and the parameter 
w and second, the grace period depends negatively on the flow of cleansing services (6). This 
means that once we have crossed the critical pollution flow, the time it  takes until natural 
capital begins to collapse is independent of the pollution flow per unit of output and is even 
negatively influenced by the ability of nature to cleanse itself. 

Obviously, these results must depend on the speed at which natural capital regenerates (in 
case of w f (x, y ,  z) < 6zP) or degenerates (in case of w f (x, y, z) > 6zP) as indicated by the 
term 

As the population, the economy and natural capital evolve over time, the speed of regener- 
ation or degeneration of the environment will change. In particular, the derivative of (33) 
w.r.t. time is given by the following expression. 

,(af(x,~,z) dx ; af(x ,~+)  d~ a m  d z )  - 6 p z ~ - l &  
ax dt ay dt az dt 

(W f (x, y ,  2) - 6zP + 
dt I 

Evaluating (34) at z = 1 and (x, y )  2 ( 2 ,  $) yields 

where we have used equation (23) to express x as a function of y. Intuitively, equation (35) 
indicates the acceleration of the degeneration of the environment at z = 1 and therefore 
implicitly influences the time it takes until an environmental collapse takes place. More 
specifically, at the onset of rapid environmental deterioration the system's dynamics change 
from slow to  fast. But in order for this to happen, the speed at which the environment 
degenerates has to change. Since w and p are no longer present in equation (35), they have 
no effect on the grace period. Contrary, changes in v, 6, y and the parameters characterizing 
the endogenous population growth rate n will change the grace period. The grace period 
will also depend on 2 and $. 

In order to determine the size of the effect of changes in the parameters and the critical 
values of the environment and the economy on the grace period, we have numerically solved 
equations (20) and (22) for selected parameters using the program package Mathematica 
(Wolfram, 1991). The parameter values are the same as given in Section 3 except the value 
of v which is reduced to 0.5. Moreover $ = 1 and 2 = 0.999. 



- grace period - -x  - ratio of  actual lo crilical pollution flow 

Figure 4. Grace period and ratio of actual to critical pollution flow versus the parameters 
a: 6, b: v, c: d: 6l and e: 7. Parameters are at their reference values (except v = 0.5), 
jj = 1 and 5 = 0.999. 



- grace period ' 'X ' ratio of actual to mitical pollution flow 

Figure 5. Grace period and ratio of actual to critical pollution flow versus the critical values 
of a: the economy $, and b: the environment 2. Parameters are a t  their reference values 
(except v = 0.5), 6 = 1 and z" = 0.999. 

In Figure 4 and Figure 5 the grace period and the ratio of the actual to the critical pollution 
flow are plotted for the parameters discussed above and for the critical levels of the economy 
and environment. In varying the parameter values we have to take care not to change 
their order of magnitude since this would alter the time scale of the system's variables and 
therefore the analysis in the previous sections. 

The numerical calculations confirm the analytical results. Notice that,  for our choice of 
the paramter values, g, whose sign is not determined, is positive. Nevertheless, for other 
choices, it can either be negative or change its sign. Amazingly it might take up even to 
60 years after we have crossed the critical border until a rapid environmental deterioration 
actually takes place (see, for example Figures 4.a and 5.b). As already mentioned several 
times, even when we have crossed the critical pollution flow, the collapse in natural capital 
might occur many years later. To get some feeling to what extent we might actually ex- 
ceed the critical pollution flow before a rapid environmental deterioration takes place, we 
plot the ratio of the actual to the critical pollution flow at the point of the rapid environ- 
mental deterioration, namely P " O ' $ ~ u T .  One might expect that,  the higher is this ratio, 



the longer will be the grace period, i.e. that the ratio and the grace period are posivitely 
correlated. In fact this happens in Figures 4.a, 4.b and 5.b where 6, v and 2 are varied. In 
the remaining figures, where PI,  61, y and y are varied the ratio and the grace period are 
negatively correlated. For example, in Figure 4.e, an increase in y implies an increase in 
the ratio and a decrease in the grace period. This positive or negative correlation can be 
intuitively explained considering that 6, v, and 2 do not change the dynamic of the system 
on the manifold Z1, while PI ,  61, y and i j  change it (see equations (1)-(3)). In particular, 
the dynamics on Z1 become faster by an increase in Dl and 7 and a decrease in S1, while 
the influence of a variation in i j  is not determined. For example, an increase in y decreases 
the grace period, but a t  the same time it increases the growth rate of the economy. As a 
result the growth rate of the actual pollution flow and therefore the ratio increase. 

Moreover, as the numerical results show, the actual pollution flow might be even 20 times as 
large as the critical pollution flow (see for example Figure 4.b) when the rapid environmental 
deterioration begins. 

8 Conclusions 

The starting point for this paper is the nonlinear demographic, economic, and environmental 
interactions in an artificial world called Wonderland. A special feature of Wonderland, and 
some other environmental models as well (see Rinaldi et al. (1995)), is that the variables 
can exhibit slow-fast dynamics, where during certain periods some variables vary much more 
rapidly than others. 

It turns out that even when an increasing pollution flow causes the system's trajectory to 
cross the critical border, so that the regenerative capacity of the environment is less than 
the pollution flow, nothing unusual seems to happen for a while. Only after a period of time, 
that in some cases can be quite long, does the environment suddenly begin to deteriorate. 
This grace period depends on parameters that influence the rate of economic growth, the 
crude birth rate, and the power of nature to detoxify itself. 

Because of the time span between crossing the critical border and the beginning of a rapid 
environmental deterioration, the pollution flow has the time to increase far above the critical 
value. Therefore, if we adopt a policy of waiting until the first signs of environmental 
deterioration are observed before actions are taken to reduce the flow of pollution (wait and 
see policies), then, when action is initiated, actual pollution flows could be high compared 
with critical flows. This could make the reduction of the actual flows to their critical values 
more difficult. Drawing out the policy implications of these findings is a natural next step. 



Appendix A - Continuous Wonderland model 

(Milik et al. 1995) 

The dynamics are given by four state variables 
x(t)  . . . population 
y(t) . . . per capita output 
z( t)  . . . quality of environment (stock of natural capital) 
p(t) . . . pollution flow per unit of output 

which evolve according to 

where 
n(Y 7 z) = b(y, z) - d(y, z )  population growth rate 

b(y7 z) = PI [a - $1 crude birth rate 

d(Y7z) = 61 [62 - &] (1 + &(I - z)') crude death rate 

Y ( Y ~  z) = Y - C ( Y , Z )  net per capita output 

C(Y, z)  = ~ ( 1  - Z ) ~ Y  pollution control 

e4 Y ,212 
l + e t ~ ( ~  - 0.51 pollution flow 

The meaning of the parameters is the same as in the text with the exception of X ,  indicating 
the constant rate at which pollution flow per unit of output decreases in a time unit. 

7 ~ o r  notational convenience we omit the time argument t in the following. 
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Appendix B - Restriction on 6 

In order to replace 

in equation (38) with the function 

we have to guarantee that both functions coincide on the range of variation of the term 
t = w f (x, y, z)  - SzP. 

Since 
t l i m t t ( e  - 1) = 1 limt,-,(e-t - 1) = +co for equation (40) and 

= -1, t limt4ta -= limt+-l+ -- t t l  = +co for equation (41) 
we have to guarantee that -1 is less than the minimum possible value of t ,  which yields, 
after some algebra, the inequality 1 2 S. 




