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Abstract 

A pa.rticular tri-trophic (resource, prey, predator) lnetapopulation model with dispersal of preys 

and predators is considered in this paper. The analysis is carried out numerically, by finding 

the bifurcations of the equilibria and of the limit cycles with respect to prey and predator body 

sizes. Two routes to chaos are identified. One is c11a.racterized by an intriguing cascade of flip 

and tangent bifurcations of limit cycles, while the other corresponds to the crisis of a strange 

attractor. The results are summarized by partitioning the space of body sizes in eight subregions, 

ea,ch one of which is associated to a different a.symptotic behavior of the system. Emphasis is 

put on the possibility of having different modes of coexistence (stationary, cyclic, and chaotic) 

and/or estinction of the predator popula,tion. 



1. Introduction 

A particular tri-trophic (resource, prey, predator) llletapopulation model composed by five ODES 

is discussed in this paper. The first three equations describe the dynamics of the resource patches 

which are, respectively, free, colonized by preys, or by preys and predators. The two remaining 

equations on the contrary, describe the dynalnics of the densities of prey and predator dispersed 

in the environment. Models of this kind have been first proposed by Levins (1969, 1970) to 

analyze the role played by spatial inhomogeneity of populations without making use of partial 

differential equations. The reader interested in Inore details can refer to Diekmann et al. (1988) 

for the derivation and interpretation of such kind of models and to Taylor (1990) for a critical 

review on the role of dispersal. 

The model studied in this paper is a natural estension of those discussed in Sabelis et 

01. (1991), Jansen and Sabelis (1992), and Jansen (1995). The aim is to  establish the role 

played by prey and predator body sizes in determining the asy~nptotic behavior of the system. 

Bifurcation curves are produced numerically in the two-dimensional parameter space of body 

sizes, in order to identify the regions where stationary, cyclic, or chaotic coexistence is possible. 

Hopf bifurcations of equilibria, as well as tangent, flip, and transcritical bifurcations of limit 

cycles and catastropllic bifurcations of strange attractors (Arnold, 1983; Guckenheimer and 

IIolines, 1983) are detected. They prove that alternative regimes of coexistence are possible 

for suitable combinations of the body sizes, while for other combinations the estinction of the 

predator is guaranteed. Actually, such a region of extinction is surrounded by a region of chaotic 

coesistence. By varying the body sizes one can enter tlle region of chaotic regime in two distinct 

ways: through an infinite cascade of local bifulcatiolls or suddenly, i.e., without any warning in 

terms of bifurcations. Nevertheless, it is interesting to note that these two routes to chaos are 

only two different aspects of tlie same I~ifurcation structure (a colnples cascade of intersecting 

liip and tangent bifurcation curves). 

Tlie paper is organized as follows. In the next section the model is briefly described, while 

in Sections 3 and 4 its equilibrium and limit cycles are discussed in some detail with emphasis 

on their bifurcations. Then, in Section 5, tlle two possible routes to chaos are pointed out and 

the region of extinction of the predator population is identified. 

A sumluary and some interpretations of the results conclude the paper. 

2. The Model 

The tri-trophic inetapopulation lnodel we a~ialyze in this paper is con~posed of patches of re- 

source, preys, and predators. \With the capital letters X ,  Y ,  and Z we indicate, in suitable units, 



Figure 1.  A syinbolic sketcll of the systein: white, gray, and black leaves are free (X), prey 

(I.'), and predator ( 2 )  patches; empty circles and blacl; triangles are prey (y) and predator (2) 

tlispersers. 

t,he number of free patches, the number of pa.tclles occupied only be preys (called prey patches) 

and tlle number of patches occupietl l)y preys and predators (called predator patches). Typical 

esaillples of such systeins are populations of parasites and insects living patchly on plants. Fig- 

ure 1 sllo~vs a syinbolic slietcll of the systein ~vllere free, prey, and predator patclles are white, 

gra.y, a.nd black leaves, while prey dispersers and predator dispersers (indicated in the following 

~i:it,ll tlle lower case letters y and z )  are represented by empty circles and black triangles. 

Tlle dynanlic hellavior of the systein is described by the following five differential equations: 

i y t )  = r q t )  (1 - y) - o l $ W y ( t )  I+-\  ( t )  (1) 
Y ( t )  i r ( t )  = a l e  ,+s(r) ~ ( t )  - dlJ'(t) - ~ 2 m z ( t )  ~ ' ( t )  (2) 
I,.(t) Z ( t )  = n 2 m ~ ( t )  - 'I2Zjt) (3)  

y(t)  = 1 (dlY(t)  - naly(t)) 
OY (4) 

d2Z(t) - m22(t)) i ( t )  = l (  (5) 

where the 12 parameters, a,, u,, r ,  l i , ~ ~ , ,  b,, d,, In;, i = 1 ,2 ,  are assumed t o  be constant (i.e., 

seasonalities are not tal;en into account). 

The  first term on the right-1la.nd side of equation (1) says tha t  in the absence of prey dispersers 

(:y = 0) tlle free patches grow logistically ( r  is tlle net growth rate  per capita, and Iir is the 

carrying capacity), while the secoild terin is tlle rate a t  which free patches are invaded and 

transformed into prey patches [see first tern1 of equation (2)]. The  rate of invasion is proportional 

t,o the abundance of prey dispersers and to  tlle probability tha t  a disperser comes across a free 

pa,tcll. Such a probability, ohviously, increases from zero t o  one with the density of free patches. 



Many functional forms could be given to this proba,bility, but the one which llas been chosen 

here, namely the Monod form X/(bl  + X), is pasticula,rly convenient, as shown below, because 

it allows one to  link model (1-5) wit11 the most classical food chain model (characterized by 

Holling type-I1 functional responses). Silnila,r considerations hold for the rate a t  which prey 

pa.tc11es a.re inva.ded by predator dispersers z a.nd thus transformed into predator patches [see 

third tern1 of equation (2) and first term of equation (3)]. Tlle second terms of equations (2) and 

(3)  are the death rates of occupied patches: they simply say that ,  in the absence of dispersion, 

occupied patches would be consumed exponentially with average life time equal to lid;. Since 

tlle time needed by a colony of prey to consume the resource of a patch is smaller when such a 

colony is not controlled by its predator, we will consider, in the following, systems with dl > dz .  

Finally, equation (4)  [equation j5)] describes the dynalnics of prey [predator] dispersers: it is 

the bala,nce between the inflow rate due to  the release of preys [predators] into the environment 

from a consumed prey [predator] patch and the mortality rate due to  starvation (predation is 

possible only on patches). 

Model (1-5) differs from the nlodels discussed in Sabelis et al. (1991), Jansen and Sabelis 

(1992), a.nd Jansen (1995) for two rea.sons: first, because both species are dispersed a t  the same 

time and second, and nlost importa,nt, because the rates of inva.sion of free an prey patches do 

not increa,se indefinitely with the number of such pa.tc11es. On the contrary, the models discussed 

in t,he above-mentioned papers are c1la.racterized by rates of invasion proportional to  the number 

of inva,dable patches. This means that in these lnodels the term alX/(bl  + X )  in equa,tion (1) 

is sul)stitut,ed by its linear a.pprosimation a t  low values of X,  namely a lX/bl .  This is sonlehow 

justified if the casrying ca.pacity of the resource is small compared to  b l ,  i.e., if Ii << 61, because 

the inequality X ( t )  5 Ii implies zy(t) << 61. But in tlle opposite case, the satura.tion of the 

inva.sion rate with respect to  S pla.ys an inlporta,nt role. In order to  stress this role, we will 

collsider inetapopulations with Ii > 61. 

In the followiilg, all possible asymptotic modes of behavior of system (1-5) will be classified for 

all positive values of the parameters a,and a,, keeping all other parameters fixed a t  a reference 

value specified below. It is therefore convenient to  give a simple biological interpretation of a, 

and a,. For this, assume that each time the resource of a prey patch is exhausted, there is a 

release in the environlnent of AT, preys and that this number is negatively correlated with the 

body size s, of the prey, i.e., AT, l /s, .  But it is also fair to  assume that the mortality of a 

prey disperser is inversely proportional to its body size, i.e., A4, = 1/sY,  SO that 
n I $ ( t )  = dl17(t)hry - flIyy(t) = f lTy  ( d l I - ( t )  - $y(t))  

By introducing the new parameters a, and nal, this equation can be written in the form (4) 

?; i t )  = (d lY(t )  - lnly(t1) 



with a, proportional to body size and nzl independent upon body size. The same argument 

applies to predator dispersers, a.nd the coilclusion is that the two parameters a, and a, can be 

considered to be a measure of the body sizes of the individuals of the two species. Very small 

values of such paraineters correspond to the case of very small parasites and insects which are 

very quickly dispersed into the environment. In the limit ca.se (a, + 0, a, + 0) (instantaneous 

dispersion) we can use the singu1a.r perturl~ation argument to conclude that 

~ ( t )  = $ y ( t )  .(t) = $ z ( t )  

i.e.? densities of preys and predators dispersed in the environment are proportional to the abun- 

(lance of prey and preda.tor patches. Substituting these relationships into equations (1-3) we 

obta.in the reduced inetapopulntion ~noclel 

i ( t )  = [r  ( I  - v) - clbl+-y(t ,  n] ~ ( t )  

Z( t )  k(f) = [ C1 a bl + A  ( t )  - dl - e2-] Y(t) 

I'(t) = [c2- - (121 Z ( t )  (8)  

where c; = nicli/nz;, i = 1,2.  Siich a illode1 is the classical nosenzweig-McArthur food cha,in 

illode1 ivhich ha,s beell extensively studied diiring the la.st few years through singular perturba- 

tion analysis (Muratori, 1991; Muratori and Rinaldi, 1991, 1992; Rinaldi and Muratori, 1992; 

Iiuziletsov et nl . ,  1995) silniilation (Hastings and Powell, 1991; Scheffer, 1991; Abrams and Roth, 

1994a, 1994b; McCanli and Yodsiz, 1994) and bifiircatioil analysis (Mebanoff and Hastings, 1994; 

h4cCann and Yodsiz, 1995a; Iiuznetsov and Rinaldi, 1995). It has a very rich bifurcation struc- 

t,ure showing that stable coexistence of the three species can be stationary, cyclic, or chaotic. 

There are lnultiple attractors and in some cases there are even alternative stable regimes of co- 

existence. In inany regions of the para,ineter space a degenerate attractor corresponding to the 

extinction of the top predator ( 2 )  is present together with a strictly positive attractor (coexis- 

t.ence). t,llus meaning that the long-term survival of the top predator popula,tion can be critically 

rela.ted to the tillling and a.mplitude of the disturbances acting on the system. 

Since inodel (1-5) is a,n extension of model (6-8), one should expect for model (1-5) a bi- 

furcation structure at  least as complex as that pointed out in Nebanoff and Hastings (1994), 

hlcCann and Yodsiz (1995a), I<uznetsov and R.inaldi (1995). Here, in order to avoid paramount 

analyses of the bifurcations of model (1-5), only the parameters a, and a, [which do not appear 

in inodel (6-8)] will be va,ried. For this reason, the remaining parameters of model (1-5) have 

1)een fixed to the following reference values 

, r = 1  I < = l  

2 2 
(11 = 5 1) = -5 cL1 = 5 1111 = 5 

5 1 1 ( 1 , 2 = -  b 2 = i  m 2 = -  
100 100 

ivhich satisfy the conditions Ii > bl and ell > c12 pointed out earlier. For these va,lues of the 



Figure 2. A three-dimensional view of the "tea-cup" strange attractor A of the reduced model 

(6-8). 

parameters the reduced illode1 (6-8) has a unique attractor which is a strange attractor indicated 

by A and lin0~11 as a teu-cup strange attractor (Hasting and Powell, 1991); see Figure 2. This 

iueans that the inetapopulation model (1-5) with very sillall values of a, and a,, i.e., with almost 

instantaneous dispersion, llas only one asymptotic inode of behavior, corresponding to  chaotic 

coexistence. The analysis will point out tlle effects of body size on this mode of behavior and 

therefore show how dispersioil call stabilize chaos. It is important to  stress, however, that  the 

conclusions are valid for the particular parameter setting whicl~ has been selected. It might easily 

1)e that for other paraineter settings, interpreting, for example, specific biological communities, 

tlle effects of dispersion would be different. 

3. Equilibria 

I11 this section tlle equilibria of system (1-5) (wllicll do not depend upon a, and a,) are analyzed 

and their stability is discussed with respect to  a, and a,. The analysis is quite standard and 

based nlaiilly on the Jacobian of system (1-5). For this reason the main properties are stated 

\vithout proof. 

There are a t  nlost six coilstant solutions of system (1-5) but one of them is biologically 

not nleaningful because some of the state variables are negative for all combinations of the 

paralueters. Three of tlle reillailling equilibria, namely 

Eo = (0 ,0 ,0 ,0 ,0 )  

El = (I<,  O,0,0,0) 



are trivial equilibria characterized by the absence of the predator ( Z  = z = 0). For the reference 

pa.ra.meter setting, E2 is positive a,nd all three equilibria are saddles (Eo and El lmve only one 

positive eigenvalue, while E2 llas three positive eigenvdues). Moreover, it ca.n be shown, by 

a,llalyzillg the Jacobian of the systenl restricted to equations (1, 2, 4) with Z = z = 0, that the 

equilibria Eo, El, and E2 a,re sa.ddles also in n3 = (X, I< y). This implies tliat if free patches 

a,re a.t their ca,rrying ca,pacity I< and there a.re no preys and predators, after a generic injection 

of preys the system will tend towa,rd a cycle or a strange attractor in R~ = (X, Y, y) because 

thc solutiolis of (1-5) are, in any case, bounded. 

The two remaining equilibria, if they esist, are non-trivial and differ only in the first com- 

ponent (X).  Both of thein can be strictly positive, but for the reference parameter setting only 

one of them, namely 

is such. The determinant of tlic Jacobian evaluated at  point E is equal to -1.73-10-~/cr~cr, 

(ea.sy to check) and is therefore negative for all values of cry and a,. This implies that  E cannot 

undergo saddle-node, pitchfork, ant1 tra.nscritica1 bifurcations, while Hopf bifurcations are not 

csclutled. Indeed, by applying the Hurmitz criterion to the coefficients of the characteristic 

polynonlial of the Ja,cobia,n one ca.n determine the Bopf bifurcation curve shown in Figure 3. 

Further analysis is needed to esta,blisli if tliis J-Iopf bifurcation is subcritical or supercritical 

(as espected for biological reasons). This has been done by means of LOCBIF, a specialized 

software for the analysis of local bifurcations (I<liibnik et  al., 1993) and the result is that the 

I-Iopf bifurcation is indeed supercritical. Thus, in tlie vicinity of curve H and below it,  tlie 

equilibrium E is a.symptotically stable, while above that curve the equilibrium is a saddle and 

there esists a strictly positive stahle cycle C in R'. 

4. Cycles 

I11 tlle previous section it has been sliown that above curve H of Figure 3 there exists a stable 

linlit cycle C wllicli is strictly positive (cyclic coesistence). Examples of this cycle are shown 

in Figure 4 for increasing values of predator body size (0,). The geometry of these cycles is 

rather similar to that of the strange attractor A of the reduced model (see Figure 2). This is an 

ol)vious sign (but not a proof) tliat A is obtained from C througll a series of bifurcations. Sucli 

birul,cations are described in thc ncst hectioll because they represent one of the two routes to 

cliaos of systein (1-5). 

Let us the11 describe the cycles of systenl (1-5) which cannot be obtained from C tllrougll 



Figure 3. The Hopf bifurcation curve H of the positive equilibrium E. Below the curve E is 

st,al~le, while a,bove it is unstable (saddle). The closed orbit is a synlbolic representation of the 

positive stable cycle C. 

Figure 4. Two-dimensional projection of the positive stable cycle C for a, = 5 and (a) a, = 0.5, 

(11) 0, = 1, (c)  aZ = 5.  For incl.ea,sing values of predator body size the cycle becomes a "tea-cup" 

cycle (compare with Figure 2). 



Figure 5. Tangent ( T )  and transcritical (T,) bifurcations of cycles. The  heavy cycles C* and 

c are positive cycles (corresponding to  cyclic coexistence of all species). Tlle light cycle 6 is 

a degenerate cycle cllaracterized by predator extinction (2 = z = 0). The  dashed cycles are 

sa.ddle cycles, while the others a.re stable. 

1~ifurca.tion. For this, let us lllake reference t o  Figure 5 ~vllere these cycles are symbolically sho~vn 

in three different regions of the paraineter spa.ce. Seine of them (heavy lines) are strictly positive 

cycles (coexistence), while the others (light lines) a.re in R: (predator extinction). Moreover, 

the da.shed cycles are saddles (in R5)  while the others are stable (there are no repelling cycles). 

Tllc two curves indicated by T aad  Tc a.re, respectively, ta.ngent and transcritical bifurcations 

of cycles. They have been ol)ta,ined by "continuation" using a version of LOCBIF oriented to  

local bifurcations of limit cycles. I11 the left region of Figure 5 there is only one cycle denoted 

1)y C', which is sta.ble in R3 = (Ay, I.; y )  but unstable in R5. There are no other at t ractors  in 

R$ (recall tha t  the three equilibria Eo, E l ,  E2 a.re saddles). The  cycle 6 becomes stable when 

the trallscritical curve T, is crossed fro111 the left. Indeed, approaching this curve, a stable and 

strictly positive cycle @ gets closer and closer to  6 and finally collides with it on TC and leaves 

the positive octant R:. On tlle left boundary of the central region (tangent bifurcation curve 

T)  the cycle @ disappears by colliding with a. strictly positive saddle cycle C*. This saddle cycle 

C* is a1wa.y~ present on the right side of curve T and is responsible of the "crisis" of strange 

attractors,  as  pointed out  in the  next section. 

Although the cycle c indica.tes a possible sta.ble Inode of cyclic coexistence, it plays a minor 

role in the dyllamic behavior of system (1-5),  because the central region of Figure 5 is rather 

lla,rrolv (conlpare with Figure 3).  Of course, it might be tha t  for different parameter settings 

t.llis region is larger. I11 ca.se, the cycle (l? is quite close t o  tlle cycle 6 ,  with whicll it collides 
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Figurc 6. Tinie series of free patches (-3-1 and prey patches (Y)  associated to  the two possible 

~llotles of cyclic coesistence: (a)  the cycle c for a, = 0.12, aZ = 0.1; (b)  the cycle C for 

(T!, = 5,a,  = 1. 

on T,. This means that the coesistence corresponding to  C is characterized by low numbers 

of predators so that the oscillations of prey patches are much more relevant than for the cycle 

C discussed a t  the beginning of this section. Figure G reports the oscillations of free and prey 

pa.tches in the two possible modes of cyclic coesistence. Notice that  the cycle C is characterized 

hy lower peaks of prey pa.tches and by relatively long periods of time during which free patches 

are almost a t  their carrying ca.pacity and prey patches are almost absent. This is obviously a 

more desirable behavior if the prey is actua.lly a pest. 



Figure 7. The annular chaotic region (in gray). In tlle internal white closed region tlle predator 

population is doomed to extinction. 
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5 .  Routes to Chaos and Strange Attractors 
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As already said, tlle reduced-order system (6-8) has a unique strictly positive attractor which is 

the tea-cup strange attractor shown in Figure 2. I3y continuity, one can therefore expect that 

systeln (1-5) has also a strange attractor for slllall values of a, and a,. Indeed, the analysis 

confirms tliis fact and shows that strange attractors are confined into the annular region shown 

in Figure 7. In tlie closed region delinlited by tlie internal boundary of the chaotic region there is 

only one attractor, namely tlle stable cycle 6 (compare with Figure 5). This means that in this 

~cgion tlie extinction of tlle predator is guaranteed, while in the surrounding region all species 

can  coexist in a chaotic regime. Figure 7 shows that there are two distinct routes to chaos: one 

throl~gli tlle external boundary and one through tlie interilal boundary of the annular region. 

The first route to chaos, namely the one through the external boundary, has to do with a 

rather complex cascade of flip and tangent bifurcations of the stable limit cycle C. Figure 8 shows 

tlie first flip (F) and tangent (T) bifurcation curves of this cascade in a region corresponding 

to a very thin horizontal band of Figure 7. The flip curves are intersecting one another and a 

liorn delimited by two tangent bifurcation curves emerges between ally pair of flip curves. Let 

us isolate one of these flip curves and the two adjacent tangent horns, as done in Figure 9a and 

let us decrease a, keeping a, constant along line (a). Approaching from the right the lowest 

tallgelit horn, tlie cycle C smoothly va~ies its shape and its period r ,  as indicated in Figure 

91). For parameter values inside the llorn there exist three limit cycles: two are stable ( C  and 

Cz) and one is a saddle (CS). Leaving tliis horn through the branch TI,  the cycles C and CS 

collide and disappear, so tliat oiily one at  tractor remains, namely Cq. Decreasing a, further, 

1 I 



Figure 8. The first flip (F) a,nd tangent (T) bifurcation curves of the positive cycle C and the 

chaotic region (in gray). Notice the difference in scale with respect to Figure 7. 

the cycle C2 undergoes a flip bifurcation on Fl giving rise to a stable cycle of double period Ci 

(not iilclicated in Figure 911) and to a sadclle cycle C';, which, in turn, undergoes a reverse flip 

1)ii'urcation on the flip curve F2.  At this point, C,S is transforlned into a stable cycle C3, which 

later disappears by colliding with the saddle cycle C'i on T3. The cycle C: collides also with a 

stable cycle C4 on the right 1)ranch T4 of the highest horn. And the story continues like this 

indefiilitely through an alternation of flip and tailgent bifurcations. The analysis sllows that 

i he stable cycle C originates a sequence of stable cycles C2, C3, C4, .  . . . Moreover, every even 

elenlent of this sequence, nanlely C2, C4,. . . , undergoes a flip bifurcatioil giving rise to a stable 

cycle of double period C i ,  C'j, . . . . But the story is endless, because each one of these cycles is 

the origin of a new cascade of flip and tangent bifurcations. Figure 10 shows, for esample, the 

first flip and tangent bifurcation curves of the cycle C'i. Going into the limit, the tangent horns 

I)ecome infinitely illally and infinitely thin and forill the external boundary of the chaotic region. 

In practice, the process of accuinulatioil of the flip and tangent curves is very strong and the 

boundary of the chaotic region can be fairly well approsimated by stopping the computations at  

the third flip (as done for producing Figure 7). In conclusion, approaching the annular chaotic 

region froill outside, one goes through a cascade of catastrophic transitions associated to  the 

tangent horns alternated with non-catastrophic period doublings. This route to  chaos is very 

similar to that discussed in detail in Iiuznetsov and Rinaldi (1995) for the reduced-order system 

((j-8). 

The second route to  chaos, namely that through the internal boundary of the annular chaotic 



Figure 9. (a)  a flip bifurcation curve (F l ,  F2) and the two associated tangent horns (TI, T2) and 

(T3, T4); (b)  the period T of the stable (continuous line) and saddle (dashed line) limit cycles 

ol~tained from C when moving along the stra,ight line (a)  of Figure 9a. 
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Figure 10. The first flip (F) and ta.ngent (T) bifurcation curves of the cycle Ci. 

region of Figure 7, is not preceded by any local bifurcation. I11 other words, the strange attractor 

appears suddenly without any warning as first noticed by McCann and Yodsiz (1995b) for the 

reduced illode1 (6-8). Indeed, the internal boundary of the chaotic region is a catastropllic 

I~ifurcation corresponding to  the collision of the strange attractor with a saddle cycle [a so- 

called "crisis" (Grebogi, 19S3)]. Tliis can be seen 1)y following the strange attractor A and the 

sadtlle cycle C" for different values of a, lieeping aZ constant. Figure 11 is a neat example of 

this sort of numerical esperiment: the saddle cycle approaches the strange attractor if a, is 

tlecreased froin 1.07 to 0.83 and soon after that ,  for a, = 0.79, the collision takes place and the 

strange attractor disappears. The internal 1)oundary of the chaotic region can be systelnatically 

tleterinined by fising a,  and producing a bifurcation diagram with respect to a, lilie that shown 

ill Figure 12, where Z,,,,, is the r~alue of Z on tlie Poincar& section 2 = 0. The points gy and , 
at \vliicl~ tliis bifurcation diagranl is interrupted are the coordinates at  which the saddle cycle 

C" collides with the strange attractor. Figure 7 has been produced in this way by systematically 

varying aZ over the whole range of interest. 

Finally it is worthwhile noticing tliat the flip and tangent bifurcation curves forming the 

cascades described above, start outside the chaotic region (as shown in Figure 8) but tend 

toward the internal boundary of such a region by spiraling around it. Figure 13 shotvs one 

esainple of these spirals. The figure is only a qualitative sketch, because it was impossible 

to continue the flip bifurcation curves when approaching tlie internal boundary of the chaotic 

region. Nevertheless, tlie fragments of tlie curves tliat liave been produced strongly support the 

coiijecture that  the two routes to  chaos are different aspects of the same bifurcation structure. 



Figure 11. The crisis of the strange attractor. For decreasing values of a, the saddle cycle C* 

a.pproa,ches the "tea-cup" stra.nge a,ttractor A. Para.ineter values are a, = 0.3, (a)  a, = 1.07, 

( b )  a, = 0.95, (c) a, = 0.83. 

Figure 12. Bifurcation diagram for a, = 0.3 showing the crisis of tlie strange attractor at  a, = ~7, 

and a, = a,. On tlie vertical asis Z,,,,, represents the value of the variable Z on the Poincarh 

scctioli defined by 2 = 0 [see ecluation (3)]. 
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Figure 13. A qualitative s1;etcli of tlle flip bifurcation curves (see Figure 8) spiraling around tlle 

internal l,ounda,ry of tlie a.nnular c11a.otic region. 

6. Summary and Conclusions 

Tlie very lligll (actually infinite) number of equilibria and cycles involved by tlie bifurcation 

c u r v ~ s  of illode1 (1-5) is a serious ol~stacle for a clear biological iilterpretatioil of the dynamic 

l~ellavior of tlle food cllain. Nevertheless, if tlie final target of the analysis is the classification 

of tlle stable nlodes of beliavior of tlie system, all saddle equilibria and saddle cycles must be 

tlisregarded, because tlle attention must only be focused on the attractors. hiIoreover, if the 

attractors present in the very narrow band surrounding the chaotic region are also disregarded, 

oiily five of tllelll remain. Tliey are tlie following 

E ,  a. tri- tropliic equilibrium 

e, a tri-trophic cycle ivith quite low preda.tor densities and high freclueilcy and high a.mplitude 

prey oscillations (see Figure Ga) 

C, a tri-trophic cycle clia,racterized by lligll preda.tor densities and relatively low prey densities 

(see Figure Gb) 

il, a tri-trophic strange a t t r x t o r  [in general a "tea-cup" strange attractor (see Figure 2)] 

?, a tli-trophic cycle characterized by tlle absence of the predator population. 

Tlie first attractor corresponds to stationary coexistence, the second and third to  cyclic 

coexistence, tlie fourth to c1ia.otic coesistence, wliile the fifth corresponds to  extinction of the 
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Figure 14. The partition of the parameter space into eight regions of different asymptotic 

behavior (see Figures 3, 5, and 7). 

top population of the food chain. For suitable conlbinations of prey and predator body sizes 

*t,llere is only one attra.ctor, but for others there are two alternative attractors. 

Figure 14 (based on Figures 3, 5 ,  and 7) summarizes all possibilities by partitioning the 

parameter space in eight regions. In region 1, coiltailling the origin, there is only one attractor, 

nanlely tlle tea-cup strange attractor A .  This is so because tlle reference parameter setting 

gives rise to a. rcduccd iuodel (6-S)  [ol~tained fro111 (1-5) for body sizes tending to  zero] which is 

chaotic. In region 2 tlle attractor (still unique) is the cycle C obtained from A through a reverse 

cascade of flip and tangent bifurcations. Thus, in regions 1 and 2 coexistence (either chaotic 

or cyclic) is the oilly possible illode of behavior. This is true also in regions 3 and 4 where, 

nc~~crt l~cless,  there are two alternative regimes of coexistence: one cllaotic (A) and one cyclic 

(6') i11 regioii 3 and two cyclic ( C  and Z') in region 4. In regions 5, 7, and 8 both coexistence 

[chaotic ( A ) ,  cyclic ( C )  or stationary ( E ) ]  and predator extinction (6) are possible, while in 

region 5 extinction of the top population is tlle only possible mode of behavior. 

Figure 14 can be used to interpret tlle role played by dispersal in metapopulation systems 

(see Taylor, 1990). Moving away from tlle origin of Figure 14, i.e., increasing continuously the 

body sizes of prey and predator individuals, one goes through regions characterized by more and 

more regular attractors. For example, moving along the 0, axis the strange attractor A becomes 

a. cycle C ,  while moving along tlle oy axis tlle strange attractor A is first transformed into a cycle 

( C )  and then into an equilibrium (E). This is in agreement with a conjecture made by Hastings 

( 1993) on the stabilizing iilfluence of dispersal? bringing to the conclusion that "chaotic dynamics 

may be lcss prevalent tl1a.n tlle study of models without spatial structure would indicate". 

Region 6 is of particular inlportance for interpreting the difficulties often encountered in 

practice in trying to  control a pest biologically. Indeed, if the prey is a pest feeding on a plant 



of cominercial value, one can consider the possibility of introducing a predator in order to keep 

the prey in clleclc. But Figure 14 shows that when the body size ag of the pest is in the range 

correspondiilg to region 6, only predators with estrenle body sizes (either very small or very 

large) can keep the pest under control, while all predators with more reasonable body sizes 

canilot perform this task. 

It is also interesting to remark that the I~ifurcation structure of model (1-5) recalls that of 

the Rosenzweig-McArthur food chaiil model (6-8). Indeed, the complex cascade of intersecting 

flip and tangent bifurcation curves which gives rise to the outside boundary of the chaotic region 

(see Figure 8)  is present also in rnodel (6-8) (I<lebanoff and Hastings, 1994; McCann and Yodsiz, 

1995a; I<uznetsov and Rinaldi, 1995). Also the crisis of the strange attractor A, determining 

the boundary of tlle region of unavoidable predator extinction (region 6 of Figure 14), has been 

notice by McCann and Yodsiz (1995b) for the Rosenz~veig-McArthur food chain. 

Finally, it is inlportant to stress, once more, that the results summarized by Figure 14 

are valid only for tlle particular parameter setting selected for the analysis. Unfortunately, a 

paralnount effort would be required to establish, through numerical analysis, if these results are 

robust. A nlore reasonable task along this line would be that of repeating the analysis carried out 

in this paper for parameter settings interpreting biological colnmunities of particular relevance. 

The a,uthors would lilie to thanli V . A . A .  Jansen for stimulating discussions on the problem. 
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