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Abstract 

In this paper, we shall discuss the bounds for the optimal value of recourse prob- 
lems from the point of view of assumptions and of possible generalizations. We shall 
concentrate on bounds based on the first order moment conditions and to those based 
on sample information. We shall indicate when it is possible to remove the convexity 
assumptions, when there is a hope for extensions to multistage problems and we shall 
point out reflections of bounds and stability results. 



1. BOUNDS FOIL STOCIIASTIC PROGRAMS 

Thc irit,crest in bounding the optimal valuc of stochastic programs has been apparent 
from the very origin of stochastic programming, cf. Edmundson-Madansliy inequality [41] 
ill the fifties, minimax bounds [52] in the sixties, bounds based on the rno~lient probleln 
[Ill-[13], [24] or bounds on the error due to the approximation [34], [51] in the seventies. 
The reasons come from iricomplete information about the distributioil and from numerical 
techniques: we co~istruct and solve approximate problems using various algorithms. We 
need stopping rules and tests of optimality, an error analysis, strategies for refinement, 
conclusions colicerrling the rcsults valid for the true problem, statcments about stability 
and robustncss of the output, etc. See e.g. [5], [36] for further discussions. 

Bounds become often n part of a numerical procedure and we are naturally interested in 
numerically tractable bounding techniques. Gcnerally speaking, it is easier to bound the 
objective function and its optimal value than to gct bounds on optimal solutions and it 
is not, easy to cxtend the scsult,s valid for two-stage stochast,ic programs to the multistage 
c:;i.sc:. Diff(:r(:iit i l . l ) l>~~ i l . ( : l i (~~  r~(lliir(: (1iffi:rciit ;~.ss~iilil)t,ioiis, for inst,a.xi(:(:, t,ll(:r~ il,r(> t,(:(:liniclli(:s 
applicable oiily ulides appropriate coilvcxit,y or sliiootlillcss assuniptions, for indcpciidclit 
random variables, for problems of a special structure, etc. In case of an incomplete lino~vl- 
edge of the probabilit,~ distribution, the design of bounds reflects the existing level of 
information; the bounds that correspond to sample information are different from those 
based on linowlcdge of ~nornents of the underlying probability distribution. 

To be Inore specific, let us consider a class of stocliastic programs of the form 

(1) lninixnize E p  f (x, w )  on the set X 

whcre X is a givcn nonempty convex polyhedral set in a finite dimensional space, P is a 
probability distribution of w on 0, and f : X x S1 -+ R1 is a given function. We shall 
assume that the cxpectation in (1) is finite for all x E X and that thc optimal solution of 
(1) exists. 

The above formulation covers the expected utility inodels and the two stage stochastic 
programs with relatively complete recourse. In the lattcr case, for each x E X and w  E S2, 
thc value of the random objectivc is 

f (x, w )  = cTx  + C2(X, W )  

witli 

tlie optimal value of the sccond-stage program. 
Therc are various natural ideas how to get bounds on the optimal valuc of (1): Any 

apl~roxi~nation of the ol>jcctivc function Ell f (x, w )  that is valid uiiiforirily for all x E ,X 
provides an cqually precise approximation of the optimal value. This idea was applied in 
the first papers of I<aiiltovA, e.g. in [39], and appears for instance also in [53]. Onc can 
relax the constraints in definition A' to gct a lower bound or to add new constraints to 



get an uppcr bound, cf. [50]. It is possible to approxirnatc the rnndom objective fuilction 
,f (x, w) by r~notlicr simpler or niorc convenient function; see the piecewise linear bounds 

PI , [TI, [491. 
F~lrt,licr t,cc:liiiicl~ic:s i1.1.c bii.sct1 oil tliffcrciit it1ca.s t1ia.t colric: froni rcsult,~ oil stability i ~ i i ( 1  

sensitivity with respect to the probability distribution P (e.g. [47]) and are relatcd to 
asyniptotic propertics of sta.tistica1 csti~nat~ors such as coi~sist~ence, rate of convergence, 
asyniptotic distribution, probabilistic bounds on large deviations 1381; sce also [l'i] and 
[48, Chapter 61 and references therein. These results ca.n be used to construct various as- 
ynil~totic confidcnce int,crvals for tlic true optixnnl valuc and optimal solutions. Morcovcr 
for special types of perturbations, such as contarnination, one can obt,ain global non- 
a.symptotic bounds useful in postoptilnality analysis: cf. [16], 1171. Error bounds for the 
optimal value can be often used also for construction of bounds for the optimal solutions 
provided that some additional assu~nptions (growths conditions, unique true optimal so- 
lutions, etc.) hold true; cf. [39], [47], [48]. 

We shall dcal with bounds for the true optimal value of (1) that cxploit in a simple way 
a s a ~ ~ i p l c  based inforrnatiori (Section 2) and with bounds based on lcnowlcdge of moments 
(Section 3). We shall discuss thern from the point of view of assumptions and of possible 
generalizatioris. Finally in Sectioil 4, we shall coilcentrate on multistage stocliastic liilear 
programs with recourse arid with random right-hand sides to indicate when it is possible 
to extend the well-lcnowri upper bounding technique based on the first order lnomeiit 
coiidi tioris to mlrl t,ista.gc problems. 

Assume now that t h e  is at disposal a sample information about the true probability 
distributioil P that allows to construct an cinpirical distribution function ba.sed on t,hc 
ol~scrved dates with the aim to draw conclusions about the optimal value y ( P )  of the true 
program (1) using the optimal value of its sample based counterpart. 

Let S be the available sample of size n, say wl , .  . . , wn, froni the distribution P and lct 
us denote the value of the objective function based on this sample S of size n at a point 
x E A' as 

n 
1 

E~ f (x, w) := - f (x, w')  
7 1  . 

z =  1 

The comrnollly accepted procedure is to approxiniate thc optimal solution of ( I )  and its 
optimal value y ( P )  by an optimal solution xs and the optimal value y s  of the sample 
based program 

1 
iliiiiiiiiiz~ Ed f(x ,  W )  := - .f(x, w') 0x1 t,li(. set S 

1 1. 

Indeed, the optimal solutions and the optimal value of (3) are consistent estimates of thc 
true optimal solut,ion x(P)  and of the true optimal value y ( P )  of (3) under relatively 

modest assumpt,ions - see e.g. [20]. Asymptotic normality of thcse estimates, lio~vevcr, 



llolds truc only under rather stringent assumptions. Therefore wc shall base the bounds 
on t,hc optiinal value of (1) on dircct expl~itat~ion of thc standard central limit theorem; 
see also [45, Chnpt,cr 151 and refercnccs ibid. 

Uridcr i~ssumptions of cxistcncc of a finitc true cxpcctation Er f (x ,  w) and variance 
v;srp f ( x ,  w), tlie central liinit thcorcm allows to coilstruct approximate confidcncc intervals 
for the values of thc true objective furiction Ep f ( x ,  w) a t  individual points x E X. The 
al)proxirnatc 1 - o confidericc interval is 

Es f (x ,  w )  f (varsf  (x, w))  112  

Jn 

a11d t ,  denotes tlie (1 - 012) quarltile of n / ( O ,  1). (For rrioderate samplc sizcs n ,  t ,  may bc 
rcl>lnced by the 1 - a12 qunntile of Stude~lt's distribution with n - 1 degrees of freedom.) 

For each w E R separately, we can also get the valuc 

p(w) = mi11 f (x ,  w) 
x E X  

and quite siiriilar argu~ncnts allow to derive an approximntc 1 - o confidence interval 
bascd on thc si~rriplc S for tlic truc cxpcctation Epp(w),  i. c., for tlic cxpcctcd valuc of 
the populi~tion wait - and - see problem, provided that the true expectation and variance 
vaspp(w) arc finite: 

where 

If the normal approximatiori used in construction of tllc confidcncc interval (4) is precise 
cnough, the confidence interval (4) with x = x s  covers approximately with  roba ability 
1 - N t,llc \ ~ I L ~ U C  of tllc true objective furiction Ep f (x ,w)  a t  t h e  point  x s .  Together with 
tllc obvious iricquality p(P) 5 EP f ( x s ,  w) it implies that 

is an approsirn,u~te probu,bilistic u p p e r  bound  for  t h e  t m u  o y t i n ~ a l  ,ualuc p ( P ) .  Such an upper 
Ijound can bc obviously based on any feasible solution x E X.  Duc to tllc mcntioncd 1.csults 
on consistcncc of the sample based optimal solutions, there is a good reason to use x s .  



To gct a sul-nplc bused lower bound for cp(P), we use (6): 

The whole procedure of coilstructirlg bounds for the true optimal value cp(P) consists of 
two steps tliat allow for exploitation of parallel techniques: 

(i) Solutioll of the sarnplc based program (3)  to get an optimal solutiori x s  and the 
opt,irnal valuc cps and evaluatioi~ of tlic random objectives f (xs , w') at the optimal 
solutio~i x s  for all considercd sa~riple values w'. The average and variance of the 
obtained values f (xs, wZ) are used in the upper bound (7). 

(ii) Solution of the 12 individual scenario problems is needed to get the optimal values 
y(wz) for all considered sainplc points wZ and the average and variance of these 
"sample" optimal values provide the ileccssary entries for construction of the lower 
bound (8). 

A I ~  alternative procedure can be based on minirnization of the uppcr bound of the 
confidence interval (4) on tlie set X. It resernblcs the form of the robust optimization 
objective function (cf. [43]) and this upper bound is rnore tight than (7). It means that 
the problem 

1i;is to hc solvctl ilist,ciicl of (3) ill t,lic\ first st,c,1) (i) of t,lic: al)ovc. houndi~ig procctlurc  l lid tlie 
obtained opt,i~nal valuc providcs the upper bound. The second step (ii) applies without 
any change. 

Similar results car1 be obtained for the casc of sampling from a large finite population,, 
say, R = [wl, .  . . ,wN]  and for distribution P that assigns equal probabilit,~ 1/N to all 
elements of R. Except for the finite population factor 1 - n / N ,  there is no difference 
between the bounds based on sa~ripling froin finite population and the former ones. For to 
get a tiglitcr lower bound, one can always t,ry to use various variance reduction s:~nipli~ig 
teclini ques. 

Conclusions. The approximate confidence intervals arc distrib7stion free, i.c., they do 
not depend on the assunlcd for111 of the true probabilit,~ distribution P. No assumptioris 
about convexity or smoothness of the objective function are needed and these are the 
main advantages of the introduced approximate probabilistic bounds. On the other hand, 
t,he precision of the bounds depends on the prccision of the approximation by the central 
limit theorem, on the sample size, etc., and this may be one of stumbling bloclts. Possible 
applications of tlicse bounds for constructioll of stopping rules depend on the algorithm 
concerned; for insta.licc, uppcr bounds of the type (7) appear ill [ lo] ,  [31], [32], [42] and [44]. 
Even wlic~i sonic! st,ocl~a.st,ic dcl)cndcncc ca.n l>c incorpor;~t,cd (cf. [42]), t,o cxt,cnd I~ounds 
(7) t,o ~riult,ist,;~.gc: st,ocli;i.st,ic progra.lns witli in,teratcl,gc dcpcn.den,t ra,ndo~ri cocficicnt,s clocs 
not sceni to be straig1itforwa.rd. 

In casc of sampling from a continuous distribution we can in addition construct rougli 
confidence intervals for the optima.1 valuc using the following results of Is], [21]: 



If is a colltinuous random variable with an unltnown uniniodal density tlien for any 
fixcd n and t > 1, t,lic interval with endpoints 

based on o ~ i c  observation of ( covcrs the unknown mode 0 of the distribution with proba- 
bility at least 1 - &. With t = 19, one gets thus an at least 0.9 confidcnce interval. 

Thc cxpcst "gucss" a has to be fixed prior to the random cxperimcnt that provides 
the realization and it essentially influences the length of thc confidence interval (9). 
Tlic i~ssumption of continuous distribution cannot be rclaxcd; on the otlicr hand, some 
iiiipsovc~nci~t,~ C ~ L I ~  I ) ( :  o l~txinc~l lmdcr rnorc stringent as~umpt~ions i~b011t thc dist,ribut,ion; 
for iristaricc ~lntlcr atlditionnl assumption of sym~netry, thc confidcncc lcvcl for irltcrval (9) 
i~icrcascs to 1 - ' and to 1 - $ for normal distribution of [. 

1 + ]  
A similar result can be derived also for confidence i~it~ervals bascd on several independent 

obscrvations [8] in which casc, no prior expert gucss is needed and the confidence interval 
t i ~ l i c ~  on thc conimon form bascd on the samplc mean and the sample standard deviation 
of thc observations; conlparc (4). For two indcpcndcnt observations t i  , t2  thc interval is 

Tllcse scsults wcre used in [l8] for stochastic linear programs with individual proba- 
1)ilistic constraints and random right-hand sides. For thcir application to stochastic pro- 
g r i~~nrn i~ ig  problcins with rccoursc, we considcr a fizcd n u n ~ b c ~ ,  say n ,  of i.i.d. scenarios 
sampled from the givcn continuous distribution. One sample of sizc n can be talten as 
tlic raiidom expcrimcnt that lcads to the observed value y of thc optimal valuc function. 
The confidcncc intervals (9), (10) will covcr tlie modus of thc distribution of optimal val- 
ues computed from n independcnt scenarios at least with the probabilities 1 - &) resp. 

1 - & providcd that the distribution is continuous and unimodal. Thc value a needed in 
(9) can l,c for insta~icc clioscn as thc optimal vall~e of thc cxpected valuc problem or the 
~il111(' of ill1 ; l ~ ) ~ ) r o x i ~ r l ~ ~ t ( ~  so~llt~ion. 

3 .  BOUNDS BASED ON MOMENT CONDITIONS 

IVhcncvcr thc linowlcdgc of the probability distribution P in (1) rcduccs to an informa- 
tion about its support and about vxlucs of somc moincnts wc can use results linown from 
tlie momcnt problcm (c.g., [GI ,  [12], [Is] ,  [16], [35]) to construct bounds for tlie optimal 
value y ( P )  := minXEs El> f(x,  w ) .  It is also possiblc to exploit a qualitative information 
about P sucli as i t s  unimodality ([12], [15]) or, in case of a discrete probability distribu- 
tion, thc existence of an incomplete ordering of probabilities [9]. Sometimes the moment 
conditions stem from thc intrinsic features of the solvcd problcm [19], e.g., from a low level 
of iiifos~riatioli. Tllc nloiricnt bou~ids can be i~lso ~ol ls ts~ct ,cd  in tlic c:oursc of iLIi idgo- 
ritlimic solutio~i [37] or considcscd just for needs of st,i~bility considcrations, for the worst 
casc analysis and EVPI evaluation. There is a host of papcrs dcvotcd to t,licse bounds in 
thc context of ~t~ochastic programming, to thcir rcfincment , to cstensiorls to noncompact 



supports, etc. We rcfer to [35] and [45] and references ibid. The cornmon idca of bounding 
tcchniclues bascd on the mornent problcm is to replacc the coniplcte linowledgc of P in 
(1) by knowlcdgc of a sct P of probability distributions that is supposed to contain P and 
is dcfiricd, iiltcr alia, by momcnt conditions. We assumc that P docs not clcpend on the 
first,-stagc dccision x and we assunlc thc existence of thc optimal value p(P) of (1) for all 
P E P. 

Given t,llc sct P wc want to construct bounds 

~ ( x )  = iilf E p f ( x , w )  
P E P  

(12) U(x) = sup Epf (x, w )  
P E P  

for tlic objective furict,ion or bounds 

L = rnin inf Ell f (x, w) 
x E S  I'E'P 

U = min sup Ep f (x, w) 
x E S  P E P  

for tlic optimal value p(P) by means of tllc moment problem. 
Tlle lowcr bounds ( l l) ,  (13) reduce to Jensen's incquality [33] 

L(x) = min Ep f (x, w) = f (x, Ew) 
P E P  

1)rovidcd that tlic probability distributions P E P a.rc characterized, inter alia, by a fixed 
nrcan value Ew and that tllc function f (x ,w)  is convex in w. This bound is attained for 
t,lic dcgcneratetl distributioli conccntr:~tcd iri tllc 1nca.n valuc Ew independently 071 x E A'; 
liciicc, t,hc lower 11o11rid for p(P) is the optimal valuc of thc corivcx dcterministic expected 
V ~ L ~ ~ L C  pTOgTf1,m 

L = niin f (x,  Ew) 
x E  X' 

Similarly for convcs functions f (x ,  m ) ,  thc 11ppcr l~ollnd for cspcctatiorl E p f ( x ,  w) with 
P 1)cloiigirig to t,licx scxt of clistril)l~tiolis c.;lrric.tl 1)y fiscxtl c.oiivc3s 1)olyllc~Il.o11 f2 and wit11 
prescribed mcan value - a fixccl intcrior point of R - is attaincd and rcduccs to the Ed- 
murldson - Madansky bound [41]. It is casily computable (i.c, it rcduces to one-dimensional 
rnoment problems and/or thc extrcmal distribution is indcpenderit on x) only under special 
circllrnstances, for instance, whcn f? is a rcctanglc and f (x,  m )  is scparablc in cornponcnts 
of w or the random variables are indcpcndcnt, or whcn R is a sirnplcx. (Scc [5], [35] for a 
detailed cliscussion.) Othcrwisc, for R = conv{wl,. . . , w r ~ ) ,  U(x) is the optimal value of 
thc linear progl am 

(17) U(x) = min 
P 

h=l 



(see e. g. [ll.], [12], [24, Chapter I:[], [29], [45, Chapter 51). If f ( x ,  w) is convcx separa.ble 
with respect to indiviclual conlpoilerits of w, (17) splits to moment problcnls wit,h respcct 
to one-dimensional random variables carried by closed intervals. The corrcsporiding (mar- 
ginal) distributions are uniqucly dcterinincd by tlie first order inonient conditions. This 
is the case when the extermal distribution does not dcpend on x ancl can bc given explic- 
itly: It is carried by thc vertices of the cartesian product of the one-dimcnsionnl intervals 
and tlie probabilities of these upper boun,din,g scenarios  are products of the correspond- 
ing probabilities that coinc from the margirial cxtrcmal distributions. This is tlie inost 
welcome situation wlicn the upper bound for v(P) follows by solution of thc stochastic 
program for the obta.ined discrete estremal distribution, without any reference to thc inn,cr 
optimization problem (17). 

In general, ho~vevcr, to gct t,hc ~ippcr  bouild (14) for tlic optimal value q(P) ineans to 
use a I~rocedure suitable for solving the minimax problcin 

min max El> f (x, w) = min U(x) 
x E S  PEP xEX 

Thc assumptio~l of convexity of the random objective f (x ,  w )  with rcspcct to w means, 
cxccpt for vcry sl)ccinl caws, tlic rcstrictioii to two-stage stochast,ic Ilrogralns with fixed 
recourse ,  fixed c o e ~ c i e n t s  q ill thc second-stage objectivc function ant1 wit11 11,T lzneu,r 
in w. 11iclusio11 of raiidom cocfficicllts q requiscs (lcvcloping ~)arallcl scsults for saddlc 
functions that arc convcx with rcspcct to a group of random parameters (typically, tlie 
right-hand sides) and concave with rcspect to the rcmaining random paramctcrs (typically, 
the random para,meters of the second-stage objective function); this was done, e.g., in [23], 

[2Gl. 
For to get a valid lower bound (15), convexity assumption can be evidently relased if 

there .exists a lower supporting linear function for f (x ,  8) at the point Ew. Similarly, [39] 
points out that Edmundson-Madansky upper bound holds true also for some nonconves 
functions, for instance, for f (x, r )  defined on a multidimensional conipact interval S1 and 
convex separately in cach of components of w or multi-chord-dominatc<1 on $2. 1Yhcrea.s 
.Jensen's lower b o ~ ~ n d  (15) also extends to the related classes of coilvex multista.gc stochastic 
programs both with stage iiidependeilt right-hand sidcs [30] and for their depeildence [22], 
lack of convcxity seems to be the main stumbling-block for dcsigning a computable upper 
bountl of tlic Edmundson-Madanslcy typc. See Scct,ion 4 for details. 

Theoretically, the rrioment problem provides bounds for t1.w expectation E p  f (x ,  w) also 
for n o n c o n v e x  f u n c t i o n s  f (x,  r )  and under higher  m o m e n t  cond i t ions .  For convcx compact 
set 7' of probability dist,ributio~is, thc expect,ation (a 1irica.r functional in P) a.ttains both it,s 
ma.xima1 and minirnal value at ext,remal points of ?. The corresponding distribl~tions are 
discrete ones concentratcd at a modcst number of points, however, cxtrcinal dis tributioils 
i n d e p e n d e n t  of t h e  f o r m  of f (a.nd thus independent of the first-stage decisioris x) appear 
only except,ionally. For a fixed x, they can be generated and thc bounds call be obtained 
as the ininilnal or maximal value of a gcncru.lized l inear  program [5], [24], [45]: 

With fixcd x and with thc set 'P defined by a given compac t  support fl arid by moinent 
conditions 

EI>gk(w) 5 o k , k  = 1, . . .  , I< 



it is sufficicnt to select I<+1 elements wk of R and assign thein probabilities pk 2 0, Ck pk = 
1 so that t,he momcnt corlditions are fulfilled ant1 t,hc cxpectcd value Ck pk f (x ,  w k )  is 
nlaxilnal (Ininii~lal). 

Duality a.rguments provide decision rules ileeded for replacement of individual points wk 

by other cleinents of R within the geileralized rcviscd simplex method; cf. [25]. Sometimes, 
i t  is possible to indicate a priori a finite set of elements froin R, i. e., the scenarios that 
a.sc of co1lccr11 fsolll t,llc point of vicw of thc worst C;LSC i ~ l l a l y ~ i ~ ;  this is the C ~ L S C  of COIIVCX 

f (x ,  a )  , l)o~llitlctl coiivc:x l)olyll(!tlril.l slll)port a.litl tllc: first osclcr 11lo1neiit inforni;~t,ioil 011 

w ,  sce (9) ;i.nd i t s  gcncsa.lizatio11 to pieccwisc conroex function f ( x ,  a )  in [ll]. Again, tllc 
inner optimization problenis that give bounds L(x), U(x) have to be incorporated into the 
optimi~at~ion problem with respect t,o x.  This was applied for the first and second order 
moment informatio11, see c.g. [13], [35]. 

A con~~~lc te ly  different approach for bounding expectations can be bascd on I<orovkin 
type inequali tics, scc 12, Cllapt,cr 71. Tllesc incquali tics provide for instancc estimates of 
tllc diffcsciicc I~ctwccil tllc cxpcctcd value of a function and it,s valuc at the cxl~cct. r i  t,' 1011 

of the randoirl variable. They do not necessarily assurne convcxity and some of tlleln arc 
indcpcndent on the explicit form of the function. As an example we shall iiltroduce tlle 
following simple result (see Corollary 7.4.1 of [2]): 

T h e o r e i ~ ~ .  Let w, a be given positive numbcrs, R a noncmpty fixed compact convex set 
in nk, L;) E R a.n arbitrary fixcd clelne~lt and P a probability distribution on R such that, 

Let, 11 E Cij(R) with thc rnodulus of continuity of its partial derivatives h;Yi 

There exist more coinplicated results for h E Ci (R) ,  for highcr=order momcnt, condi- 
tions and also upper bounds on the difference in (19) that use the assumed fixed value 
E p w  = C;). Results of this type can be helpful for estimating the EVPI when the raildom ob- 
jective f (x,  a )  is not convex. Instead of convexity, smoot,l~ness of gradients is required; for 
a givcn compact set & and a positive constant E the modulus of co~ltinuity of a continuous 
function 9 is defined as 

with 1 1  a / /  tllc ll  norm. 
Differentiability properties of thc random objective function for thc two-s tage stochastic 

lii~cai- progra.in cannot he cxpccted (recall thc form of the second-stage program (2)) but it 
is not the o~lly t,ypc of st,oclia.st,ic programming model. There arc cxamplcs of smoot,ll penal- 
tjics for disc:sepailces whose: choice corncs from a det,ailcd analysis of the real-lifc problcln 



wit,liout ally rcfcrc:iicc to the sccond-st,a.gc prog;ra.m (2) and tllc picccwisc linear - cluaclrnt,ic 
st,c)c~liiist,ic I)rogriLlIiS, sc:c: c:.g. [4G], c:iljoy 1)otli s~rioot~lliic:ss aiicl c:oiivcsit,y l)rol)crt,ic.s. 

To coilcludc this Scctioil let us irlc~ition anotlicr problem related to l~ounds  based on 
moment problcrn for classcs of probability distributions defined by prescribed values of 
some moments. This input illforrriation is not always completely known, it is based on 
a sarnple or past inforlnation, on expert's opinion, etc. Accordingly, wc fdce unccrt,airlty 
again, on a new lcvcl. Tllcrc arc scl-~tt~crcd results coiiccrning stabil i t ,~ wit11 rcspcct t,o thc 
lxc:scribcd vi~lues of illornents basccl on pa.ranictric prograilliniiig [ Is ] ,  complemented by 
stat,ist,ical iiiii~lysis [I41 iiii(1 dis~11ssecl i i l~o  ill t , l l ~  collt(:st, of ;L real lifc ill)plicat,ion [I]. 

4. EX'TENSIONS T O  MULTISTAGE S L P  

For thc purposcs of this Section, it will be expedient to changc sliglltly thc notation: 
in the subscripts of espcctations we shall replace tllc probabilit,y distributioil P by the 
rclcvant components of w .  We sliall deal with tllc following three stagc stochastic lincar 
program with rccoursc with random riglit hand sides 

miniiliize 

subject to 

subject to 

subject to 



Thc subvectors wl , w2 of tllc random vcctor w on [O,  P]  generate tlic riglit liand sides. 
We assunic that the riglit-hand sidcs are lintear in wl and in w2, that therc is an optinial 
solution for an arbitrary realization of right hand sides and that the expectations are finitc. 
IVc want t,o construct bounds for the optimal value p(P) of (20) subject to subsequciit, 
co~istraints and recursive definitions, using just tllc first order nlomcnt information about 
w. However, cvcn under these rathcr simplifying assumptions, convexity of the recourse 
costs p l (x l  ,wl )  with respect to wl  follows only under particular circumst,nnces such as 
independence of wl , w2 or a special form of the conditional distribution function Pw, 
needcd for evaluation of the conditional cxpcctation E,21w, p2(x2, w2) ill (22), for instance, 

where Q is a probability distribution function a,nd H is a fixed matrix of proper dimension. 

Case 1. To simplify tlic presentation, assume first that wl, w2 arc independent rando~n. 
variables, for instance the short tcrin interest rates. Tlieir niarginal distributioiis PI, P2 
arc iritlcpclidcnt of tlic dccisioii vnria1)lcs xl , x2 and arc supl)oscd to fulfil t,lic followiiig 
coiidi tioils: 

(26) p t  w R }  = 1, and Ewt = p t  t = 1 , 2  

Tlle scts of niargirial distributions that fulfil (26) will be denoted PI, P2 and assumed 
independent of X I ,  ~ 2 .  

For this fosrn of program, joint coilvcxity of functions p f , t  = 1 , 2  with respect to x l ,wt  
liolds truc and thc lower bound follows from Jcnsen's illequality [33]. It means, t,hat t,he 
lover l~oulid call be coiriputcd as tlic optimal valuc of tlic cxl>ectcd valuc program 

ininiinize 

subject to 

The upper bouild for Ew2p2(x2, w2)  follows from Edmundson-Madansky iilecluality [41]: 
For all distributions P2 E P2, the upper bound is attained for the distributioil P2* E P2 
concentrated a t  the points 7.2, R2 with probabilities Xz = and 1 - X2: 

For 21. fisctl ~ 2 ,  t,liis l)o~liitl (:i1.11 110 ol,t,;~.iiic:tl l,y solviiig t,lic: c:orrc-sl)oiitliiig 1)i.ogr;1.1ii of tlic 
tliird sta,ge (24) for two scenarios w2 = r2 and w2 = R2; moreover, E:,p2(x2,w2) is 
evidently convex in x2. This gives an upper bound for pl (xl , wl ): 



The resulting uppcr bound y; (x l ,  wl) is jointly convex in x l  , wl and the Edmundson- 
Madansky bound call be applied once more to get an uppcr bound for its expectation over 
thc set of distributions P I .  1% get thus an upper bound for the expected recourse costs 
y l ( x l ,  w1) in (20): For id1 marginal di~tribut~ions Pl E PI, P2 E P 2 ,  

I t ,  - 11. , where X1 = E. 
The upper bound (31) for the optimal va.luc of (20), (21) equals thus tlie optimal value 

of t,lic st,oclla.st,ic I)rogra.lii l)asctl on sccna.rios [ r . ,  , 1.~1, [I-, , R,,], [R ,  , I-,], [R., , R,,] with 1xoba.- 
Lilities X I  A, ,  X I  (1 - X 2 ) ,  (1 - X I  )A;!, (1 - Xl)(l - X 2 )  and it can be obtained as t,llc optimal 
value of the corresponding linear program. 

There is an obvious generalization to T-stage stochastic lillcar programs with random 
right liantl sidcs - linear functions of stage indel~endcnt ra.ndorn variablcs whose distribu- 
tions bclolig t,o sets Pl described by fixcd compact convex supports and Ly fixcd mean 
values. There are 27'-1 upper bound scellarios identificd by sequences of endpoillts el of 
intervals [I.[, Rl]  for t = 1 , .  . . , T - 1; colllparc wit11 [22]. It is also possible to gcncra.lizc 
the results to right hand sides that are linear tra.nsform,s of interstage indcpende~~t random 
vectors wt wllose supports are given si~nplices and the mean values are fixed interior points 
of these simplices. Further generalizations concern nonlinear convex stochastic programs 
with, stage independent random right-hand sides a.nd it is a.ga.in possible to include another 
group of stage independent ralldorn parameters, say, qt into the objective functions. The 
basic requirement is the saddle property of the optinlal value functions y l  with respect 
to tlecision variablcs and w on one side and to q on the other side (cf. [23], [26]). If we 
colltinuc to restrict our studies to random right - liand sidcs only, the crucial problcrn is 
to cxtend t hc upperbounding technique to intcrstage dependence. 

Case 2. To illustratc the linlitations we colitinuc to discuss thc three stage progrun (20) - 
(24) under a.ssunlption that the set of the considered distribut,ions P2(wl)  of w . ~  coliditional 
on wl is determined by the support [r2(wl), R2(wl)] and by the conditional lllcan value 
p2(w1 ) .  Given w1, the upper bound on EW2 y2(x2 ,  w 2 )  is 

To procccd further this uppcr bound lias to be tscatcd as a fullct,ion of x2 and wl. Let this 
fullct,ioli Lc U2(xZ, W I ) .  T~I(J  I I C X ~  st,cp illvolvcs ~nillinliz;~.tioll of 

wit,h respect to constraints (23) on x2. Denote a.ga.in the rcsulting optinlal value by 
p; (x l ,  wl ). To gct it collvcx ill w l  , for the sake of subsequent use of Edn1u1idson-h4adansky 



uppcr hou~ld  on its csl>cctation, one ~icctls U2(x2, wl) jointly ~onucx i11 x2, w1. To tliis plir- 
R2(~1)--/~2(~, 1 pose, i t  is not eriougli to assume r 2 ,  R2 linear in wl (rccall that A2 (wl) = R2(wl)-r2(wl) >. 

Olle l~ossil>lc set of i~cldit,ioiial i~ssumptions concer~iing defiilitioil of P2(wl)  reads: 

A 1  7.2, R2 a.re lincar in wl and X 2  is a, fixed number. 

Assumption A 1  implies 1 ~ 2  linear in wl and under assumption A l ,  the uppcr bound 

is jointly convex in x2, wl . 
For UL joiiitly coilvex i11 x2,wl, rriinimizatio~l of (33) provides an uppcr bound, say, 

y ; (x l ,  wl) for y l  (xl , wl) that is convex in xl and wl so that the uppcr bound for expec- 
tation E,, y l  (xl , w,) follows from Ediiiuiidsori-Madaiisl<y inequality al>l)licd to t,lic cxpec- 
tation of y ; (x l ,  wl). Accordingly, under assumption A 1  for all distributions PI E Pl of 
wl and conditional distributions P2 E P2(w1) of w2, the upper bound for thc objective 
function in (20) is 

cTx1 + XlY;(x l ,  r l )  + (1 - Xl)Y;(xl ,R1)  

and the upper bound for thc optimal value of (20), (21) can be a.ga.in obtained via four- sce- 
narios, namely, [ r l ,  r2 ( r l ) ] ,  [r l ,  R2(r1 )], [R1 ,  7-2 (Rl )],  [Rl , R2(Rl  )] with probabilities X1 X 2 ,  
X l ( 1  - X z ) ,  (1 - X 1 ) X 2 ,  (1 - X l ) ( 1  - X2). 

Genera.lizat,ion to T-stage problem means assuming a fixed position of the conditional 
mean values ~ L ~ ( w ~ ,  . . . , wl-l) (described by fixed values A t  E ( 0 , l ) )  within the inter~rals 
[ r l (wl , .  . . , w1-I), R1(wI,.  . . , wt-I)] whose endpoints are lincar in wl , . . . , w,,-l. This type 
of a.ssumpt,ions can be used to model the increasing uncertainty by growing range of the 
va.riables around sonic trend described by t,hc coriditional rnean values. The upperbounding 
sccna.rios arc sequences 

with rl or R1 substitutcd for pl and r t ( p l , .  . . , pl-1) or R l ( p l , .  . . , pt-1) substituted for 
p1, t = 2 , .  . . , T - 1; cornpare with [22]. 

A11 cxterisio~l to raildom vectors wl whose dist,rib~~t,ioris are ca.rried by si~npliccs is possi- 
ble again. Assumption of fixed values of A t  independent of past observations translates to 
fixed barycentric coordinates of the conditional meail values p(wl , .  . . , W L - ~ ) .  The general 
bounding techniq~re based on baryce~itric scenarios, see [27], follows, intcr alia, froill tllc 
assumed convexity or saddle property of the objective functions for all stages, for instance, 
convexity of the function y ( x l ,  wl ) defined by (22). The same assumption is rieedcd also 
for the multistage extension of the upperbounding technique in [22]. Our discussions iinply 
t,liat tliis type of assumpt,iosis corresponds, besidcs the intersta,ge independence of ra.ndom 
riglit-hand sides, to rather special for111 of interst.age dependent right-liand sides so that 
tlie conditional clistributions fulfil A 1  or possess a Ma,rkouian property, e.g., 



witli w' illdcpcndent of w l  and H a fixcd transition matrix. For T-stage models, thc 
transition ~ilatriccs H can bc stagc depc~ident wliat gives 

with wi  independent of w l ,  . . . , wt-1. It means that thc random parameters w t  in stage 
t can be represented as a sum of inte~sta~ge independent ~a~ndorn sl~mma.nds related only 
to stagcs 1 , .  . . , t .  Noticc that (34), (35) correspond to the mcnt,ioricd spccial form of 
conditional distributions, see (25). 

Conclusiolis. The uppcrbounding techniques bascd on the first order moment informa- 
t,ion carry ovcr t,o lnult,istagc ~t~ochastic linear programs with colriplctc recourse ant1 with 
random right-hand sides that are linear in random parameters w oilly in special cases, e. 
g., when one of the following conditions holds true: 

a right-hand sides are interstage independent,; 
a for all stages, thc right-hand sides can be expresscd in tlie form of a sum of intcrstage 

iridcpendent random vcctors related to preceding stages and to the given stage, sce (35); 
a for all stages, the conditional distributions of random parameters w t  are carried by sinl- 

pliccs whose extremal points are lincar in past values of w l  , . . . , wt-1 whereas tllc baryccn- 
tric coordinates of thc conditional mean valucs do not dcpend on this llistory; sce A l .  

Pa.ralle1 conclusions can bc clcrived for rnultist,a,gc convex stochastic prograrxls witli ra,n- 
don1 right-lmnd sidcs and also for the convex-concavc cnsc with random riglit-hand sidcs 
and recourse costs. 
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