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FOREWORD 

The usefulness of any interactive multicriteria decision making methodology depends crucially on the 

accuracy with which it represents the decision maker's preference structure, and on its flexibility in its 

treatment of preference information elicited during the interactive process. As feed-forward artificial 

neural networks have been applied successfully to various complex pattern recognition problems, and a 

decision maker's preference structure may be viewed as a pattern, the idea of applying neural networks 

to multicriteria problems is intuitively appealing. The current paper explores the viability of using 

artificial neural networks within the framework of multicriteria optimization. In a systematic analysis, 

the authors show convincingly that,  a t  least for the types of problems considered in their study, the 

neural network approach is more robust than the Tchebycheff Procedure, one of the leading interactive 

methods in the field. Hence, this working paper provides an interesting and useful contribution to  both 

the theory and practice of interactive multicriteria optimization. 



Solving Multiple Objective Programming Problems Using 

Feed-Forward Artificial Neural Networks: The Interactive FFANN Procedure 

Abstract 

In this paper, we propose a new interactive procedure for solving multiple objective 

programming problems. Based upon feed-forward artificial neural networks (FFANNs), the method is 

called the Interactive FFANN Procedure. In the procedure, the decision maker articulates preference 

information over representative samples from the nondominated set either by assigning preference 

"values" to the sample solutions or by making pairwise comparisons in a fashion similar to that in the 

Analytic Hierarchy Process. With this information, a FFANN is trained to represent the decision 

maker's preference structure. Then, using the FFANN, an optimization problem is solved to search for 

improved solutions. An example is given to illustrate the Interactive FFANN Procedure. Also, the 

procedure is compared computationally with the Tchebycheff Method (Steuer and Choo 1983). From 

the computational results, the Interactive FFANN Procedure produces good results and is robust with 

regard to the neural network architecture. 

KEYWORDS: Multiple Objective Programming, Feed-Forward Artificial Neural Networks, 

Multiple Criteria Decision Making, Analytic Hierarchy Process, Interactive 

Procedures 



1. Introduction 

We propose a new procedure for solving multiple objective programming problems. Called the 

Interactive FFANN Procedure, it focuses on the elicitation, representation, and utilization of preference 

information obtained from a decision maker (DM) in a feed-forward artificial neural network (FFANN) 

framework. One advantage of the Interactive FFANN Procedure over existing procedures is that it 

takes the initiative in searching for improved solutions, rather than merely judging the discrete 

solutions generated by some sampling method. Another advantage is that the FFANN within the 

procedure makes it possible to represent various types of nonlinear preference structures. 

During the last two decades, much progress has been made in the modeling of multiple objective 

programming problems. However, although many solution procedures have been proposed, these 

methods have generally not been fully satisfactory. The most effective methods have been interactive 

procedures, which typically include alternating phases of analysis - the solution generation phase and 

the solution evaluation phase. Examples of interactive multiple objective programming procedures 

include STEM (Benayoun, de Montgolfier, Tergny and Larichev 1971), the Geoffrion-Dyer-Feinberg 

Procedure (Geoffrion, Dyer and Feinberg 1972), the Visual Interactive Approach (Korhonen 1987b), 

the Tchebycheff Method (Steuer and Choo 1983; Steuer 1986), the Zionts-Wallenius Method (Zionts 

and Wallenius 1983), the Reference Point Method (Wierzbicki 1982), and others as summarized in 

Gardiner and Steuer (1994). 

Whenever a multiple objective programming problem is solved interactively in practice, three 

issues must be addressed: (i) how to elicit preference information from the DM over the set of feasible 

solutions, (ii) how to capture and represent the DM'S preference structure in a systematic manner, and 

(iii) how to  use the DM'S preference structure to guide the search for improved solutions. Many 

methods have been developed for eliciting preference information from the DM, but finding an effective 

device to capture preference information and use it effectively in the search for improved solutions has 

been problematic. 

This research addresses these three issues as follows. The DM has the choice of articulating his 

or her preference information either by assigning "values" to trial solutions or by making comparisons 

between pairs of trial solutions. The preference information elicited is then used to train a FFANN so 

as to "store" the preference information. The trained FFANN then serves as an approximate 

representation of the DM'S preference structure and is combined with nonlinear programming 

techniques to  search for improved solutions. 

The contribution of this research is twofold. From the perspective of those working in 

management science, this research may be viewed as a new paradigm for solving multiple objective 

optimization problems using artificial intelligence methods. From the perspective of those working in 

artificial intelligence, this research can be seen as a new application of artificial neural networks to 

problems in constrained optimization. 
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The remainder of this paper is organized as follows. We briefly review the topology and 

dynamics of a FFANN in Section 2. In Section 3, we introduce notation and discuss issues related to 

preference information elicitation and representation. The Interactive FFANN Procedure is detailed in 

Section 4, followed by an illustrative example in Section 5. Computational results are reported in 

Section 6, and concluding remarks are given in Section 7. The algorithm for training the FFANNs 

employed in this paper is presented in Appendix A. 

2. Feed-Forward Artificial Neural Networks 

An artificial neural network consists of a set of processing units, called nodes, connected by 

weighted arcs, where the weights represent the strength of connections. A FFANN is an artificial 

neural network where the nodes are organized into layers, and the weighted arcs only link nodes in 

lower layers to nodes in higher layers (Rumelhart, IIinton and Williams 1986; Wasserman 1989). 

Nodes in the input layer, called input nodes, accept input from the outside world and nodes in the 

output layer, called output nodes, generate output to the outside world. Nodes in the input layer are 

used to distribute inputs only and do not serve any processing or computational function. Nodes in 

layers between the input layer and the output layer are called hidden nodes, and these layers are called 

hidden layers. 

Let the input layer also be known as layer 0 and let the number of layers aside from the input 

layer be m. Denote node k in layer i by v;; the number of nodes in layer i by n,; and the connectivity 

weight from v j  to v i  by wtT. If two nodes are not connected, the connectivity weight between them is 

0. Associated with v i  is a node bias or threshold 6:. Further, denote the set of connectivity weights 
. .  . 

and node biases by W = { w:~, 6;). 

Two examples of a FFANN, one without direct connections from the input layer to the output 

layer, the other fully connected, are given in Figures 1 and 2. 

......................................... 

Figures 1 and 2 About Here 

Mapping vectors from the input space ! R n O  to the output space !Rnm, a FFANN can be expressed 

as FFANN: !RnO+!Rnm. The mapping of an input vector to an output vector is a dynamic process, in 

which node inputs and outputs are updated sequentially from the input layer to the output layer. For 

i > 0, the input to v;, denoted by ti, is the weighted sum of the outputs of all nodes directly connected 

to it from all other lower layers plus 6;, i . e . ,  
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where 4 is the output of 4. 
Each node, except for the ones in the input layer, has an activation function which computes the 

node's output based upon its input. The most frequently used activation function, which is also used 

in this paper, is the logistic function, defined as 

where the "temperature" T, a user-selected scalar, determines the steepness of the activation function. 

A FFANN is usually trained to represent an unknown mapping by employing a training set (a  

collection of paired input and desired output vectors observed from the unknown mapping). The 

purpose in training a FFANN is to determine the values of the elements in W so that the FFANN can 

closely represent the unknown mapping. 

The training of a FFANN is accomplished by (1) mapping input vectors from the training set by 

the current version of the FFANN to their computed output vectors, (2) comparing the computed 

output vectors with their respective desired output vectors in the training set, and then (3)  adjusting 

the values of the components of W so as to reduce any differences between the computed and desired 

output vectors. After a number of training iterations, the connectivity weights and node biases of the 

FFANN will converge to  a set of values that minimizes the differences between the computed and 

desired output vectors, and the FFANN will organize itself internally, constructing a model to represent 

the unknown mapping from the input space to the output space. Thus any new input vector presented 

to an appropriately trained FFANN will yield an output vector similar to the one that would have 

been given by the actual mapping. The training algorithm that we used in this paper is based upon 

the error back-propagation algorithm (see Rumelhart, Hinton and Williams 1986) as described in Sun 

(1992) and is presented in Appendix A. 

Artificial neural networks have been applied to many real world problems, especially in 

classification and pattern recognition ( ~ b s s o n  and Wang 1990; Zahedi 1991). Also, artificial neural 

networks have been applied to problems in combinatorial optimization (Hopfield and Tank 1985; Aarts 

and Korst 1989) and linear programming (Tank and Hopfield 1986; Wang and Chankong 1992). 

Recently, Wang and Malakooti (1992) and Malakooti and Zhou (1994) have used FFANNs to solve 

discrete multiple criteria decision making problems. Burke and Ignizio (1992) provide an overview of 

connections between artificial neural networks and operations research. 



3. Notation and Preference Information Elicitation 

As for notation and  terminology, a multiple objective programming problem is written as 

max {f+) = 21) 

max { f k ( ~ )  = zk) 

s.2. x € s, 
or equivalently a s  

max {Ax) = z) 

s.t. x E S, 

where k is the number of objectives, the z ,  are criterion values, and  S C R n  is the feasible region in 

decision space. Let Z c R k  be the feasible region in criterion space where z E Z if and only if there 

exists a n  x E S such that  z = (fl(x), ..-, fk(x)). Criterion vector 2 E Z is nondominated if and only if 

there does not exists another z E Z such that  z, 2 ti for all i and zi > 2, for a t  least one i. The  set of all 

nondominated criterion vectors is designated N a n d  is called the nondominated set. A point 2 E S is 

efficient if and only if its criterion vector 2 = (fl(%),.-., fk(%)) is nondominated. The  set of all efficient 

points is designated E and is called the efficient set. If a multiple objective program is all linear, it 

will be referred t o  a s  an  MOLP (multiple objective linear program). 

Let V: Rk+R be a DM'S value function. A zoPt E Z tha t  maximizes V over Z is an  optimal 

criterion vector and any xoPt E S such that  (f1(xopt),---, fk(xoPt)) = zoPt is a n  optimal soht ion of the 

multiple objective program. Our interest in the efficient set E and the nondominated set N stems from 

the fact tha t  if V is coordinatewise increasing (that  is, more is always better than less of each 

criterion), xopt E E and zoPt E N. However, in interactive multiple objective programming, because of 

the  difficulty in precisely locating the best nondominated criterion vector, we typically conclude the 

search for an  optimal solution with a final solution zEinc Z (a  solution that  is either optimal, or close 

enough t o  being optimal t o  satisfactorily terminate the decision process). 

Because of difficulties in assessing a DM's value function (see for instance, Farquhar (1984), 

Fishburn (1974, 1984), Keeney and Raiffa (1976), and Yu (1985)), we have been intrigued by artificial 

neural networks because of their ability to represent complex mappings (linear or nonlinear, convex or 

nonconvex, continuous or discontinuous, differentiable or nondifferentiable). For instance, Hecht- 

Nielsen (1987) has shown that  a FFANN with three layers can represent any continuous mapping from 

Rn0 t o  Rnm, and others have shown that  FFANNs with two hidden layers can represent any set in R n  

(Cybenko 1989; Zwietering, Aarts and Wessels 1991). With this kind of potential, the strategy of this 

paper becomes clear -- to  develop a FFANN approach that  can capture a DM's preference structure 

well enough to  enable the Interactive FFANN Procedure to quickly locate final solutions of top  quality. 

Hence, in this paper, we are interested in employing a FFANN: RnO+Rnm with no = k and  nm = 1 
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such that FFANN: ?I?k+?I?. In other words, in this case, the FFANN input is a k-dimensional (rescaled) 

criterion vector, and the FFANN output is a single (rescaled) preference value. 

In the Interactive F F A N N  Procedure, two different approaches are developed for evaluating the 

criterion vectors generated a t  each iteration so that they can be used for initially training and then re- 

training the FFANN for use on each iteration. One approach is for the DM to assign an interval-scale 

preference "value" to each criterion vector, higher "values" representing higher degrees of satisfaction. 

So as to anchor the scale, the nadir criterion vector zd ( F ~  = rnin{f;(x)lx E E)) could be given a 

preference value of 0, and the ideal criterion vector ? (y = max{f,(x]~Ix E S)) could be given a 

preference value of 100. One way to obtain zd would be to examine the criterion vectors of all 

efficient extreme points. If e cannot be obtained in this way, for instance if the problem is too large 

to enumerate all efficient extreme points, e can be estimated from the minimum values in the 

columns of a payoff table (Isermann and Steuer 1988; Korhonen, Salo and Steuer 1994). In this way, 

the preference value of every nondominated criterion vector should fall within the range of 0 to 100. 

Actually, the scale is not important. What really matters is the order of the preference values and the 

differences between them. 

The other approach is to make pairwise comparisons between trial solutions. In this approach, 

the DM is asked questions similar to those posed in the Analytic Hierarchy Process (AHP) (Saaty 

1988) and in its software implementation Expert Choice (Expert Choice 1992). The advantage of 

eliciting preference information by pairwise comparisons is that it is easier for many DMs to provide 

relative than absolute preference information. The pairwise comparisons result in a reciprocal 

comparison matrix. Saaty (1988) has shown that the principal eigenvector components of this matrix 

can be viewed as the priorities of the alternative solutions. In the Interactive F F A N N  Procedure, the 

components of this priority vector are used as the desired outputs when training the FFANN.  

The AHP appears to be an easy and convenient methodology for eliciting preference information 

from the DM. In fact, it has been used to solve different types of real world discrete multiple criteria 

decision making problems. Recently, there have been authors that have used the AHP to elicit 

preference information from the DM in multiple objective programming and have incorporated the 

AHP into interactive solution procedures. In their interactive method, Arbel and Oren (1987) use the 

AHP to assess the relative preference of the current solution and adjacent solutions. Gass (1986) used 

the AHP to determine goal priorities and objective function weights in a linear goal programming 

formulation. Korhonen (1987a) discusses the use of the AHP to find reference directions, which are 

then used as search directions in his visual interactive approach. Korhonen and Wallenius (1990) use 

the AHP to determine objective coefficients and parameter values for an MOLP problem which is 

subsequently solved using their visual interactive package VIG. Kok and Lootsma (1985) propose 

using the AHP within the framework of the Reference Point Method (Wierzbicki 1982) to find the 



weighting vector for use in an achievement scalarizing program that projects reference points onto N. 

Barzilai and Golany (1990) derive weights for additive value functions from a reciprocal comparison 

matrix. 

A caveat of the AHP is that it has been criticized for several theoretical shortcomings (Dyer 

1990), in spite of many successful applications. One problem is the phenomenon of rank reversal when 

new alternatives are added to, or old alternatives are removed from, the current set of alternative 

solutions. Another problem is that the questions DMs are asked about the pairwise relative importance 

of the criteria may be viewed as ambiguous. T o  date, proponents and critics have not yet fully 

resolved these issues (Winkler 1990; Schoner, Wedley and Choo 1992). However, in the Interactive 

F F A N N  Procedure rank reversal problems can be handled through the interactive nature of the 

procedure in that a t  any iteration previous solutions can be re-ranked to correct for any errors that 

may have been made earlier in the solution process. 

4. Interactive FFANN Procedure 

In this section we specify the Interactive F F A N N  Procedure followed by comments about its 

different steps. 

Step 0: Determine z- and znd (if nadir values are not available, use the minimum values in the 

columns of a payoff table). Specify the number of criterion vectors P to be presented to the 

DM a t  each iteration and the number of iterations t the procedure is to run. Select a 

particular F F A N N  architecture to use. Generate P dispersed criterion vectors from the 

nondominated set. 

Repeat for h = 1, - - -, t: 
Step 1: After presenting the P criterion vectors along with znd and zmax to the DM, identify the best 

criterion vector seen so far. If h = t, or if the DM feels that the best criterion vector obviates 

the need for additional iterations, designate this criterion vector as  the final criterion vector zfin 

and stop. Otherwise, let the DM articulate his/her preference information either by directly 

assigning values to  the criterion vectors or by making pairwise comparisons. 

Step 2: Rescale the components of each of the P criterion vectors using the transformation 

Step 3: If pairwise comparisons are made, compute and normalize the principal eigenvector of the 

reciprocal comparison matrix so that its largest component is one. If preference values are 



assigned, let V(z) be the value assigned to z. Then, for each of the P  criterion vectors, 

compute a normalized preference value using 

Step 4: Use the rescaled criterion vectors (from Step 2) with either their normalized assigned preference 

values or the components of the principal eigenvector of the reciprocal comparison matrix 

(from Step 3) to train (if h = 1) or re-train (if h > 1) the FFANN. 

Step 5: With the most recently trained or re-trained FFANN as the objective function, solve the 

optimization problem 

maz FFANN(z) 

s . t .  z = f l x )  

X E S  

to obtain a new solution ( z ( ~ ) ,  x ( ~ ) ) .  

Step 6: If z ( ~ )  is different from any criterion vector previously presented to the DM, generate P -  1 

new dispersed criterion vectors. If z ( ~ )  duplicates a previously seen criterion vector, generate P  

new dispersed criterion vectors for presentation to the DM on the next iteration. 

End Repeat. 

In Step 0 there are no specific guidelines as to what FFANN architecture to use, in terms of the 

numbers of hidden layers and hidden nodes. Fortunately, as evidenced by the computational tests in 

Section 6, the particular FFANN representation of the DM'S preference structure is not very sensitive 

to the particular FFANN structure employed. Finally in Step 0 (and also in Step 6), we use the 

augmented weighted Tchebycheff program (Steuer and Choo 1983; and Steuer 1986) to generate the 

dispersed criterion vectors required a t  each iteration. 

Although a FFANN can be easily modified to automatically scale the input vectors and outputs 

by introducing nodes with linear activation functions, we always recommend in Steps 2 and 3 that all 

input vectors and outputs be rescaled prior to their presentation to the FFANN. In this way, the 

number of elements in W is kept a t  its minimum so as to avoid using unnecessarily extra time in 

training the FFANN. 

Saaty (1988) has shown that if the priorities of all trial solutions are known exactly and each 

pairwise comparison is made based on these priorities, the components of the principal eigenvector of 

the reciprocal comparison matrix are identical to these priorities. Saaty (1988) suggests several 

alternative methods for estimating the principal eigenvector of the comparison matrix. In Step 3, we 

use the power method (Burden and Faires 1989) for this purpose. The dimensions of the reciprocal 
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comparison matrix are ( P  + 2) x ( P +  2) because of the P trial solutions plus z- and znad. 

The training algorithms developed based on error back-propagation (Rumelhart, Hinton and 

Williams 1986) in Sun (1992) are used to train the FFANNs in Step 4. The details of one of these 

algorithms are provided in Appendix A. As we will see below, for multiple objective programming 

problems with a reasonable number of objectives the structure of the FFANN needs not to be very 

complicated and the training time is typically only a few seconds. After the first iteration, the 

procedure offers the option to continue the training in subsequent iterations with either a warm start, 

using the connectivity weights of the previous iteration as initial weights, or a cold start ,  using random 

initial weights. In the computational experiments, each iteration is started with random initial 

weights. 

The objective function of the optimization problem in Step 5, in this case the trained FFANN, 

may be complicated, requiring nonlinear programming solution techniques. In the implementation, the 

GRG2 package (Lasdon and Waren 1989) is used for this purpose. The gradient of the trained FFANN 

with respect to the k criterion values a t  a specific solution is determined numerically. The following 

three point formula (Burden and Faires 1989) is used to estimate the partial derivative of the trained 

FFA N N  

where ti is a small positive scalar. In the computational tests, we obtained similar results for various 

€,-values in the range from 0.001 to 0.01. 

5. An Example 

T o  illustrate how the Interactive FFANN Procedure works step-by-step, consider the following 

MOLP problem: 

m ux 2X2$5X3 $524 -225 +5x6 = z l  

max - x1 - 2x2 + 4 r 5 - x 6  = z 2  
mar 5x1 + 3x2 -21, - x5 - x6 - - z3 

Let us assume a hypothetical DM has the following value function 



with X = (0.319, 0.416, 0.265). Using GRG2 (Lasdon and Waren 1989), the optimal solution is found 

to  be zopt = (16.517, -0.886, 18.970) with a hypothetical value function value v4(zoPt) = 42.42288. 

The vector-maximum code ADBASE (Steuer 1992) was then used to  compute all efficient 

extreme points, from which the ideal criterion vector was found to  be z = (33.100, 14.500, 39.250) 

with V4(zm) = 50.00000 and the nadir criterion vector was found to  be znad = (-7.250, -16,412, 

-9.207) with v4(zd) = 33.07733. Furthermore, the worst criterion vector in the nondominated set 

was found to be zworst = (-7.250, 14.500, -3.625) with = 35.50926. The worst 

nondominated criterion vector, of course, is used as a benchmark to  measure the quality of solutions 

only and is not used in the Interactive FFANN Procedure. Now let the number of solutions that are t o  

be presented to  the DM a t  each iteration be P = 7 and the number of iterations the procedure is to  run 

be t = 5 .  

The augmented weighted Tchebycheff program (Steuer and Choo 1983; Steuer 1986) was then 

used to  generate the seven dispersed nondominated solutions in the first iteration, as  shown in Table 1. 

Together with zm- and zd, the seven nondominated solutions are presented to the DM, who then 

evaluates them, either by directly assigning preference values or by making pairwise comparisons. In 

the example, the V4(z) values in Table 1 represent the preference information elicited from the 

hypothetical DM. 

....................................................... 

Tables 1, 2 and Figure 3 About Here 
....................................................... 

We train the FFANN shown in Figure 3, with one hidden layer comprised of two hidden nodes, 

using the rescaled criterion vectors in Table 2 as the inputs and the normalized preference values as  the 

desired outputs. Thus, each line of Table 2 corresponds to  one training pattern. The connectivity 

weights and node biases of the trained FFANN are shown in Figure 3. The connectivity weights 

between the nodes are given by the values on the arcs, while the node biases are indicated inside each 

node in the hidden and output layers. The temperature used in training this FFANN was T = 10. 

T o  demonstrate the mapping of a FFANN, let z' = (0.78, 0.16, 0.76) be a given input vector of 

rescaled criterion values. It follows from (2.1) that z: = 13.74(0.78) - 47.17(0.16) + 22.30(0.76) 

+ 21.26 = 41.38, and z1 - 38.58(0.78) - 53.90(0.16) + 53.9710.76) - 61.23 = 1.26. Hence, from (2.2) it 
41.38 -- 1. 6 -- 

follows that  u: = [1 + e lo 1-I = 0.98 and u?j = [ l+e lo 1-I = 0.53, respectively. Similarly, 

< = 40.55(0.78 + 9.17(0.16) + 46.03(0.76) - 30.55(0.98) - 28.32(0.53) - 29.09 = -5.96, and 
-2.96 -- 

uf = [ l  + e lo I-' = 0.36. 

Solving the optimization problem in Step 5 of the procedure yields z(') = (19.16292, -4.44382, 

24.18538) with v4(z(')) = 41.80951. At this point, one iteration has been completed. Solution z(') is 
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different from any of the solutions previously presented to the DM. 

Along with z('), in the second iteration six new nondominated criterion vectors are presented to 

the DM for evaluation. The rescaled nondominated criterion vectors and the DM's normalized 

preference values are then used to re-train the F F A N N .  The re-trained F F A N N  is then used to search 

for improved solutions. This process is repeated for four more times. Table 3 lists the solutions 

obtained a t  each iteration. 

Table 3 About Here 
............................... 

As seen, the best solution was found in Iteration 3. Thus, the final solution is zh = (18.96599, 

-2.52878, 20.36740). This represents a 98.43% ~ ~ : ~ ~ ~ ~ ~ ~ i ~ : ~ ; ; ~ i  x 100% achievement of the DM's ( ) 
value function value from that of the nadir point znad to  that of the optimal point zOPt, and a 97.93% 

42.27592-35.50926 x 100% achievement from that of the worst nondominated point zworst. 
42.42288-35.50926 

6. Computational Experiments 

In this section, we conduct computational experiments in order to test the Interactive F F A N N  

Procedure against the Tchebycheff Method, which has tested well in a previous study (Buchanan and 

Daellenbach 1987). 

Similar to  the previous section, for each problem we assumed a hypothetical DM with a 

particular value function. This is useful for test purposes because it enables us to determine an optimal 

solution for each problem ahead of time and helps us in providing preference information by acting as 

the DM. This is especially useful when two procedures are compared computationally because it 

provides the same preference information required by both of the procedures. In the tests, the value 

function, of course, is only used in the preference elicitation phase and not in the search for improved 

solutions. With this experimental design, the performance of the Interactive F F A N N  Procedure is 

measured along four dimensions: (1) solution quality, (2) problem size, (3) type of value function, and 

(4) F F A N N  architecture. 

6.1 Test Problems 

The MOLP test problems used in the experiments were generated using the random problem 

generation capability in ADBASE (Steuer 1992), the same capability used in other interactive multiple 

objective programming computational studies such as  those reported in Reeves and Franz (1985), 

Steuer (1986), and Buchanan and Daellenbach (1987). The problem sizes, defined by k x  m x n (m is 

the number of linear constraints), used in the experiments are 3 x 5 x 6, 5 x 5 x 10, 5 x 8 x 15, 5 x 10 x 20 

and 6 x 50 x 100. ADBASE was used to find the criterion vectors of all efficient extreme points (see 
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Table 4) for all problem sizes except for those in the 6 x 50 x 100 category. The difficulty with the 

6 x 50 x 100 category is that the tens of thousands of efficient extreme points that such problems are 

likely to have is beyond the capability of any currently existing code. For all problems except those in 

the 6 x 50 x 100 category, z-, znad and zWomt were obtained from the generation of all efficient 

extreme points. For the 6 x 50 x 100 problems, the zd criterion vectors were estimated from their 

payoff tables. 

Table 4 About Here 

6.2 Value Functions 

In the experiments we used four different value functions of Lp-metric form with p = 1, p = 2, 

p = 4 and p = oo, 

where the Xi  are given by 

and K is a constant to ensure that all value function values are positive. When p = oo we note that 

(6.1) reduces to 

V,(Z) = K - max {Xi(caX - t i)) ,  
l < a < k  

in which case the value function is nondifferentiable. Thus, it will be interesting to study the 

performance of the Interactive FFANN Procedure when dealing with this potentially difficult mapping. 

In the computational experiments, we set the number of iterations to t = 5, (except for with the 

6 x 50 x 100 problems in which case we used t = 6), and evaluated P = 7 nondominated criterion vectors 

a t  each iteration. Note that in the experiments the principal eigenvector of the reciprocal comparison 

matrix is identical to the normalized preference values since the hypothetical DM makes each 

preference judgment according to the pre-specified value function. Therefore, the test results will be 

the same regardless of which method is used for eliciting preference information (pairwise comparisons 

or direct assessment). 
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6.3 Solution Quality 

In the computational tests, except for the 6 x 50 x 100 problems, the solution quality of a z E Z is 

measured by comparing its preference value against that of zoPt relative to that of zWomt by means of 

The convenience of this measure is that the quality of zwomt is 0 and the quality of zoPt is 100. For the 

6 x 50 x 100 problems, the quality of a z E Z is measured by comparing its preference value against that 

of zOPt relative to that of the estimated nadir point pad by means of 

because zWomt is not available. 

6.4 Experimental Results 

In the experiments, fifty (ten in each problem size category) MOLP test problems were 

employed. In testing the Interactive FFANN Procedure, different FFANN structures with different 

numbers of hidden nodes were employed. We report the computational results for four different 

FFANN structures with no, one, two or six hidden nodes in one hidden layer respectively. In Tables 

5-8, we summarize the quality of the final solutions obtained from the Interactive FFANN Procedure 

as compared against those obtained from the Tchebycheff Method when using the L1-, L2-, L4- and 

L,-metric value functions. More computational results with different quality measures are reported in 

Sun (1992). 

In Table 5, the Interactive FFANN Procedure was run for the L1-metric value function, with a 

neural network structure without any hidden nodes, resulting in higher quality solutions than with the 

Tchebycheff Method, in terms of average as well as best and worst qualities. In this case, the output 

node is the only node which performs a computational function. If this node were to have a linear 

activation function, the FFANN would reduce to a linear regression model and be able to represent the 

DM'S linear value function exactly. However, in this case the nonlinear nature of the activation 

function of the output node introduces b'imprecision" into the FFANN.  Nevertheless, this imprecision 

hardly has an impact on the performance, as the Interactive FFANN Procedure correctly identifies the 

optimal solution, within five iterations, for 35 out of the 50 test problems, and approximates the 

optimal solution closely (within one to four percent) for the remaining problems. 

In Table 6, three different neural network structures were used for the L2-metric value function. 

From this table, we see that superior results were obtained using the Interactive FFANN Procedure, as 

long as a t  least one hidden node is used. In Tables 7 and 8, generally better results were obtained 
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using the Interactive FFANN Procedure than with the Tchebycheff Method, but a t  least two hidden 

nodes were required because of the more difficult L4- and L,-metric value functions. Particularly for 

the L,-metric value function, the difference in performance becomes more favorable for the Interactive 

FFANN Procedure as the problem size increases. 

Keeping in mind the fact that the test results were generated by the progenitors of the new 

procedure, we nevertheless feel that the results are very encouraging and that the possibilities for 

embedding artificial neural network technology in the interactive procedures of multiple objective 

programming are promising. 

Tables 5-8 About Here 

6.5. Computational Effort 

The time required to train a FFANN depends on several factors, such as the number of patterns 

in the training set, the number of inputs (2.e. k, the number of objectives), the number of hidden nodes 

in the FFANN, the stopping criteria, and the complexity of the mapping the FFANN is to represent. 

In order to fully assess the usefulness of the FFANN approach, we report the average computational 

effort required to train FFANNs for ten 6 x 50 x 100 MOLP problems in Table 9. Smaller size 

problems were trained within a few seconds. 

Table 9 About Here 
.................................. 

From Table 9 we see that,  as expected, the average computational effort increases as the number 

of nodes in the hidden layer and the number of patterns in the training set increase. Nevertheless, even 

for FFANN configurations with 6 hidden nodes and for training sets with 44 patterns the training 

times are reasonable. 

7. Concluding Remarks 

In this paper, we present an Interactive FFANN Procedure for solving multiple objective 

programming problems using feed-forward artificial neural networks. In the procedure, the DM has the 

option of articulating his or her preference information either by directly assigning a preference value to 

each new solution or by making pairwise comparisons in a way similar to the AHP. Since preference 

structures may be very complex, a FFANN is used in the procedure because of its ability to capture 

and represent complicated mappings. Because the DM'S aspirations may evolve over the course of the 

solution process, the FFANN has the chance to adapt to any such changes as the FFANN is re-trained 
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a t  each iteration. 

From the computational results, it is evident that good solutions have been obtained, a t  least for 

the test problems and value functions used. Also, the procedure is relatively robust in that similar 

solutions are obtained when different FFANN structures are employed. Computer-time-wise, because 

of the re-training of the FFANN a t  each iteration, the Interactive FFANN Procedure can be expected 

to take more time than other interactive procedures. However, in an era of rapidly decreasing 

computer costs, solution quality may be the most important issue for many users. Typically, FFANNs 

used in the Interactive FFANN Procedure can be trained within a few seconds. 

All of the computations performed in this paper were conducted on the University of Georgia 

IBM ES 9000 Model 720 computer. 
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Appendix A: A FFANN Training Algorithm 

This appendix presents an algorithm for training FFANNs with multiple layers, which we use in 

our Interactive FFANN Procedure. The algorithm is developed based on the error back-propagation 

algorithm (Rumelhart, Hinton and Williams 1986), and uses unconstrained nonlinear optimization 

techniques. Specifically, the algorithm uses a combination of the Golden Section Method and a 

"doubling and halving" line search strategy, and the Polak and Ribiere conjugate gradient direction. 

In the following, we discuss the mathematical details of the training algorithm, present the line search 

procedure, and outline the training algorithm. 

Al. Mathematical Details 

In the training process, the node biases, B;, are treated the same as other connectivity weights. 

Actually, by adding a single node $ + to the input layer, connecting it to all nodes in all other 

layers, and assigning + an input value of 1, the connectivity weight w c  no + is the bias 9; of 

node v;, i.e., 

Suppose that z, t Pn0 is the qth input vector and tq E Pnm is the associated desired output 

vector in the training set. The compound vector (4, tq) E Pnotnm is called a training pattern. Let 

the number of patterns in the training set be denoted by Q. 

When zq is presented to the network, the FFANN maps it to an output vector uq based on 

(2.1-2.2). The error measure Eq for the qth training pattern is defined as 

Thus, Eq is the sum over all output nodes of the squared differences between the computed and 

desired outputs. In our application, n, = 1. For a given topology of the FFANN and a given set of 

training patterns, Eq is a function of the connectivity weights in Wand can be written as Eq( W). 

Summing over all training patterns, the overall error measure over all Q training patterns is given by 

When a FFANN is trained, we try to adjust the values of the components of W so as to 

minimize E(W).  The partial derivative of Eq with respect to the connectivity weight w:,, is given by 

where 6bk is the error signal of node vi and u;, is the computed output of node t$ for the qth training 
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pattern, respectively. If i = m, 6 s  is determined by 

and, if 0 < i < m, 6ik is computed recursively in terms of the error signals of all the nodes to which it 

directly connects as shown in 

where f'(<k) is the first derivative of the node activation function of u i  evaluated a t  zik and <k is 

determined by (2.1) for the qth training pattern. The first derivative of the logistic node activation 

function in (2.2) is given by 

Denote the gradient of E( W) with respect to W by G, i.e. G = VE(W) = { g ~ ) ,  for i = 1, ..., m; 
. . 

j = 0, ..., m - 1; k = 1, ..., ni, and r = 1, ..., nj, then gi; is given by 

The connectivity weights are updated according to the following rule 

where h is the iteration counter, sometimes called learning time, 7 is the learning rate, Dh is the search 

direction a t  iteration h, and Wh is the set of connectivity weights a t  the beginning of iteration h. 

Letting the set of values of G a t  iteration h be denoted by Ghl the search direction Dh is determined by 

In our training algorithm, ah is determined by a combination of the Polak and Ribiere gradient 

conjugate direction (Polak 1971; Luenberger 1984) and a momentum factor. In the Polak and Ribiere 

gradient conjugate direction, a h  is determined by 
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A2. Line Search Procedure 

For a given training set and Wh, the error measure E a t  iteration h is a function of the search 

direction Dh and the learning rate q. For a given search direction, E becomes a function of the 

learning rate q. Let us denote this error measure by E( Wh + q D h )  There are many line search 

methods to determine a value q* for q a t  which E( W + qDh) is approximately minimized along Dh. In 

the following line search procedure, we use a "doubling and halving" strategy to locate the initial 

interval of uncertainty, and the Golden Section method (Bazaraa and Shetty 1979; Luenberger 1984) to  

find q*. 

Initialization: 

Step 0. Let E > 0 be small. Let (' = E( Wh) and compute = E( Wh + qDh). If C1 > (', execute Step 

OA; otherwise execute Step OB. 

Step OA. Let d = - 1.0, q = q - Aq, and compute = E( Wh + qDh). 

Step OB. Let q = q + Aq and compute = E( Wh + q D h )  If Cz > then let d = - 1.0, w = C1, 
= c2, c2 = W, and q = q - Aq; otherwise let d = 1.0. 

Doubling and Halving: 

Step 1. Let Aq = 2Aq. If both Aq>q and d = -1.0, then let ql = 0, Aq = 0.5Aq, qz = q + Aq and 

go to  Step 4; otherwise let q = q + dAq and compute C3 = E( Wh + qDh). 

Step 2. If c3 < c2, let C1 = c2, C2 = C3, and go to Step 1. 

Step 3. Let Aq = 0.5Aq and q = q - dAq, and compute c4 = E( Wh + qDh). If C4 < c2, then let 

ql = q - Aq, qz = q + Aq; otherwise let ql = q - 2dAq, qz = q. If d = -1.0, then let qi = ql ,  

71 = 72, 72 = 91. 

Golden Section: 

Step 4. Let q3 = q2 - 0.618(q2 - ql) and q4 = ql + 0.618(q2 - ql). Compute c3 = E( Wh + q3Dh) and 

('4 = E( Wh + 74Dh). 

Step 5. If c4 5 C3, execute Step 6. Otherwise execute Step 7. 

Step 6. Let 171 = q3, 73 = q4 and C3 = c4. If (q2 - ql) < E, then go to  Step 8. Otherwise let 

q4 = ql + 0.618(q2 - ql) and compute C4 = E( Wh + q4Dh). GO to Step 5. 

Step 7. Let 72 = q4, q4 = q3 and C4 = c3. If (q2 - ql) < E, then go to  Step 9. Otherwise let 

q3 = q2 - 0.618(q2 - ql)  and compute c3 = E( Wh + q3Dh). Go to Step 5. 

Step 8. Let q = q3, q* = q3 and (' = C3. Stop. 

Step 9. Let q = q4, q* = q4 and (' = c4. Stop. 
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The values of q and Aq need to be initialized for the first iteration. For the following iterations, 

the ending values of the previous iteration are used as the beginning values of the current iteration. 

A3. The Training Algorithm 

Step 0. Initialize the connectivity weights Wl to small positive values. Let r1  > 0 and r2  > 0 be 

small. Let a. > 0 be a pre-determined constant. Set the iteration counter to h = 1. 

Step 1.  Compute Gh according to (A.l-A.7), let the search direction be Dh = -Gh. 

Step 2. Perform a one-dimensional search to  minimize E( Wh + qDh) with the line search procedure 

discussed above. Let Q* be the value of q corresponding to the minimum of E( Wh + qDh). 

Update the connectivity weights by setting Wh+l = Wh + q*Dh. If E( Wh) - E( Wh+l) < r l ,  

then Stop. Let h = h + 1. If ( h  mod ( w )  = 0, where I is the cardinality of W, go to Step 

1.  

Step 3. Compute Gh according to (A.l-A.7). If 11 Gh 11 < r 2 ,  then Stop. Otherwise, compute the value 

of a according to (A.10). If a > a,,, then let a = ao. Let the new search direction be 

Dh = -Gh + aDhP1. GO to Step 2. 



Table 1. Criterion Vectors of the First Iteration for the Example Problem 

Table 2. Normalized Criterion Vectors of the First Iteration for the Example Problem 

Solution 

1 
2 
3 
4 
5 
6 
7 

z- 
z nad 

Z1 z2 Z3 

24.35460 -11.54862 27.64540 
-5.69318 14.18864 -3.93636 
22.86093 2.25756 -7.88655 
-4.61749 7.45757 14.19598 
29.56935 -9.20832 6.82426 

2.32488 -6.27676 34.03545 
-3.17575 1.33950 27.90013 

33.10000 14.00000 39.25000 
-7.25000 -16.41200 -9.20700 

Solution 

1 
2 
3 
4 
5 
6 
7 

z- 
z nad 

V4(z) 

39.13516 
35.80484 
37.39273 
37.69865 
38.94388 
38.96402 
38.28441 

50.00000 
33.07733 

4 4 4 

0.78326 0.15733 0.76052 
0.03858 0.98993 0.10877 
0.74624 0.60396 0.02725 
0.06524 0.77218 0.48296 
0.91250 0.23304 0.33083 
0.23730 0.32787 0.89239 
0.10097 0.57426 0.76577 

1.00000 1.00000 1.00000 
0.00000 0.00000 0.00000 

v4(z) 

0.35797 
0.16117 
0.25501 
0.27308 
0.34667 
0.34786 
0.30770 

1.00000 
0.00000 



Table 3. Iteration by Iteration Solutions for the Example Problem 

Table 4. Number of Efficient Extreme Points over the Ten Test Problems 
for Each Problem Size 

Iteration ( h )  

Table 5. Final Solution Quality with L1-Metric Value Function 

zlh) zih) zih) 

Problem 
Size 

3 x  5 x  6 
5 x  5 x 1 0  
5 x  8 x 1 5  
5 x 10 x 20 

v4 ( ~ ( ~ 1 )  

Number of Efficient Extreme Points 

Problem 
Size 

3 x  5 x  6 
5 x 5 x 10 
5 x  8 x 1 5  
5 x 10 x 20 
6 x 50 x 100 

Average 

11.9 
27.7 

158.0 
417.7 

Minimum 

5 
6 

29 
226 

Maximum 

19 
8 3 

554 
113 1 

Interactive FFA NN Procedure 
(No Hidden Nodes in the FFANN) 

Worst 

98.18 
100.00 

97.09 
95.97 
99.62 

Tchebycheff Method 

Worst 

94.95 
90.50 
84.89 
91.12 
93.40 

Best 

100.00 
100.00 
100.00 
100.00 

99.97 

Average 

99.82 
100.00 

99.71 
99.26 
99.81 

Best 

99.95 
99.98 

100.00 
99.59 

100.00 

Average 

98.48 
97.81 
97.19 
97.69 
96.98 



Table 6. Final Solution Quality with LTMetric Value Function 

I I Interactive F F A N N  Procedure I I 

Table 7. Final Solution Quality with L4-Metric Value Function 

MOLP 
Problem 

Size 

3 X 5 X 6  

5 x 5 x 10 

5 x 8 x 15 

5 x 10 x 20 

6 x 50 x 100 

Table 8. Final Solution Quality with L,-Metric Value Function 

Interactive F F A N N  Procedure 

Number of Hidden Nodes in the F F A N N  
Problem Tchebycheff Method 

Size 

Tchebycheff 
Met hod 

Worst Best Average 

92.35 99.95 97.52 

93.46 100.00 98.64 

93.57 99.98 97.89 

92.05 98.87 97.00 

89.03 98.87 96.39 

Number of Hidden Nodes in the F F A N N  

3 x 5 ~ 6  
5 x 5 x 10 
5 x 8 x 15 
5 x 10 x 20 
6 x 50 x 100 

0 

Worst Best Average 

61.42 100.00 94.14 

83.35 100.00 92.94 

96.46 99.56 98.27 

92.32 99.99 97.59 

98.29 99.84 99.27 

Problem 
Size 

3 x 5 ~ 6  
5 x 5 x 10 
5 x 8 x 15 
5 x 10 x 20 
6 x 50 x 100 

Worst Best Average 

93.88 99.98 98.13 
86.63 100.00 97.70 
94.45 99.96 97.61 
95.59 99.77 98.35 
93.53 99.06 97.13 

1 

Worst Best Average 

90.23 100.00 98.19 

85.98 100.00 98.67 

97.10 99.96 98.76 

95.41 100.00 98.63 

98.28 99.84 99.27 

2 

Worst Best Average 

97.68 100.00 99.48 

89.39 100.00 99.00 

97.60 99.90 99.01 

95.41 100.00 98.77 

97.29 99.84 99.30 

Worst Best Average 

93.71 99.98 98.13 
84.05 100.00 97.21 
93.06 99.96 97.15 
92.89 99.91 98.11 
97.07 99.78 99.02 

Tchebycheff Method 

Worst Best Average 

92.08 99.00 95.94 
52.27 95.34 86.75 
68.34 98.49 87.98 
75.75 98.64 87.14 
49.39 91.19 71.47 

Interactive F F A N N  Procedure 

Number of Hidden Nodes in the F F A N N  

Worst Best Average 

95.00 100.00 98.78 
74.16 99.67 94.15 
74.44 99.70 95.15 
81.39 98.87 95.36 
93.19 98.86 96.24 

2 

Worst Best Average 

88.35 100.00 96.28 
85.65 97.55 92.13 
72.42 98.26 91.63 
88.59 98.20 94.84 
72.09 93.09 76.63 

6 

Worst Best Average 

84.21 100.00 92.83 
83.16 96.70 92.55 
79.81 99.71 92.28 
85.16 98.42 91.94 
69.23 96.68 84.88 



Table 9. Average Time to Train Six-Input Node FFANNs for 6 x 50 x 100 MOLP 

Number of 
Hidden Nodes 

0 
2 

0 
1 
2 
4 
6 

0 
2 
4 
6 

0 
2 
4 
6 

Number of Training Patterns 

9 16 23 3 0 3 7 44 

Ll-Metric Value Function 

2.09 0.56 0.75 1.00 1.21 1.55 
4.91 3.39 12.06 22.50 67.32 105.67 

L2-Metric Value Function 

2.14 0.72 0.90 1.15 1.39 1.77 
2.34 2.24 8.86 13.25 26.85 31.29 
3.72 9.76 23.95 48.10 60.65 77.76 
8.27 15.64 48.74 71.71 139.10 164.23 

18.20 52.26 80.95 167.13 233.43 208.33 

L4-Metric Value Function 

2.16 0.94 1.02 1.33 1.76 1.95 
5.33 15.54 45.20 78.60 94.58 110.81 
8.25 49.83 81.02 123.87 164.09 187.17 
9.10 66.28 138.97 188.52 228.70 271.43 

L,-Metric Value Function 

2.16 0.81 0.93 1.19 1.47 1.69 
14.77 47.27 66.10 74.61 99.32 94.28 
20.39 76.30 89.59 118.05 169.86 199.23 
29.27 105.59 131.77 183.46 221.38 239.69 



Layer 2 

Layer 1 

Figure 1: X FG\ ,VM\VIIIIOU~ Dirrc~ C o l ~ n e r ~ ~ o n s  irolll I I I C  I I I I ) ~ I I  Layer lo [he O U I O U I  Layer. 

Layer 2 

Layer I 

Layer 0 



FiPurr .i: F E . \ . Y S A r c h i ~ c c r u r c  2nd C ~ \ n t ~ c c ~ i \ , i ~ y  \ \:cigll~s for ~ l l e  Exa~l lp le  Prohle111. 


