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Abstract

In this paper, we shall discuss the bounds for the optimal value of recourse prob-
lems from the point of view of assumptions and of possible generalizations. We shall
concentrate on bounds based on the first order moment conditions and to those based
on sample information. We shall indicate when it is possible to remove the convexity
assumptions, when there is a hope for extensions to multistage problems and we shall
point out reflections of bounds and stability results.




1. BOUNDS FOR STOCHASTIC PROGRAMS

The interest in bounding the optimal valuc of stochastic programs has been apparent
from the very origin of stochastic programming, cf. Edmundson-Madansky inequality [41]
in the fifties, minimax bounds [52] in the sixtics, bounds based on the moment problem
[11]-[13], [24] or bounds on the error due to the approximation {34], [51] in the seventies.
The reasons come from incomplete information about the distribution and from numerical
techniques: we construct and solve approximate problems using various algorithms. We
need stopping rules and tests of optimality, an crror analysis, strategies for refinement,
conclusions concerning the results valid for the true problem, statements about stability
and robustncss of the output, etc. Sec e.g. [5], [36] for further discussions.

Bounds become often a part of a numerical procedure and we are naturally interested in
numerically tractable bounding techniques. Generally speaking, 1t is easier to bound the
objective function and its optimal value than to get bounds on optimal solutions and it
is not easy to extend the results valid for two-stage stochastic programs to the multistage
casce. Different approaches require different assumptions, for instance, there are techniques
applicable only under appropriate convexity or smoothness assumptions, for independent
random variables, for problems of a special structure, etc. In case of an incomplete knowl-
edge of the probability distribution, the design of bounds reflects the existing level of
information; the bounds that correspond to sample information are different from those
based on knowledge of moments of the underlying probability distribution.

To be more specific, let us consider a class of stochastic programs of the form

(1) minimize FEpf(x,w) on theset X

where X' is a given nonempty convex polyhedral set in a finite dimensional space, P is a
probability distribution of w on Q, and f : X x @ — R! is a given function. We shall
assume that the expectation in (1) is finite for all x € X and that the optimal solution of
(1) exists.

The above formulation covers the expected utility models and the two stage stochastic
programs with relatively complete recourse. In the latter case, for each x € X and w € Q,
the value of the random objective is

f(x,w) =cTx +Q(x,w)

with
(2) Qx,w) = min {a(w)Ty | W(w)y = h(w) - T(w)x,y >0}

the optimal value of the second-stage program.

There are various natural ideas how to get bounds on the optimal value of (1): Any
approximation of the objective function Ep f(x,w) that is valid uniformly for all x € A
provides an equally precise approximation of the optimal value. This idea was applied in
the first papers of Kankovd, e.g. in [39], and appears for instance also in [53]. One can
relax the constraints in definition A" to get a lower bound or to add new constraints to




get an upper bound, cf. [50]. It is possible to approximate the random objective function
f(x,w) by another simpler or more convenient function; see the piecewise linear bounds
(4], [7], [49]

Further techniques are based on different ideas that come from results on stability and
sensitivity with respect to the probability distribution P (e.g. [47]) and are related to
asymptotic propertics of statistical estimators such as consistence, rate of convergence,
asymptotic distribution, probabilistic bounds on large deviations [38]; sce also [17] and
[48, Chapter 6] and references therein. These results can be used to construct various as-
ymptotic confidence intervals for the true optimal value and optimal solutions. Morcover
for special types of perturbations, such as contamination, one can obtain global non-
asymptotic bounds useful in postoptimality analysis; cf. [16], [17]. Error bounds for the
optimal value can be often used also for construction of bounds for the optimal solutions
provided that some additional assumptions (growths conditions, unique truc optimal so-
lutions, etc.) hold true; cf. [39], [47], [48].

We shall deal with bounds for the true optimal value of (1) that exploit in a simple way
a sample based information (Section 2) and with bounds based on knowledge of moments
(Scction 3). We shall discuss them from the point of view of assumptions and of possible
generalizations. Finally in Section 4, we shall concentrate on multistage stochastic linear
programs with recourse and with random right-hand sides to indicate when it is possible
to extend the well-known upper bounding technique based on the first order moment
conditions to multistage problems.

2. BOUNDS BASED ON SAMPLE INFORMATION

Assume now that there is at disposal a sample information about the true probability
distribution P that allows to construct an empirical distribution function based on the
observed dates with the aim to draw conclusions about the optimal value ¢(P) of the true
program (1) using the optimnal value of its sample based counterpart.

Let S be the available sample of size n, say w!,...,w", from the distribution P and lct
us denote the value of the objective function based on this sample S of size n at a point
x € X as

Bsf(x,w) = = 3 f(x,e)

The commonly accepted procedure is to approximate the optimal solution of (1) and its
optimal value ¢(P) by an optimal solution xs and the optimal value (s of the sample
based program

N : 1¢ A
(3) minimize  Es f(x,w) ::—E f(x,w') on theset X
n
=1

Indeed, the optimal solutions and the optimal value of (3) are consistent estimates of the
true optimal solution x(P) and of the true optimal value ¢(P) of (3) under rclatively
modest assumptions — sec e.g. [20]. Asymptotic normality of these estimates, however,
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liolds true only under rather stringent assumptions. Thereforc we shall base the bounds
on the optimal value of (1) on direct exploitation of the standard central limit theorem:;
see also [45, Chapter 15] and references ibid.

Under assumptions of existence of a finite true expectation Ep f(x,w) and variance
varp f(x,w), the central limit theorem allows to construct approximate confidence intervals
for the values of the true objective function Epf(x,w) at individual points x € X. The
approximate 1 — « confidence interval is

(4) Es f(x,w) + 7 (vars f(x,w))/*

where

Z — Esf(x, w)]

vars f(x,w)

and t, denotes the (1 — «/2) quantile of N(0,1). (For moderate sample sizes n, t, may be
replaced by the 1 — «/2 quantile of Student’s distribution with n — 1 degrees of freedom.)
For each w € § separately, we can also get the valuc

(5) p(w) = min f(x,w)

and quite similar arguinents allow to derive an approximate 1 — « confidence interval
based on the sample S for the true expectation Epp(w), 1. c., for the expected value of
the population wait - and - see problem, provided that the true expectation and variance
var po(w) are finite:

(6) wa Jm (varse(w)) )2

where

varsp(w) = " 1 1 Z |:Sp(wi) _ % Z @(wi)]

If the normal approximation used in construction of the confidence interval (4) is precise
enough, the confidence interval (4) with x = xs covers approximately with probability
1 — « the value of the true objective function Ep f(x,w) at the point xs. Together with
the obvious incquality o(P) < Epf(xs,w) it implies that

% (vars f(xs,w))"/?

is an approzimate probabilistic upper bound for the true optimal value (). Such an upper
bound can be obviously based on any feasible solution x € X'. Due to the mentioned results
on consistence of the sample based optimal solutions, there is a good reason to use xs.

(M) ws +




To get a sample based lower bound for o(P), we use (6):
1 : ter .
(8) #(P) 2 Epplw) 2 -3 () - — (varse(w)”

The whole procedure of constructing bounds for the true optimal value ¢(P) consists of
two steps that allow for exploitation of parallel techniques:

(i) Solution of the sample based program (3) to get an optimal solution xs and the
optimal value ¢ s and evaluation of the random objectives f(xs,w?) at the optimal
solution xs for all considered sammple values w'. The average and variance of the
obtained values f(xs,w") are used in the upper bound (7).

(ii) Solution of the n individual scenario problems is needed to get the optimal values
@(w") for all considered sample points w* and the average and variance of these
”sample” optimal values provide the necessary entries for construction of the lower

bound (8).

An alternative procedure can be based on minimization of the upper bound of the
confidence interval (4) on the set X. It resembles the form of the robust optimization
objective function (cf. [43]) and this upper bound is more tight than (7). It means that
the problem .

géull Esf(x,w)+ —\)% (va,r,sf(x,w))]/z
has to be solved instead of (3) in the first step (1) of the above bounding procedure and the
obtained optimal value provides the upper bound. The second step (i1) applies without
any change.

Similar results can be obtained for the case of sampling from a large finite population,
say, @ = [w!,...,w"] and for distribution P that assigns equal probability 1/N to all
clements of Q. Except for the finite population factor 1 — n/N, there is no difference
between the bounds based on sampling from finite population and the former ones. For to
get a tighter lower bound, one can always try to use various variance reduction sampling
techniques.

Conclusions. The approximate confidence intervals are distribution free, i.c., they do
not depend on the assumed form of the true probability distribution P. No assumptions
about convexity or smoothness of the objective function are needed and these arc the
main advantages of the introduced approximate probabilistic bounds. On the other hand,
the precision of the bounds depends on the precision of the approximation by the central
limit theorem, on the sample size, etc., and this may be one of stumbling blocks. Possible
applications of these bounds for construction of stopping rules depend on the algorithm
concerned; for instance, upper bounds of the type (7) appear in [10], [31], [32], [42] and [44].
Even when some stochastic dependence can be incorporated (ef. [42]), to extend bounds
(7) to multistage stochastic programs with interstage dependent random coefficients docs
not seem to be straightforward.

In casc of sampling from a continuous distribution we can in addition construct rough
confidence intervals for the optimal value using the following results of [8], [21]:




If £ is a continuous random variable with an unknown unimodal density then for any
fixed @ and t > 1, the interval with endpoints

(9) £ £t —a

based on one observation of £ covers the unknown mode 6 of the distribution with proba-
bility at least 1 — ¢_+2—1 With ¢ = 19, one gets thus an at least 0.9 confidence interval.
The expert "guess” a has to be fixed prior to the random experiment that provides
the rcalization € and it essentially influences the length of the confidence interval (9).
The assumption of continuous distribution cannot be relaxed; on the other hand, some
improvements can be obtained under more stringent assumptions about the distribution;
for instance under additional assumption of syminetry, the confidence level for interval (9)

increases to 1 — == and to 1 — 484 for normal distribution of €.

(+1 +1

A similar result can be derived also for confidence intervals based on several independent
observations [8] in which case, no prior expert guess is needed and the confidence interval
takes on the common form based on the sample mean and the sample standard deviation

of the obscrvations; compare (4). For two independent observations £!,£2 the interval is

(10) 1/2(6" +&°) £ t/2]¢" ~ €7

These results were used in [18] for stochastic lincar programs with individual proba-
bilistic constraints and random right-hand sides. For their application to stochastic pro-
gramming problemns with recourse, we consider a fized number, say n, of 1.i.d. scenarios
sampled from the given continuous distribution. One sample of size n can be taken as
the random experiment that leads to the observed value ¢ of the optimal value function.
The confidence intervals (9), (10) will cover the modus of the distribution of optimal val-
ues computed from n independent scenarios at lcast with the probabilitics 1 —
ok
(9) can be for instance chosen as the optimal value of the expected value problem or the
value of an approximate solution.

2
747> Tesp.

provided that the distribution is continuous and unimodal. The value a needed in

3. BOUNDS BASED ON MOMENT CONDITIONS

Whenever the knowledge of the probability distribution P in (1) reduces to an informa-
tion about its support and about values of some moments we can use results known from
the moment problem (c.g., [6], [12], [15], [16], [35]) to construct bounds for the optimal
value (P) := mingex Epf(x,w). It is also possible to exploit a qualitative information
about P sucli as its unimodality ([12], [15]) or, in case of a discrete probability distribu-
tion, the existence of an incomplete ordering of probabilities [9]. Sometimes the moment
conditions stem from the intrinsic features of the solved problem [19], e.g., from a low level
of information. The moment bounds can be also constructed in the course of an algo-
rithmic solution [37] or considered just for needs of stability considerations, for the worst
case analysis and EVPI evaluation. There is a host of papers devoted to these bounds in
the context of stochastic programming, to their refinement, to extensions to noncompact




supports, etc. We refer to [35] and [45] and references ibid. The common idea of bounding
techniques based on the moment problem is to replace the complete knowledge of P in
(1) by knowledge of a sct P of probability distributions that is supposed to contain P and
is defined, inter alia, by moment conditions. We assume that P does not depend on the
first-stage decision x and we assume the existence of the optimal value ¢(P) of (1) for all
PepP.

Given the set P we want to construct bounds

(11) L(X) = ﬁléfp Epf(x,w)
(12) U(x) = sup Epf(x,w)
pPep

for the objective function or bounds

(13) L= min ll)relf;’ Epf(x,w)
(14) U = min sup Epf(x,w)
x€X pep

for the optimal value @() by means of the moment problem.
The lower bounds (11), (13) reduce to Jensen’s incquality [33]

(15) L(x) = glei% Epf(x,w) = f(x, Ew)

provided that the probability distributions P € P arc characterized, inter alia, by a fixed
mecan value Ew and that the function f(x,w) is convez in w. This bound is attained for
the degenerated distribution concentrated in the mean value Fw independently on x € X
Lience, the lower bound for ¢(P) is the optimal value of the convex deterministic ezpected
value program

(16) L = min f(x, Ew)
xEX

Similarly for convex functions f(x,e), the upper bound for expectation Ep f(x,w) with
P belonging to the set of distributions carried by a fixed convex polyhedron 2 and with
prescribed mean value - a fixed interior point of 2 - is attained and reduces to the Ed-
mundson - Madansky bound [41]. It is easily computable (i.e, it reduces to one-dimensional
moment problems and/or the extremal distribution is independent on x) only under special
circumstances, for instance, when 2 is a rectangle and f(x,e) is separable in components
of w or the random variables are independent, or when Q is a simplex. (See (5], [35] for a
detailed discussion.) Otherwise, for Q@ = conv{w;,...,wn}, U(x) is the optimal value of
the linear program

II H H
17)  U(x) = mi (%, w wi=E0,S pi=1,p >0 VI
(17) (x) mpln{zp/f(x wi) | Y pwwn=Ew,Y pi=1,p 1}

h=1 h=1 h=1
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(see e. g. [11], [12], [24, Chapter II], [29], [45, Chapter 5]). If f(x,w) is convex separable
with respect to individual components of w, (17) splits to moment problems with respect
to one-dimensional random variables carried by closed intervals. The corresponding (mar-
ginal) distributions are uniquely determined by the first order moment conditions. This
is the case when the extermal distribution does not depend on x and can be given explic-
itly: It is carried by the vertices of the cartesian product of the one-dimensional intervals
and the probabilities of these upper bounding scenarios are products of the correspond-
ing probabilities that come from the marginal extremal distributions. This is the most
welcome situation when the upper bound for ¢(P) follows by solution of the stochastic
program for the obtained discrete extremal distribution, without any reference to the inner
optimization problem (17).

In general, however, to get the upper bound (14) for the optimal value ¢(P) means to
use a procedure suitable for solving the minimax problem
(18) minmax Ep f(x,w) = min U(x)
cf. [25], [28].

The assumption of convexity of the random objective f(x,w) with respcet to w means,
except for very special cases, the restriction to two-stage stochastic programs with fized
recourse, fized coefficients q in the second-stage objective function and with h, T linear
in w. Inclusion of random cocflicients q requires developing parallel results for saddle
functions that are convex with respect to a group of random parameters (typically, the
right-hand sides) and concave with respect to the remaining random parameters (typically,
the random parameters of the second-stage objective function); this was done, e.g., in [23],
[26].

For to get a valid lower bound (15), convexity assumption can be evidently relaxed if
there exists a lower supporting linear function for f(x,e) at the point Fw. Similarly, [39]
points out that Edmundson-Madansky upper bound holds true also for some nonconvex
functions, for instance, for f(x,e) defined on a multidimensional compact interval Q and
convex separately in cach of components of w or multi-chord-dominated on €. Whcreas
Jensen’s lower bound (15) also extends to the related classes of convex multistage stochastic
programs both with stage independent right-hand sides [30] and for their dependence [22],
lack of convexity seems to be the main stumbling-block for designing a computable upper
bound of the Edmundson-Madansky type. Sce Section 4 for details.

Theoretically, the moment problem provides bounds for the expectation Ep f(x,w) also
for nonconvez functions f(x,e) and under higher moment conditions. For convex compact
set P of probability distributions, the expectation (a lincar functional in ) attains both its
maximal and minimal value at extremal points of . The corresponding distributions are
discrete oncs concentrated at a modest number of points, however, extremal distributions
independent of the form of f (and thus independent of the first-stage decisions x) appear
only exceptionally. For a fized x, they can be generated and the bounds can be obtained
as the minimal or maximal value of a generalized linear program [5], [24], [45]:

With fixed x and with the set P defined by a given compact support €2 and by moment
conditions

Epgi(w) ag,k=1,..., K

w




it is sufficient to select A +1 elements wy of © and assign them probabilities px > 0, ", px =
1 so that the moment conditions are fulfilled and the cxpected value >, pi f(x,wy) is
maximal (minimal).

Duality arguments provide decision rules needed for replacement of individual points wy
by other elements of Q within the generalized revised simplex method; cf. [25]. Sometimes,
it is possible to indicate a priori a finite set of clements from €2, 1. e., the scenarios that
arc of concern from the point of view of the worst case analysis; this is the case of convex
f(x,0) , bouuded convex polyliedral support and the first order moment information on
w, sce (9) and its gencralization to preccwise conver function f(x,e) in [11]. Again, the
inmer optimization problems that give bounds L(x), U(x) have to be incorporated into the
optimization problem with respect to x. This was applied for the first and second order
moment information, see c.g. [13], [35].

A completely different approach for bounding expectations can be based on Korovkin
type inequalities, sce [2, Chapter 7]. These incqualities provide for instance cstimates of
the difference between the expected value of a function and its value at the expectation
of the randoin variable. They do not necessarily assume convexity and some of thiem are
independent on the explicit form of the function. As an example we shall introduce the
following simple result (see Corollary 7.4.1 of [2]):

Theorem. Let w,o be given positive numbers, 2 a nonempty fixed compact convex set
in R¥ & € Q an arbitrary fixed element and P a probability distribution on Q such that

Epw:(:), Ep”w -'-(:)”2 20’2

Let Ih € C}j(Q) with the modulus of continuity of its partial derivatives h;Vi
m(hi,1/20) < wVi
Then

(19) |Eph(w) — h(@)] < 1.5625w0

There exist more complicated results for A € C5(§2), for higher=order moment condi-
tions and also upper bounds on the difference in (19) that use the assumed fixed value
Epw = &. Results of this type can be helpful for estimating the EVPI when the random ob-
jective f(x,e) is not convex. Instead of convexity, smoothness of gradients is required; for
a given compact set () and a positive constant € the modulus of continuity of a continuous
function g is defined as

m(g, €) 1= sup {|g(w1) — g(wz)| : w1, w2 € @, w1 —wa| < ¢}

with || || the [; norm.

Differentiability properties of the random objective function for the two-stage stochastic
lincar program cannot be expected (recall the form of the second-stage program (2)) but it
is not the only type of stochastic programming model. There arc examples of smooth penal-
tics for discrepances whose choice comes from a detailed analysis of the real-life problem




without any reference to the sccond-stage program (2) and the piccewise linear - quadratic
stochastic programs, sce c.g. [46], enjoy both smoothness and convexity properties.

To conclude this Scction let us mention another problem related to bounds based on
moment problem for classes of probability distributions defined by prescribed values of
some moments. This input information is not always completely known, it is based on
a sample or past inforination, on expert’s opinion, etc. Accordingly, we face uncertainty
again, on a new level. There arc scattered results concerning stability with respect to the
prescribed values of moments based on parametric programming [15], complemented by
statistical analysis [14] and discussed also in the context of a real life application [1].

4. EXTENSIONS TO MULTISTAGE SLI?

For the purposes of this Section, it will be expedient to change slightly the notation:
in the subscripts of expcctations we shall replace the probability distribution P by the
rclevant components of w. We shall deal with the following three stage stochastic lincar
program with recourse with random right hand sides

minimize

(20) el x1 + By, {e1(x1,01)}
subject to

(21) Ax; =b

where the function ¢ is defined as
(22) @1(Xy,wy) = inf (€0 X2 + By, 92(x2,w2)]

subject to

(23) Box;: + Agaxg = by(w;)
I, <xp <uy
and
(24) 0o (Xg,wy) = i)l(’lafc.jx‘z
subject to

B3xz + A3xs = b3(ws)

I3 <x3 <uy
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The subvectors wy,wy of the random vector w on [, P] generate the right hand sides.
We assume that the right-hand sides are linesr in w, and in w,, that there is an optimal
solution for an arbitrary realization of right hand sides and that the expectations are finite.
We want to construct bounds for the optimal value ©(P) of (20) subject to subsequent
constraints and recursive definitions, using just the first order moment information about
w. However, cven under these rather sunplifying assumptions, convexity of the recourse
costs (X, w;) with respect to w; follows only under particular circumstances such as
independence of wy,w; or a special form of the conditional distribution function P, .,
needed for evaluation of the conditional expectation E,, ., p2(x2,w2) in (22), for instance,

(25) Poyln (2) = Q(z — Huwy)
where () is a probability distribution function and H is a fixed matrix of proper dimension.

Case 1. To simplify the presentation, assume first that wy,w, are independent random
variables, for instance the short term interest rates. Their marginal distributions Py, P,
arc independent of the decision variables x1,x%; and are supposed to fulfil the following
conditions:

(26) P{ri<w, <R}=1 and Bw, =y, t=1,2

?

The sets of marginal distributions that fulfil (26) will be denoted Py,P; and assumed
independent of x;, X2.

For this form of program, joint convexity of functions ¢, t = 1,2 with respect to x;,w,
holds truc and the lower bound follows from Jensen’s inequality [33]. It means, that the
lover bound can be computed as the optimal value of the expected value program

minimize

(27) cl Xy + ¢ Xg +¢; X3
subject to
(28) A1X1 = b1
Boxi+A,x; = ba(p1)
Bsxo+Azxs = ba(usg)
llelSuia t:17273

The upper bound for E,,, p2(x2,w;) follows from Edmundson-Madansky inequality [41]):
For all distributions P, € P,, the upper bound 1s attained for the distribution Py € P,

concentrated at the points ra, Ry with probabilities Ay = %’;—; and 1 — Ag:

(29) Eo p2(x2,w2) < Aepa(x2,m2) + (1 = Ap)p2(x2, R) 1= EJ, p2(Xa, w2)

For a fixed x;, this bound can be obtained by solving the corresponding program of the
third stage (24) for two scenarios wp; = rp and wy = Rs; moreover, E:zgog(xz,wz) is
evidently convex in x,. This gives an upper bound for ¢ (x;,w; ):

11




(30) w1 (x,w;) < min [cszz + Bl o2(Xy,wz)  subject to (23)] := 1 (x),w;)
X3

The resulting upper bound @}(x;,w;) is jointly convex in x;,w; and the Edmundson-
Madansky bound can be applied once more to get an upper bound for its expectation over
the set of distributions P;. We get thus an upper bound for the expected recourse costs
©1(Xx1,w1) in (20): For all marginal distributions Py € Py, P, € Py,

(31) Euyoi(x1,w1) S Arpi(xa,r) + (1= Aei(xa, y) i= ELpi(x1,w)
where A\ = 111{11%1::

The upper bound (31) for the optimal value of (20), (21) equals thus the optimal value
of the stocliastic program based on scenarios [y, r2], [r1, Ra], [21,72], [, 2] with proba-
bilities A Az, Ar(1 = A2), (1 — A1)Az, (1= A1)(1 —A2) and it can be obtained as the optimal
value of the corresponding linear program.

There is an obvious generalization to T-stage stochastic linear programs with random
right hand sides - lincar functions of stage independent random variables whose distribu-
tions belong to sets Py described by fixed compact convex supports and by fixed mean
values. There are 277! upper bound scenarios identified by sequences of endpoints ¢, of
intervals [, R(] for t = 1,...,T — 1; compare with [22]. It is also possible to generalize
the results to right hand sides that are linear transforms of interstage independent random
vectors wy; whose supports are given simplices and the mean values are fixed interior points
of these simplices. Further genecralizations concern nonlinear convez stochastic programs
with stage independent random Tight-hand sides and it is again possible to include another
group of stage independent random parameters, say, 7; into the objective functions. The
basic requirement is the saddle property of the optimal value functions ¢, with respect
to decision variables and w on one side and to n on the other side (cf. [23], [26]). If we
continue to restrict our studies to random right - hand sides only, the crucial problem is
to extend the upperbounding technique to interstage dependence.

Case 2. To illustrate the limitations we continue to discuss the three stage program (20) -
(24) under assumption that the set of the considered distributions Py(w;) of w, conditional
on w; is determined by the support [ry(w;), Rz(w1)] and by the conditional mean value
p2(wy). Given wy, the upper bound on E, (X2, w,) is

(32) Aa(wi)pa(xz, ra(w1)) + (1 — Ao(wr))pa(xze, Ba(wr)) 1= EJ |, @a(X2,w2)

To proceed further tlis upper bound has to be trcated as a function of x; and wy. Let this
function be Uy(x2,w;). The next step involves minimization of

(33) ¢y Xz + Ua(x2,w1)

with respect to constraints (23) on x;. Denote again the resulting optimal value by
@}(Xx1,w1). To get it convex in wy, for the sake of subsequent use of Edmundson-Madansky
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upper bound on its expectation, one needs Uy (x2,w)) jointly conver in Xy, w;. To this pur-

pose, it is not enough to assume ro, Ry linear in w; (recall that Ay(w;) = %)

Ouc possible set of additional assumptions concerning definition of Pp(w) reads:
Al 7y, Ry are lincar in wy and A, 1s a fixed number.

Assumption A1l implies pg linear in wy and under assumption A1, the upper bound

Uz (x2,w1) = Agp2(X2,m2(w1)) + (1 — Ap2(x2, Ra(wy))

is jointly convex in Xz, w;.

For U, jointly convex in X2,w;, minimization of (33) provides an upper bound, say,
@1(xy,w1) for ¢1(x;,w;) that is convex in x; and w; so that the upper bound for expec-
tation E,, ¢1(x),w) follows from Edmundson-Madansky inequality applied to the expec-
tation of ¢](xy,w;). Accordingly, under assumption A1l for all distributions Py € Py of
w; and conditional distributions P, € Py(w1) of wy, the upper bound for the objective
function in (20) is

CIXJ + Aei(xy, )+ (1 — AT (xi, Ry)

and the upper bound for the optimal value of (20), (21) can be again obtained via four sce-
narios, namely, [r1,72(m1)], [r1, R2(r1)], [R1,m2(R1)], [R1, R2(1Ry )] with probabilities Aj Aq,
M1 = A2), (1= A)Ae, (1T = A)(1 = Ag).

Generalization to T-stage problem means assuming a fixed position of the conditional
mean values p¢(wi,...,wi—1) (described by fixed values A, € (0,1)) within the intervals
[re(wyy .. ywi—1), Re(wr,. .., wi—1)] whose endpoints are lincar in wy,...,wi—;. This type
of assumptions can be used to model the increasing uncertainty by growing range of the
variables around some trend described by the conditional mean values. The upperbounding
scenarios arc sequences

p1,p2(p1)s - -5 pelp1, p2(p1), - - - ), pr-1(p1,p2(p1),---)

with r; or Ry substituted for p; and r(p1,...,p—1) or Ri(pi1,-..,pi—1) substituted for
pi,t =2,..., T —1; compare with [22].

An extension to random vectors w, whose distributions are carried by simplices is possi-
ble again. Assumption of fixed values of A; independent of past observations translates to
fixed barycentric coordinates of the conditional mean values pu(wy,...,w(~1). The general
bounding technique based on barycentric scenarios, see [27], follows, inter alia, from the
assumed convezity or saddle property of the objective functions for all stages, for instance,
convexity of the function ¢(x;,w;) defined by (22). The same assumption is needed also
for the multistage extension of the upperbounding technique in [22]. Our discussions imply
that this type of assumptions corresponds, besides the interstage independence of random
right-hand sides, to rather special form of interstage dependent right-hand sides so that
the conditional distributions fulfil A1 or possess a Markovian property, c.g.,

(34) wy = Hwp + o'
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with w' independent of w; and H a fixed transition matrix. For T-stage models, the
transition matrices H can be stage dependent what gives

t—1

(35) wi=Y Hew, +w; WVt

=1

with w; independent of wy,...,w;—1. It means that the random parameters w, in stage
t can be represented as a sum of interstage independent random summands related only
to stages 1,...,t. Notice that (34), (35) correspond to the mentioned special form of
conditional distributions, see (25).

Conclusions. The upperbounding techniques based on the first order moment informa-
tion carry over to multistage stochastic lincar programs with complete recourse and with
random right-hand sides that are linear in random parameters w only in special cases, e.
g., when one of the following conditions holds true:

e right-hand sides are interstage independent;

o for all stages, the right-hand sides can be expressed in the form of a sum of interstage
independent random vectors related to preceding stages and to the given stage, see (39);

o for all stages, the conditional distributions of random parameters w, are carried by sim-
plices whose extremal points are linear in past values of wy,...,w;—; whereas the barycen-
tric coordinates of the conditional mean values do not depend on this history; see A1l.

Parallel conclusions can be derived for multistage convex stochastic programs with ran-
dom right-hand sides and also for the convex-concave casc with random right-hand sides
and recourse costs.
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