
Working Paper
Constraint Aggregation Principle:

Application to a Dual
Transportation Problem

WP-95-103
September 1995

IJTIIlASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@iiasa.ac.at

Constraint Aggregation Principle:
Application to a Dual

Transportation Problem

WP-95-103
September 1995

Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

FflIlASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

hwd: Telephone: +43 2236 807 Fax: +43 2236 71313 E-Mail: info@liiasa.ac.at

Abstract

Constraint aggregation technique is a new method for solving convex optimization prob-
lems. This paper focuses on the examination of the efficiency of the aggregation technique.
Some properties of the basic version of the algorithm are presented for convex optimiza-
tion problems with linear constraints. Various parameters and advanced versions of this
algorithm are examined on the example of the dual transportation problem. The results
obtained allow to formulate some interesting conclusions. Special at tention is directed to
the advantages achieved by implementation of partial aggregation idea.

Key words: Nonsmooth optimization, constraint aggregation, transportation problem

Constraint Aggregation Principle:
Application to a Dual

Transportation Problem

Rafat Rdiycki

The paper deals with constraint aggregation technique which is a general method for
solving convex optimization problems of the form

min f (x) (1)

It is assumed that the functions f : IRn H IR and hj : IRn H IR, j = 1,. . . , m, are convex
and X c IRn is convex and compact. Moreover it is assumed that the feasible set defined
by (2)-(3) is non-empty what guarantees that the problem has an optimal solution.

The problems in which both the number of constraints m and/or number of variables
n are very large seem to be a particulary fruitful area of application of aggreagtion tech-
nique. To such a class of problems one can include various semi-infinite programming
problems (e.g. path planning problems in robotics), stochastic programming problems
with constraints that have to hold with probability one, etc.

The main idea of aggregation technique is based on the assumption that the structure
of X is simple and the main difficulty comes from the large number of constraints (2).
In this case, commonly used methods may fail, because of insufficient size of computer
memory. To overcome these difficulties, the original problem is replaced by a sequence of
problems, in which the complicating constraints (2) are represented by one (or in general
more than one) surrogate inequality

where sk 2 0 are iteratively modified aggregation coeficients. By an aggregation of
original constraints a substantial simplification of (1)-(3) is achieved, because (4) inherits
linearity or differentiability properties o f (2). In [I] theoretical bases, the way how to
update the aggregation coefficients and how to use the solution of the simplified problems
to arrive at the solution of (1)-(3) is presented. Although the described method is general
enough to solve nonsmooth convex optimization problems this paper will concentrate on
the linear ones.

In section 1 the basic algorithm for the simplified version of the problem having only
linear constraints is presented. In section 2 an extension of full aggregation idea to partial
aggregation is showed. Section 3 is devoted to examine efficiency of aggregation technique
on the example of known linear optimization problem. Sensibility to the parameters values
and modifications of basic algorithm is showed.

1 The basic algorithm

Let us consider the simplified version of the problem:

min f (x) (5)

where f is convex and X is bounded, convex and closed. Below the basic algorithm
utilizing the aggregation idea for solving (5)-(7) is presented:

Algorithm A

1. : Find xO E X with f(xO)) f,;,, set k = 0.

2. : Find uk which solves
min f (u)

 AX^ - b, Au - b)) 0,

u E X.

3. : Find
Tk = 1/(k + l), k = 0,1,2, .

and define
xk+I = xk $ rk(uk - xk)

Increase k by one and if not stop criterion go to Step 1.

the above algorithm can be viewed as an iterative constraint aggregation method.
The initial equality constraints (6) are replaced by a sequence of non-stationary scalar
inequalities (9). Obviously, (9) is a relaxation of (6), so uk exists and f (uk)) f*. As an
alternative stepsize r k select ion one can assume:

It can be proved that for Algorithm A and Q which fulfilled (13), every accumulation
point xk is a solution of problem (5-7). The stepsizes r k in the basic procedure can also
be generated in a more systematic way:

r k = arg min 1(1 - T) (A X ~ - b) + T (A U ~ - b)I2.
0<7<1

To show how the aggregation technique extends to linear inequality constraints, let us
replace equality constraints (6) by a set of inequalities:

The basic algorithm can be adapted to our modified problem by transforming (9) into

where r+(x) = max(0, Ax - b)). r+(x) is simply a vector of constraint residuals for current
solution x. Obviously, if linear equality constraints Ax = b are written as inequalities
Ax - b 5 0 and -Ax + b 5 0, then the surrogate inequalities (9) and (16) are identical.

2 Partial aggregation

It is not necessary to aggregate exactly to one aggregate constraint. It is possible to
aggregate the constraints in groups as follows. Let

be subgroups of constraints (6), such that each row of (6) is represented at least once.
The overlapping of such subgroups is possible. One full aggregate constraint(9) may be
replaced by L aggregates:

Then the optimizing stepsize (14) should be replaced by

L

r k = arg min C I(1 - T) (A ~ X ~ - bl) + T (A ~ U ~ - bl) 1 2 .
0<.<1

1=1
(19)

For such a formulation of aggregated problem, the convergence properties remain the
same. In real optimization problems with many constraints, one can distinguish very
often some blocks of constraints. Such blocks contain constraints correlated by common
properties. Just in these cases it is justified to aggregate them into the subgroups. The
subgroup aggregates created in this way often have interesting practical interpretation
and may be useful in some applications.

3 An example of application

From the theoretical point of view, the' aggregation technique is first of all applicable to
the convex problems with very many constraints. As an illustrative example the particular
instance of the dual transportation problem, known as Lemarechal's problem TR48 [5],
was assumed. Although this is a relatively small ("only" 2304 constraints) linear problem,
it is very interesting due to the strong solving difficulties. In original version (without

introducing additional variables) it is a nonsmooth optimization problem with a piecewise
linear objective [4, 31.

Problem formulation

Let us formulate the dual of the transpotration problem:

N

max C siwi - C djvj
i= 1 I N j=1 I

where wi, i = 1,. . . , N are unknown potentials of sources, vj, j = 1, . . . , N are unknown
potentials of destination nodes, a;j denotes the transportation cost from source i to des-
tination j, s; and dj are the amounts available at source i and required at destination j,
respectively. In TR48 problem N = 48 and n = 2N. The particular values of transporta-
tion costs and amounts s;, i = 1, ..., N and dj, j = 1, ..., N one can find in Appendix.

Optimum value

638565 is the optimum value of the TR48 problem objective function. The primal and
dual simplex method from the CPLEX callable library [6] solve the problem in 138 and
157 iterations, respectively.

The coinputational experiment

The main purpose of the computational experiment was to recognize the behavior of the
basic algortihm various modifications and comparision of its both practical and t heoret-
ical convergences to the optimum value. Moreover, the aggregation technique has been
tested to study its sensitivity to the values of the parameters. A number of succesive ex-
periments were carried out to achieve better and better convergence. The algorithm has
been implemented in C++ and the experiment has been carried out on Sun Workstation.
The CPLEX ver.2.1 callable library was a tool to solve subproblems. Starting point was
the common one for all tests and results from Step 1 of Algorithm A. The given number of
iterations was the stop criterion and was fixed at 200. The below description of succeding
computational experiment stages results from the succesion of realized tests.

TEST A

The first test deal with the basic method with full aggregation as described in section 1.
It means that at each step one aggregate constraint

with aggregation coefficients defined as residuals:

is formed. There are not any bounds for variables in original version of the TR48 problem.
However it appears from (7), that aggregation technique requires bounds for all variables.
With no loss of generality we may assume that all variables of TR48 problem are not
less than zero. Upper bounds were set to the same value M for all variables to simplify
calculations. Full formulation of our TR48 problem version must be completed by the
bounds:

O < w , < h f , 2 = 1 , . . . , N,

o < v ~ < M , j = l , ..., N, (22)
Such a bounding box must fulfil the assumption that it contains the optimum solution
of the problem. This assumption is fulfilled for M 2 1656. In order to examine the
influence of a size of bounding box on basic version (the single aggregate, harmonic
stepsize rule (11)) of iterative algorithm efficiency three values of M were employed :
M = 3000,10000,100000. The results are presented in Figure 1 and Figure 2. Notice
that (20)-(22) is a maximization problem, and therefore the objective value in Figure 1
decreases as a function of the iteration number. One can see that convergence of the basic
algorithm is strongly related to the size of bounding box. The starting point of Algorithm
A is calculated as a point optimized objective function (5) in a case of constraints (6)
absence. However, condition (7) has to be still satisfied. So, it is rather obvious that
starting point for linear objective function has to lie on the simplex defined by bounding
box. Thus the large size of bounding box, together with relatively fast decreasing of the
stepsize, causes weak convergence of the algorithm. The upper bound M was set at 10000
to the further tests.

TEST B

The partial aggregation idea was an objective of this test. It has been tested for various
numbers of aggregates and compared with full aggregation idea. In a single test, each
aggregate contained the same number of constraints of original problem (20)-(22). Single
aggregate constraint was formed by successive constraints (21) independently of existence
practical interpretation of such an operation. It was considered that number of aggregates
L has fulfilled the equation:

(N * N) m o d L = 0

If L < N then aggregate constraints (1 = 1, . . . , L) had the form:

0 2 N 0 2 N
k k k k C C h&(w v)(wi - vj) < C C h;(w , v)aij for = 1, . . . , L (23)

where
01 = (1 - l)(NdivL) + 1

O2 = I * (NdivL)

In case L > N aggregate constraint 1 was created as follow:

0 2 0 2
k k k k C h$j(w , V)((wP - vj) < C hJj(w , V)(apj for 1 = I , . . . , L (24)

where
0, = ((1 - l) m o d (L d i v N)) * (N * N I L) + 1

0, = ((1 - l) m o d (L d i v N)) * (N * N I L) + N * N I L

Comparison of convergence of basic algorithm with upper bound M = 10000 for num-
ber of aggregates L = 1,96,192 is presented in the Figure 3. Experiments show that
increasing of the number of aggregates distinctly improves the algorithm convergence.
Nevertheless, it cannot be forgotten that increasing of aggregates number causes enlarge-
ment of the subproblem (8),(18),(10) and as a consequence of it, growth of a subproblem
solving time. The solving time needed by the single iteration of Algorithm A for various
number of aggregates is presented in the Figure 4.

The number of aggregates L = 96 was assumed in the further tests.

TEST C

Interesting results were obtained by testing various ways of partial aggregation with num-
ber of aggregates fixed at 96. In previous test the way of constraints aggregation of
problem (20)-(22) was dictated only by a comfort of programist. Much better effect gives
aggregation supported by an economical interpretation. Let us create the aggregation
constraints in more reasonable way:

where the aggregation coefficients yij, j = 1 , . . . , N are normalized residuals:

and

with

Note that such a form of aggregates has the interesting economical interpretation.

Economic interpretation o f aggregates

Considering inequalities (25) and (26), variables w; and vj have to be counted with the
same measure as cij. c;j is the cost of product unit transport between purveyor i and
receiver j . Thus variables w; and vj may be interpreted as a sale price of product unit
at source node i and a purchase price of product unit at destination node j respectively.
In a case of wiseblock aggregation for every source node i one aggregate constraint has

been constructed. The aggregation coefficients yij, j = 1, . . . , N are normalized residuals.
Such a single aggregation constraint expresses the fact that difference between an average
purchase cost a t destination nodes seen from i and a sale price at source node i ought
not to exceed an average transportat ion cost from node i (to protect against unjustifiable
purchase price growth !). The similar situation applies to destination nodes j. There is
again one aggregate for one destination node. This time, however, conditions expressed
above are formulated from the destinations nodes points of view. Notice, that in a case
of aggregates defined by (25)-(26), the subgroups overlapping appears (every single con-
straint from original problem occurs in aggregates twice). Figure 5. shows a benefit
of a wiseblock aggregation applying. The wiseblock aggregation was applied in the next
tests.

TEST D

Although consecutive modifications of the solving method for TR48 problem based on
constraints aggregation, gave the improvement of the convergence, the efficiency of the
algorithm has been still poor. It must have been caused by a harmonic stepsize calculation
(11). This simplest method used in tests until now led to premature saturation state. On
the contrary, an attempt of stepsize calculation from (14) constitutes an optimization
problem by itself. It is because of nonsmooth character of function (14). Because of it,
the following rules for stepsize calculation were employed:

1. Heuristic 1 rule - it uses 71, = 1, if it decreases the Euclidean norm of the constraint
residuals; otherwise 71, = 1/(k + 1);

2. Heuristic 2 rule - it uses, as above, 71, = 1, if it decreases the Euclidean norm of the
constraint residuals; otherwise if 71,-1 decreases this norm then 71, = 71,-1 (stepsize
is kept); otherwise (if 71,-1 does not decrease the norm) 71, = ,B * (~ 1 , - ~) (where
,B = 0.95);

3. Near optimal stepsizes - a kind of estimation of (14) was used, namely a modificated
"golden division" rule.

First two methods were implemented in order to slow down the rate of stepsize de-
creasing. Heuristic 1 rule due to its simplicity is very easy to solve, but the rate of stepsize
decreasing remains too fast. Much more flexible is Heuristic 2. The stepsize exchange may
be controled by the ,B coefficient setting. The difficulty is that the setting of such a value
needs many experiments and it is not easy to set one, best value for the various solved
problems. To make matters worse, this value is strongly interrelated with other parame-
ters of the algorithm and changing one of the parameters may lead to the deterioration of
the convergence. In our tests ,B was set-at 0.95 - the value that ensure the slower stepsize
decreasing. The purpose of the third method is not to control the stepsize decreasing but
to find the stepsize as near as possible to the optimum (14). Unfortunatelly it is difficult
to find such an exact value. Thus method using "golden division" rule was adapted to find
near optimal stepsize. The modification comprises a way of search interval defining. Of

course primitive (in the first iteration) search interval is [O, 11. In the subsequent iterations
of the algorithm this interval depends on the stepsize of the previous iteration. In most
of cases the search intervals decrease but it is still possible to take the size [0,1].

Let assume the following order of points of "golden division":

For current iteration I; of the Algorithm A the procedure of the near optimal stepsize
finding seems as follow:

2. : 22 = (a * x1)/(1 - a) ;

3. : if 22 > 1 then 23 = 1.0; 22 = a; go to Step 6

4. : If Ilres(x2)ll > Ilres(xl:~ll then 23 = 22; 22 = x l ; go to Step 6

5 . : 22 = x1 go to Step 2

6. : Apply traditional "golden division" method for the stepsize search interval [0.0, x3]
and the current value of 22;

The number of iterations of traditional "golden division" method was set at 10, the
number sufficient for calculation the near optimal value with the absolute accuracy 4

All above methods were compared with the simplest, harmonic method (11). Results
are shown in Figure 6. Surprisingly, the Heuristic 1 stepsize rule efficiency was comparable
with the Near optimal one, while Heuristic 2 rule for ,tl = 0.95 was worse even than
Harmonic one (possibly, this time, the stepsize decreasing was to slow).

TEST E

Addition of all active constraints (aggregates) from previous iteration to the current solved
subproblem (8)-(10) was the last modification introduced into a method of TR48 problem
solving, based on aggregation principle. Obviously, it causes increasing of a total number
of constraints in subproblem and growth of a solving time. The number of all constraints
in subproblem may fetch the number of 2* L. Advantages achieved by such a modification
fully make up for above weakness. Convergence of the aggregation method with main-
taining of active constraints is much better than the previous versions of the algorithm.
Comparison of various stepsize calculation methods for this modification is presented in
Figure 7 and Figure 8. The advantages of the last modification are most visible when
Figure 7 is compared with Figure 6.

Although it is not an objective of this paper to compare different methods, some ad-
vantages of aggregation technique can be observed. As a result of logical aggregation in
related subgroups, that is to say by exploiting the specific characteristics of the model, one
can improve computational efficiency. Partial aggregation, which does not take into con-
sideration relations among constraints does not give such good effects. It follows from the
tests that harmonica1 stepsize rule is computationaly inpractical. As it could be expected,
the optimizing stepsize rule performed significiantly better than other ones. Surprisingly
good results gives, however, adding in the auxiliary subproblem all active aggregates from
the previous iteration. Moreover, additional experiments show, that these results are not
sensitive with respect to the size of the bounding box. Obviously experiment has been
performed for only one specific problem and in other cases results may differ sligthly.
Boldly one can say, however, that applying of aggregation technique to huge network
problems may bring surprisingly good results.

5 Appendix

The values of transportation costs c ; j and amounts s; , i = 1, ..., N and d j , j = 1, ..., N
for dual Transpotration Problem TR48:

Matrix C used to define c; j :

The way of defining c;j:

nr=O;
for(i=l;iiN;i++)
for(j=i;jiN;j++){
c [i- 11 [j] = dane [nr] ;
nr++;)
for(i=O;iiN;i++){
c[i] [i]= 100000;
for(j=O;jii;j++)
c[ilUl=cLl[il;)

References

[I] Yu.M. Ermoliev, A. V. Kryazhimskii and A. Ruszczyhski "Constraint Aggregation
Principle in Convex Optimization", IIASA Working Paper WP-95-015, Laxenburg,
February 1995.

[2] J . Buga, I. Nykowski "Tr~nsportation problems in Linear Programming", PWN,
Warszawa, 1974 (in Polish).

[3] J.-B. Hiriart-Urruty and C. LemarCchal, Convex Analysis and Minimization Algo-
rithms, Springer-Verlag, Berlin, 1993.

[4] K.C. Kiwiel, " Proximity control in bundle methods for convex nondifferentiable min-
imization", Mathematical Programming 46(1990) 105-122.

[5] C. LemarCchal and R. Mifflin, eds., Nonsmooth Optimization, Pergamon Press, Ox-
ford, 1978.

[6] Using the CPLEF~ Callable Library and CPLEF~ Mixed Integer Library, CPLEX
Optimization, Incline Village 1993.

10000 OH
1 3 5 7 91113151719212325272931333537394143454749

Iteration

- M=10000 - M=100000
x - opt

k k Figure 1: Objective value f (w , v) as a function of the iteration number k for various
upper bounds.

1 I

1 3 5 7 9 1113151719212325272931333537394143454749

Iteration

Figure 2: Norm of residual (zzl ~ E ~ (h ? (w ~ , v ~)) ~) ' ' ~ as a function of the iteration
number k for various upper bounds.

Figure 3: Norm of residual as a function of the iteration number k for various number of
aggregates

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iteration

Figure 4: CPU time needed by one iteration of Algorithm A as a function of the iteration
number k for various number of aggregates

- wiseblock aggr

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iteration

Figure 5: Norm of residual as a function of the iteration number k for various ways of
aggregation

1000000

100000

& loo00

S
Heuristic 1 3 1000

-Heuristic 2 2
2 loo

10

1

1 3 5 7 9 1113151719212325272931333537394143454749

Iteration

Figure 6: Norm of residual as a function of the iteration number k for various stepsize
rules

Figure 7: Norm of residual as a function of the iteration number k for kept in subproblems
all previous active aggregates and various stepsize rules

i i ~ l i I l i l i l l ~ l ~ l : : : : i : I ~ i i ~ ~ I I I ~ I + i : : i I i ~ : I : ~

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration

Fi
X - Near Optimal

Figure 8: Objective value f(zuk,vk) as a function of the iteration number k for kept in
subproblems all previous active aggregates and various stepsize rules

