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Preface 

The research project on Systems Analysis of Technological and Economic Dynamics a t  IIASA is 
concerned with modeling technological and organisational change; the broader economic devel- 
opments that  are associated with technological change, both as cause and effect; the processes 
by which economic agents - first of all, business firms - acquire and develop the capabilities 
to  generate, imitate and adopt technological and organisational innovations; and the aggregate 
dynamics - a t  the levels of single industries and whole economies - engendered by the interac- 
tions among agents which are heterogeneous in their innovative abilities, behavioural rules and 
expectations. The central purpose is to  develop stronger theory and better modeling techniques. 
However, the basic philosophy is that  such theoretical and modeling work is most fruitful when 
attention is paid t o  the known empirical details of the phenomena the work aims to  address: 
therefore, a considerable effort is put into a better understanding of the 'stylized facts' concern- 
ing corporate organisation routines and strategy; industrial evolution and the 'demography' of 
firms; patterns of macroeconomic growth and trade. 

From a modeling perspective, over the last decade considerable progress has been made on 
various techniques of dynamic modeling. Some of this work has employed ordinary differential 
and difference equations, and some of it stochastic equations. A number of efforts have taken 
advantage of the growing power of simulation techniques. Others have employed more traditional 
mathematics. As a result of this theoretical work, the toolkit for modeling technological and 
economic dynamics is significantly richer than it was a decade ago. 

During the same period, there have been major advances in the empirical understanding. 
There are now many more detailed technological histories available. Much more is known about 
the similarities and differences of technical advance in different fields and industries and there is 
some understanding of the key variables that  lie behind those differences. A number of studies 
have provided rich information about how industry structure co-evolves with technology. In 
addition to  empirical work a t  the technology or sector level, the last decade has also seen a 
great deal of empirical research on productivity growth and measured technical advance a t  the 
level of whole economies. A considerable body of empirical research now exists on the facts that  
seem associated with different rates of productivity growth across the range of nations, with the 
dynamics of convergence and divergence in the levels and rates of growth of income, with the 
diverse national institutional arrangements in which technological change is embedded. 

As a result of this recent empirical work, the questions that  successful theory and useful 
modeling techniques ought to  address now are much more clearly defined. The theoretical work 
has often been undertaken in appreciation of certain stylized facts that  needed to  be explained. 
The list of these 'facts' is indeed very long, ranging from the microeconomic evidence concerning 
for example dynamic increasing returns in learning activities or the persistence of particular sets 
of problem-solving routines within business firms; the industry-level evidence on entry, exit and 
size-distributions - approximately log-normal - all the way to the evidence regarding the time- 
series properties of major economic aggregates. However, the connection between the theoretical 
work and the empirical phenomena has so far not been very close. The philosophy of this project 
is that  the chances of developing powerful new theory and useful new analytical techniques can 
be greatly enhanced by performing the work in an environment where scholars who understand 
the empirical phenomena provide questions and challenges for the theorists and their work. 

In particular, the project is meant t o  pursue an 'evolutionary' interpretation of technological 
and economic dynamics modeling, first, the processes by which individual agents and organisa- 
tions learn, search, adapt; second, the economic analogues of 'natural selection' by which inter- 



active environments - often markets - winnow out a population whose members have different 
attributes and behavioural traits; and, third, the collective emergence of statistical patterns, 
regularities and higher-level structures as the aggregate outcomes of the two former processes. 

Together with a group of researchers located permanently a t  IIASA, the project coordinates 
multiple research efforts undertaken in several institutions around the world, organises workshops 
and provides a venue of scientific discussion among scholars working on evolutionary modeling, 
computer simulation and non-linear dynamical systems. 

The research focuses upon the following three major areas: 

1. Learning Processes and Organisational Competence. 

2. Technological and Industrial Dynamics 

3. Innovation, Competition and Macrodynamics 



From the Artificial to the Endogenous: Modelling 
Evolutionary Adaptation and Economic Growth 

Gerald Silverberg and Bart Verspagen' 

1 Introduction 

The process of economic growth and development strikes us as messy and anything but a 
clean steady state. Firms evolve strategies over time and are heterogeneous within and across 
industries and national economies. Growth and cycles overlap and interact in ways that are 
still controversial. Structural shifts occur, often rather suddenly on a historical time scale, and 
without any apparent exogenous cause. The rate of technical change is not God given but 
rather results from the collective but largely uncoordinated decision of numerous economic 
agents to pursue and implement innovation, primarily motivated by the expectation of 
realizing profits. The conditions under which this can be reliably done are anything but 
transparent in terms of the directions in which to search, the probabilities of success, and the 
ability to appropriate a return in the face of competition, temporal lags and informational 
spillovers. 

Yet the economy can often be characterized by certain regularities of behaviour, both over 
time and cross-sectionally. Firms may come to adopt similar behavioral rules, such as price 
markups, investment payback periods, or target levels for inventories and R&D spending. 
Such relatively simple rules have been the object of study of the behavioral theory of the firm 
first outlined by Cyert and March (the classic exposition is Cyert and March 1963), who very 
early on advocated empirical study of actual business procedures on the one hand, and 
computer-based simulation as a research tool on the other. In this tradition, Nelson and Winter 
(1982) introduced the concept of routines as a 'genetical' description of the gamut of 
behavioral traits internal to and integral to the firm determining in some sense its standard 
operating procedure and its very individuality. The inheritability or persistence of such rules 
may be motivated by limited information processing ability and 'menu costs', or Simon's 
notion of satisficing as a common denominator of boundedly rational behaviour: agents only 
change their strategies when the gap between aspirations and realizations exceeds a certain 
threshold. 

However, the rejection of fully optimizing behaviour as an explanation of economic 
activity does not single out any precise alternative as a theory of boundedly rational 
behaviour. It is probably for this reason-the absence of an operationalizable alternative based 
on 'first principles'-that economists continue to cling so tenaciously to the standard 
paradigm. 

In the model we present in the following, firms must determine how much to spend on 
R&D in relation to either their profits or their sales1. In contrast to the more neoclassical 
approaches, we investigate this decision problem in the context of bounded rationality, where 
agents can have only vague ideas about the relationship between their actions and outcomes. 
To provide some anecdotal evidence, we recall an interview with the director of R&D of the 

* Maastricht Economic Research Institute on Innovation and Technology, University of Limburg, P.O. Box 
616, NL-6200 MD Maastricht, The Netherlands. The research of Bart Verspagen has been made possible by a 
fellowship of the Royal Netherlands Academy of Arts and Sciences. 

' This paper extends Silverberg and Verspagen 1994a,b, where the decision rule is based only on the R&D 
to profits ratio. 



Japanese firm Canon published in The Financial Times a number of years ago. The director 
reported that the firm had some time before raised its R&D/turnover ratio from 11% to 
11'/2%. This appeared to have been beneficial to firm, so that the directors were debating 
whether to cautiously raise it even further. There in fact did not seem to be any way to 
determine where an upper limit might lie, and what the optimum policy might be, short of 
actually trying it out, but the firm was set to continue in this direction. Given that firms may 
operate in a trial and error mode in some areas of their strategic behavior, and moreover that 
they interact, is there any modelling approach which promises to capture this form of 
collective 'learning' in a scientifically reproducible way? 

The perspective we adopt to address this question simulates a model economy consisting 
of 'artificial' agents endowed with limited but nonnegligible abilities to update their behavior 
in interaction with each other on the basis of their performance. Their environment is such 
that the product of their efforts is a pattern of economy-wide growth as they learn to 
undertake the R&D necessary to induce innovation and generate profitable avenues of 
investment. Hence it is a model of endogenous growth in the sense of Romer (1986, 1990), 
but without an aggregate production function, a representative agent, and intertemporal 
optimization. 

In the next section we discuss recent work on learning and evolutionary games as well as 
the more computationally based artificial worlds approach. We then outline the details of the 
model before introducing the methods we have developed to evaluate its behavior. The last 
section compares the implications of the modelling exercise with some casual observations 
about real economies and locates them within the general research agenda on growth 
theorizing and economic history. 

2 Selection, Learning and the Artificial Worlds Modelling Philosophy 

Selten (1989) presents a provocative discussion of the tensions between the boundedly rational 
perspective and perfect rationality as traditionally used in economics. The traditional 'as i f  
argument of Milton Friedman (1953) holds that regardless of the boundedness of individual 
agents in their decision making, market selection will ensure that the traditional optimization 
result will prevail. This seems to absolve the economist of any necessity of explaining in 
detail how an equilibrium comes about, given arbitrary and out-of-equilibrium initial 
conditions. And in the event of multiple equilibria, as is common in many interesting 
problems in game theory, it provides no help at all. A bridge between a theory based on 
causal mechanism and outcomes based on equilibrium has been sought in learning or 
evolutionary game models, often inspired by biological applications (cf. Friedman 1991 for 
a survey). The static notion of evolutionarily stable strategy is the biologist's refinement of 
a Nash equilibrium, while dynamic versions have usually been based on replicator dynamics 
(cf. Hofbauer and Sigmund 1988). The key biological stability concept is uninvadability, the 
inability of a small number of mutants to invade an equilibrium population. As in standard 
game theory, the interesting results concern possible existence of multiple equilibria, but in 
contrast to game theory the dynamic theory provides a means of equilibrium selection based 
on initial conditions. Most of this work has been in a deterministic framework in economics, 
although this has not been the case in biology. But evolutionary game theory reflects just one 
half of the evolutionary process, namely selection, and has focused on the equilibria as once- 
and-for-all asymptotic states. 

Recently, attention has shifted to the role of mutation and stochasticity in further refining 



the notion of stability in evolutionary games (Foster and Young 1990, Young 1993, Kandori, 
Mailath and Rob 1993, Binmore and Samuelson 1993). In contrast to conventional 
evolutionary game theory, agents or species are allowed to mutate continually over time 
before an equilibrium is attained. In general, the equilibria that remain (usually in the limit 
as the mutation probability goes to zero) will be a significant further refinement of the 
limiting states. This framework has been proposed as a model of learning by ongoing trial and 
error with selection. Once again, though, the focus has been on asymptotic states and the 
refinement of equilibrium concepts. 

Approaching learning from another extreme is work based on artificial intelligence and 
computer science such as neural nets, genetic algorithms, and classifier systems. While these 
approaches are also based on complex interdependence of interacting subunits as in game 
theory, selection, and stochastic perturbations, the complexity of the problems workers have 
addressed has made analytical results difficult to come by. Whereas in the beginning, most 
work focused on computing standard optimization problems and thus converging to a 
hopefully unique point, more recent efforts have been directed at using these tools open- 
endedly to simulate the self-organization and evolution of life-like systems, whether they be 
abstract ecosystems, microorganisms, individual behaviour or human economies (cf. the work 
in Langton 1989, Langton, Taylor, Farmer and Rasmussen 1992, Arthur 1991, and Lane 
1993). 

For systems exceeding a certain complexity in their organization, if not in the nature of 
their constituent parts and their interactions, the existence and uniqueness of an asymptotic 
steady state may be less interesting than two heuristic phenomena that have often been 
commented on without precise definition. The first is emergent properties, i.e., complex but 
identifiable patterns of behaviour that emerge spontaneously at some point in the history of 
the system and are not in any obvious way inherent in the constitution of its parts. The second 
is punctuated equilibria, periods of quasi-stable behaviour separated by usually very rapid 
periods of transition and disorder. Evolutionary game theory, by focusing on very low- 
dimensional game structures may well provide an explanation of the emergence and stability 
of a single such behaviour, but has deliberately excluded the complexity apparently necessary 
to generate an ongoing sequence of such states. There is obviously a tradeoff here between 
analytic tractability and behavioral richness as well as a philosophical difference of opinion 
on how science should proceed. Lane (1993) argues that the artificial world framework differs 
from conventional approaches in one or more of the following ways: 
1) Transients are at least as important as steady states; 
2) The concept of stability must be relativized to some notion of metastability, i.e., one which 

may contain the seeds of its own destruction; 
3) New statistical methods will have to be developed to enable metastable states and emergent 

properties to be identified and characterized; 
4) Computational methods will attain a scientific status equal to that reserved until now for 

analytical ones. 
Most of the work in artificial worlds has been based on discrete genetic codings of 

strategies such as are called for by genetic algorithms or classifier systems. One may ask 
whether this perspective, borrowed from biological genetics, should not be made more 
congruent with the way agents may be interpreted to formulate and modify their strategies in 
reality. Thus, although a genetic algorithm may be used to solve an optimization problem in 
a continuous space by representing real values in binary form, in some cases it may be more 
natural to represent for example mutation as a local operation rather than the discrete and 
possibly very large jumps implicated by a binary coding in a genetic algorithm. In our case 



at hand-the determination of firms' R&D investment-it may make more sense to mutate 
locally around existing values than to allow for jumps across the entire parameter space. This 
'realistic' approach to evolutionary modelling based on stylized behaviour is characteristic of 
the work initiated by Nelson and Winter (1982) and in the computer science realm to the real- 
valued evolutionary algorithms of Schwefel (1981). Thus mutation or trial and error will be 
represented in our model by a draw from a normal distribution centred around the current 
value of the R&D to investment ratio. Imitation, in contrast, does permit large discrete jumps 
in parameter space but will be modified here to reflect a satisficing principle--only firms with 
low profits will go out and imitate. 

3 The Model 

Our model has much in common with recent work on 'endogenous growth' (cf. Romer 1986 
and 1990, Lucas 1988, Aghion and Howitt 1992, Helpman 1992), where technical change 
comes about as a result of the profit-seeking activities of individual agents, and increasing 
returns, spillovers and other phenomena known from the economics of innovation may be 
present. While recognizing that innovation is associated with many imponderables and 
uncertainties, these models still hinge on the standard tools of market clearing, classical 
rationality, intertemporal optimization, rational (technological) expectations and the 
identification of steady-state equilibria. 

Moreover, their representation of technology has often been oversimplified to correspond 
to known and tractable special cases. Thus, in the model most closely related to the structure 
of our own, Aghion and Howitt (1992) assume that at any time only one technology prevails 
in the economy. When a new innovation is made, it instantly and costlessly (except for the 
sunk cost of the R&D which went to invent it) replaces its predecessor. The monopoly returns 
associated with it, for as long as it prevails, are completely recouped by the single innovator, 
with no imitation or spillovers. Thus the appropriate stochastic decision problem to determine 
the level of R&D spending, they argue, can be represented as a patent race with a commonly 
known probability of making an innovation as a function of R&D effort. 

As any student of the history of technology knows, however, this is a far cry from 
anything that has ever prevailed economy-wide. And even in some particular industries where 
a monopoly of a truly key innovation has been defended for as long as possible (one thinks 
of the Boulton and Watt patent on the condensing steam engine), earlier technologies (such 
as the Newcomen engine and water power) retained a significant place in production for a 
considerable time (partly because of the monopoly, no doubt). 

These cursory reflections suggest a number of requirements for an 'endogenous' growth 
model regarding both a model's representation of technology and of the decision problem 
confronting the innovator: 
1) At any given time a number of technologies will be concurrently in use, particularly if 

these technologies are capital embodied (the vintage effect); 
2) Even at the investment 'frontier', different technologies may be adopted simultaneously; 
3) The aggregate rate of technical change will be a function of the rate of diffusion of new 

technologies and not of the rate of instantaneous innovation; 
4) Even if one may accept that the return to innovative effort is representable as a draw from 

a stationary random process, the parameters of this process are not a priori known to 
agents, and their subjective priors may differ widely. Moreover, even if they are Bayesians, 
they may not live long enough to draw more precise conclusions. Their problem is not 



dissimilar to that of the multiarmed bandit; 
5) Technological knowledge, like information in general, can have a public and codifiable, 

a private, and a tacit character. It can only be imperfectly protected as private property (the 
mere knowledge that something can be done, which a patent discloses, can already be very 
useful information). This state of affairs will certainly influence innovative activity, but in 
ways that are difficult to anti~ipate.~ 
To deal with these different aspects of the problem, we have constructed the model around 

three basic blocks. The first block describes how the artificial economy evolves with a given 
set of technologies and firms, with selection taking place at both levels. This block consists 
of equations for the rate of capital accumulation, the diffusion of new technologies in the total 
capital stock of the firms, and the real wage rate. The second block describes a set of rules 
that is used to introduce new technologies and firms into the economy. This block takes the 
innovative behaviour of firms (to be explained below) as given, and then describes the 
probability that individual firms will make an innovation, as well as how this innovation is 
introduced. The third block describes how innovative behaviour changes under the influence 
of the evolution of the economy and firm learning. This block, in other words, describes a 
feedback from performance to innovative behaviour and thus a form of collective learning. 
The parameters of the model and the values used in the simulations are summarized in the 
Appendix. 

a. The evolution of the artificial economy with a given set of firms and technologies 

The basic framework of the model is taken from Silverberg and Lehnert (1993), which in turn 
draws on Silverberg (1984) and Goodwin (1967). Let hats above variables denote proportional 
growth rates, w be the (real) wage rate, v the employment rate (persons employed as a 
fraction of the labour force), and m and n parameters (both positive). Then the wage rate is 
determined by the following differential equation: 

It is assumed that there is a fixed number q of firms in the economy, while each of these 
firms has a variable number p, of different types of capital goods that it utilizes to produce 
a homogeneous product. New capital arises from the accumulation of profits, a process 
described by the following equation: 

The capital stock is denoted by k, r stands for the profit rate, and o is the exogenous rate of 
physical depreciation of capital (technological obsolescence is an endogenous component of 
the model itself). The subscript i (l..q) denotes the firm, and j (l..p,) the type of capital (the 

In classical articles Nelson (1959) and Arrow (1962) underscored the disparity which may exist between 
the social and the private rates of return and incentives to innovation. Recent literature has uncovered the 
possibility of both insufficient as well as socially excessive, redundant R&D, depending on the precise 
assumptions made. Nelson 1990 brings the empirical literature to bear on these issues, and shows in particular 
that not insubstantial own R&D efforts are necessary even to imitate. 



absence of any these indices indicates an aggregation over this particular dimension). Eq. (2) 
assumes that the principal source for type ij-capital accumulation is profits generated by ij- 
capital. This is modelled by the first term on the rhs of (2), i.e., (I-yi)ru. A firm-specific 
portion of profits (denoted by y,,) plus a firm-specific portion of total output (sales) (denoted 
by y2,) is used for the development of knowledge (R&D) (when r,<O, y,, is set to zero). 

However, profits may also be redistributed in such a way that more profitable types of 
capital accumulate even faster, less profitable even slower, than would otherwise be the case. 
The mechanism used to model this was first proposed by Soete and Turner (1984), and is 
represented by the second term on the rhs of eq. (2). By changing the value of a ,  
redistribution of profits takes place faster (larger a )  or slower (smaller a) .  

It is assumed that each type of capital is characterized by fixed technical coefficients, c and 
a (for capital coefficient and labour productivity, respectively). The capital coefficient is 
assumed to be fixed throughout the economy (and time), while labour productivity is assumed 
to change under the influence of technical progress. The profit rate of ij-capital is then given 
by (1-wlau)lc. 

The principal variable used to describe firm dynamics is the share of the labour force 
employed on each capital stock. Production is assumed to be always equal to production 
capacity (the influence of effective demand is absent), so that the amount of labour employed 
by each capital stock is equal to kul(a,,c). Dividing this by the labour force (assumed to grow 
at a fixed rate P) gives the share of labour employed, vu (called the employment share 
hereafter). The expression for the growth rate of this variable is 

R&D also has an employment effect. We assume that the ratio between R&D expenditures 
and R&D labour input is equal to a fraction 8 of the economy-wide labour productivity. The 
employment rate v, resulting from production is then found by summing vu over i and j. 
Under these assumptions, it can then be shown that the overall employment rate v is equal 
to ( 1 +8(y,rc+y2))vq. 

Eqs. (1) and (3) together create a selection mechanism in our artificial economy. Eq. (3) 
describes how more profitable (i.e., with above-average labour productivity) technologies tend 
to increase their employment share, whereas more backward (below-average) technologies 
tend to vanish. The real Phillips curve eq. (1) ensures that real wages tend to track labour 
productivity in the long run. In a situation in which new technologies are continually being 
introduced, this implies that all technologies, after an initial phase of market penetration and 
diffusion, will eventually vanish from the production system. 

However, for a given set of technologies, long-run per capita growth is no longer possible 
once all firms converge to exclusive employment of the highest productivity technology. The 
next section outlines how new technologies can enter the system and thereby open up the 
possibility of long-run growth. 



b. The introduction of new technologies and firms into the economy 

It is assumed that in each time period, firms devote resources (R&D) to the systematic search 
for new production possibilities (i.e., new types of capital). The outcome of this search 
process is assumed to be stochastic. The structure of the technological space is assumed to 
be a simple directed graph (Figure 1). More complicated graphs could well be imagined with 
branching and even merging nodes; this remains a subject for future research. 

Each time an innovation occurs, the firm creates a new type of capital. The labour 
productivity of this type of capital is given by the following process: 

where z is the fixed proportional increase in labour productivity between innovations and a,,' 
is the firm-specific best practice labour productivity. The new type of capital is seeded with 
a small employment share (say 0.0001). In order to keep the total employment rate constant, 
this seed value is (proportionally) removed from the other types of capital of the innovating 
firm. The number of technologies employed by any given firm may vary in time. 

As real wages rise over time, every technology will generate negative profits at some stage 
(because of its fixed labour productivity). It is assumed that these losses are financed by an 
equivalent decrease of the capital stock. In other words, losses imply that capital will be 
scrapped, and scrapped capital can be 'consumed' to cover the losses. Note that for individual 
capital stocks, the point at which scrapping occurs lies prior to the point where profits are 
negative, due to the a-related diffusion term in eq. (2). When a technology's employment 
share falls below a specified (very small) value E, it is scrapped completely. 

A firm's R&D activities as well as possibly those of its rivals enter an innovation potential 
function Ti. This in turn determines the firm's probability of making an innovation according 
to a Poisson process with arrival rate pi. The simplest relation is simply linear: 

where p,,,,, is the (small) autonomous probability of making a fortuitous innovation without 
doing formal R&D, and A is the innovation function slope. One can also posit a nonlinear 
relationship with both increasing and decreasing returns to R&D, such as a logistic: 

This logistic function has intercept p,, and (asymptotic) saturation level p,,. In this case, the 
parameter A determines the speed at which the saturation level is approached. 

Ti, the innovation potential, is determined both by the firm's own R&D level (hi, to be 
defined below) and its ability to profit from other firms' R&D (technological spillovers): 

These spillovers can take two forms. First, there is a term related to the economy-wide value 
of h (written without subscript). The economy-wide R&D level h is defined to be the market 



share weighted average of firm-specific R&D levels. Second, there is a term related to the 
product of the economy-wide and the firm-specific value hi. This latter term takes into 
account the argument that in order to assimilate spillovers, a firm has to have some 
technology-generating proficiency itself (see Cohen and Levinthal 1989, Nelson 1990). The 
parameters Q, and Q, determine the importance of each spillover mode3. 

The firm-specific R&D level hi is defined to be the ratio of a moving average of firm R&D 
investment to its total physical capital stock. A ratio is used to normalize for firm size, since 
otherwise such a strong positive feedback between R&D and firm growth exists that 
monopoly becomes inevitable. While a priori it is by no means clear why the size of 
individual R&D effort should not directly relate to innovative success, a pure scale effect 
must be ruled out by the continuing existence of competition and the ability of small countries 
to remain or even advance in the technology race. The exponential moving average RDi on 
R&D for a lag of L (or a depreciation rate of 1IL) is given by the following differential 
equation: 

d -RDi = ((y, ri + y21c) ki - RDJIL. 
dt 

Hence the firm-specific R&D level is 

An innovation can be defined in a narrow or a wide sense. In the wide sense, the adoption 
of any technology not yet employed by a firm (or a country) is an innovation to that unit. In 
the narrow sense, only technologies that have never been employed before anywhere are 
considered innovations at their time of introduction. If firms innovate according to the above 
Poisson arrival rates in the narrow sense, however, a very considerable intertemporal 
externality is created, because firms' innovations always build on each other. Thus there can 
be no duplication of effort and, as long as firms maintain a minimal level of R&D, no 
cumulative falling behind. On the other hand, once an innovation has been introduced 
somewhere into the economy, it should be progressively easier for other firms to imitate or 
duplicate it; it should not be necessary to reinvent the wheel. We capture this by introducing 
a catching-up effect. Let the labour productivity of the economy-wide best practice technology 
be a*, and the best practice technology of firm i a*,. Then firm i's innovation potential Ti will 
be augmented by a measure of its distance from the best practice frontier: 

Thus, adopting an old innovation is facilitated for backward firms, but they are still required 
to invest in their technological capacity to reap these catchup benefits. Here, however, R&D 
efforts should be interpreted in the larger sense of technological training and licensing, reverse 
engineering, or even industrial espionage (all costly activities, if not as costly as doing state- 
of-the-art R&D). 

We have also experimented with innovations in the narrow sense, but the results on 

Spillovers will not be dealt with in this paper. They are examined within the context of one-parameter 
strategies in Silverberg and Verspagen (1994a,b). 



strategic selection are rather ambiguous. This is not surprising, since the import of the 
intertemporal externality is indeed quite large. We consider the Ansatz in eq. 10 therefore to 
be a justifiable first formulation, since technology adoption decisions are never passive, but 
rather require technological efforts of the adopting firm. However, it does place too much of 
the burden of catching up onto R&D. 

In the artificial economy modelled here, entry of a new firm occurs only as a result of exit 
of an incumbent firm. Exit occurs whenever a firm's employment share (excluding its R&D 
employment) falls below a fixed level E. While exit of incumbent firms is completely 
endogenous, entry only occurs in case of exit, so that the total number of firms is constant. 
Naturally, this feature of the model is not very realistic, as in reality entry may be 
independent of exit and the total population of firms may vary. However, it is not the aim of 
this model to describe the phenomena of entry and exit as such. Instead, the main function 
of entry and exit is to maintain potential variety in the population of firms while providing 
for firm elimination. 

Whenever entry occurs, the entrant is assigned a single technology with an amount of 
capital corresponding to an employment share of 2E (the remaining employment is 
proportionally removed from other firms so that total employment remains constant). The 
labour productivity of this technology is drawn uniformly from the range [(I-b)A,(l+b)A], 
where A is the unweighted mean value of labour productivity of all the firms in the economy, 
and b is a parameter. The values for h and y are (uniformly) drawn from the range existing 
in the economy at the time of entry. 

c. Firm-strategies for innovation 

In Sections (a) and (b) we have outlined the system whereby innovating firms generate 
technical change and undergo selection in a closed economy model as a function of their 
R&D strategy parameters y. Learning now enters the picture in the form of two 'genetic' 
operators, mutation and imitation. Thus behavioral evolution takes place in a two-dimensional 
continuous space, where the economy at any given point in time is represented by a cloud of 
points (Figure 2). With probability n each decision period, which is set exogenously and is 
equal for all firms, a firm will draw from a normal distribution and alter one or both of its 
strategy-parameters y within the admissible range [0,1] (mutation). Given that mutation 
occurs, each possibility (change either one or both parameters) occurs with equal probability: 

With variable probability mi the firm simply imitates the strategy of another firm. Again, 
given that imitation occurs, each possibility (imitate either one or both parameters) occurs 
with equal probability: 

The imitation probability is partly endogenous to reflect satisficing behaviour. Only firms with 
unsatisfactory rates of profit with respect to economy leaders will choose or be forced (for 



example by their stockholders or by hostile takeovers) to adopt the strategy of a competitor: 

y, is the firm's rate of expansion of physical capital (defined as min(ri-y2/c, (I-y,)ri-y2/c)), ymax 
and y,,,,, are the maximum and minimum values of y in the sample, and p is the (exogenously 
determined) maximum imitation probability. Thus, the more profitable a firm is, the less 
likely it will change its strategy by imitating another firm. The most profitable firm has an 
imitation probability equal to zero; the least profitable the maximum probability p. Once a 
firm has decided to imitate, it selects a firm to imitate randomly from the industry with 
weight equal to the target firm's market share in output. If neither imitation nor mutation 
occur, the firm simply retains its strategy from the previous period. 

4 Identification of Steady States by Random and Spontaneous Generation 

The model has been implemented to run on both MS-DOS and Unix computers. To make the 
solution as time-step invariant as possible, the selection mechanism, which is basically a 
system of differential equations, is solved using a fixed-step, fourth-order Runge-Kutta 
algorithm. The innovation decisions are executed during each computational step (using 
Poisson arrival rates scaled by the computation time step), and when an innovation is made, 
the corresponding changes in initial conditions, number of equations, and coefficients are 
made for the next step. Mutation and imitation are only performed at fixed intervals of one 
'year', which may be many times the step employed in the Runge-Kutta algorithm. 

The main feature of the model we will investigate is the existence and nature of an 
'evolutionary attractor' in the dynamics, i.e., whether a 'stable' configuration of firm R&D 
strategies exists to which our artificial economy will converge from particular classes of initial 
conditions. We have initialized the system in two ways: first in a 'grapeshot' mode we term 
random generation in which the initial y's are drawn from a uniform distribution over [0,1] 
and [0,0.2] (respectively for y, and y,); and second, in a 'spontaneous generation' mode in 
which all initial y's are set to zero. We present the results of these experiments by means of 
density plots made on the basis of 3-dimensional histograms of the two y's. On the horizontal 
axis we plot the experimental parameter that is being varied through different simulation runs 
(A or p). The (market share weighted) mean value of the strategy parameter over the firms 
in each run is shown on the vertical axis. The data are pooled from the last 1000 years of five 
simulation runs for each value of the experimental parameter, each generated with a different 
random seed. Darker shading indicates higher frequencies. 

In Figure 3, we plot the results for the runs initialized by random generation. The figure 
shows clearly that the converging behaviour of the two strategy parameters is quite different. 
Parameter 1 (the targeted R&D to profits ratio) does not converge very clearly, except for 
higher values of the innovation slope, when relatively high frequencies are found at values 
near zero. Parameter 2 targeting R&D to sales shows a more tight convergence, although 
there are still high frequencies near zero (the white band between the horizontal axis and the 
attractor is quite narrow). Thus, firms show a tendency to select a relatively tight range of 
values for parameter 2, while parameter 1 tends to drift or, if anything, go to zero. 
Summarizing, firms seem to display a tendency to select tightly defined strategies based upon 



parameter 2 and indifference to parameter 1. 
Figure 4 shows corresponding results for the case of spontaneous generation, i.e., a 

situation in which firms have to discover R&D as an activity. In this case, the economy starts 
out in a stagnant phase, with no intentional technical progress. As firms explore the strategy 
space by mutation and imitation, they may (or may not) find R&D a useful activity. The 
density plots show that in this case, the evolutionary attractor is much more clearly defined. 
The type 1 strategy parameter remains at values near zero (in our interpretation, the positive 
values found are largely attributable to random 'evolutionary' noise). The type 2 strategy 
parameter, however, shows a well-defined peak significantly distant from zero, as indicated 
by the white space bordering it from below. 

This behaviour of the system can be interpreted as a particular form of lock-in or path 
dependency. When the system is started 'clean', without any form of 'commitment' to any 
type of R&D-strategy, it will select a much more unambiguous evolutionary attractor than in 
the random generation case. This is not the case when only the type 1 strategy parameter is 
employed (compare Silverberg and Verspagen 1994a,b). There the asymptotic steady states 
of the two initializations are identical. 

For a logistic innovation function (eq. 6) we obtain similar patterns from the histograms 
over innovation opportunity (Figure 5). In contrast to the linear case, however, the steady-state 
value of parameter 2 does seem to decline somewhat with increasing technological 
opportunity. What is also remarkable is the sudden collapse of the technological regime below 
values of A of about 40. The steady-state values of parameter 2, in the range 20-30%, are 
also higher than in the linear case. 

Why is strategy parameter 2 subject to positive selection, while parameter 1 displays either 
drift or is constrained to zero? Our interpretation is that R&D comes to be regarded as a 
'core' business activity in the model, for, due to the 'Goodwin' business cycles of the 
underlying economy, profits are more variable than sales. Thus, firms which base their R&D 
expenditures upon profits will have more fluctuating R&D stocks than firms which base their 
R&D on sales. The selection environment seems to favour the latter firms because, in the long 
run, their R&D behaviour provides a more reliable stream of innovations. 

Whereas the steady-state values of the strategy parameters do not appear to depend on 
technological opportunity, as represented by the value of A ~ ,  the rate of technical change is 
a simple linearly increasing function of it (Figure 6). The transient time paths in the 
spontaneous generation case on the way to a growth steady-state are also of interest in 
themselves. Figure 7 displays the market-share-weighted values of the two strategy parameters 
for a single run over 8000 years. Convergence is relatively rapid in comparison with the 
single parameter case. Figure 8 shows the time paths of the rate of technical change and the 
Herfindahl concentration index5. Viewed as a process in historical time and not just as out-of- 
equilibrium transient, this figure recapitulates a piece of virtual economic history. The 
economy starts off with no R&D and an essentially vanishing rate of technical change. Within 
this regime the rate of market concentration is quite high, although the identity of the near 
monopolist changes at almost regular intervals, as indicated by the breaks in the level of 
concentration. As the y's rise with time and with them the overall rate of technical change, 
this market regime breaks down. It is replaced by low levels of concentration and 

This is not true when only parameter 1 is used. In this case, the value gradually falls with increasing A. 
This is defined as H = xi2, where& is the market share of the ith firm. It ranges from l /n,  for n equally 

sized firms, to 1 ,  for complete monopoly. 



considerable market turnover. 
We have also begun to investigate how the structure of the evolutionary learning process 

affects the outcomes of these experiments. Recall that the variables JJ and p, representing the 
probability of mutation and imitation, are exogenously imposed. We have compiled 
histograms for the two strategy parameters by varying each of these rates separately. Figure 
9 shows the results for mutation, Figure 10 for imitation, for runs with A = 10 and random 
generation initial conditions. Varying the mutation probability does not change the picture in 
any essential way. In contrast, increasing the ceiling on the imitation probability leads to a 
progressive collapse of y, selection. If firms imitate each other too strongly, they become 
involved in an evolutionary game of musical chairs, and no nontrivial strategy is able to 
establish itself. 

5 Discussion and Conclusions 

In this paper we have developed an evolutionary model describing the relation between 
endogenous technological change and economic growth along the lines of an 'artificial world' 
modelling philosophy. By this we mean that the economy is disaggregated into diverse 
individual behavioral subunits (instead of the representative agent so prevalent in most 
macroeconomic modelling) connected by nontrivial nonlinear dynamic interactions based on 
plausible notions of disequilibrium competition and investment. Rather than search for a 
strategic equilibrium based on a concept of rationality, we have assumed that these agents use 
boundedly rational behavioral procedures. In the present case this is an extremely simple rule 
for the R&D/profits (or gross investment) and R&D/sales ratios, which is parameterized by 
two real numbers between 0 and 1. Learning is modelled by allowing for mutation and 
imitation rules operating on the agents' strategy parameters. An element of behavioral realism 
is injected into the model by insisting that mutations are local in the strategic 'genotype' 
space, and that imitation is only prompted by less than satisfactory performance. 

Using both a linear and a logistic innovation function we were able to show that 
evolutionary steady states exist that are attractive in the behavioral space, but may differ 
depending on 'history7. Thus the model does establish a case for endogenous growth in the 
sense of demonstrating that economic competition, even with very relaxed assumptions about 
individual goal-seeking behaviour and profit maximization, leads to an approximately steady- 
state growth path with a positive rate of technical change and R&D investment. 

However, the spontaneous generation experiments underline the fact that the mere 
existence of such a steady state does not mean that history does not matter. Quite the 
contrary. A society starting with no or low rates of R&D will pass through a phase of very 
high market concentration, but with periodic upheavals or 'palace revolts' of market 
leadership on a time scale of centuries. Eventually such an economy will 'bootstrap7 itself to 
higher rates of R&D and technical change6. 

To demonstrate that the levels of R&D to which the model points are by no means 
unrealistic, Figures 11 and 12 present OECD data on the share of R&D expenditures in value 
added7 for five industries in the USA and Japan, respectively. These data are representative 

This should be compared with the one-parameter strategy case, where the evolution is slower and passes 
through at least three distinct historical phases. 

' We employ value added instead of sales to reflect more accurately the proper interpretation of  our model, 
where firms are assumed to be completely vertically integrated, and thus sales and value added are identical. 



of the extreme cases of a mature and a catch-up economy. The evidence for convergence to 
a high and stable level of R&D is striking, both over time and between these countries. Even 
more remarkable is the fact that these values correspond very closely with those predicted by 
our model. The range of 10-25% of R&D to value added, independent of technological 
opportunity, thus seems to be both a long-period invariant of capitalist development, as 
captured in our model, and an empirically verifiable phenomenon. 

While we do not wish to overburden such a simple model with historical interpretations, 
the point must still be made that it would be unfortunate to restrict the concept of endogenous 
growth to steady-state growth paths with no real structural development, social learning, and 
historical contingency. For this reason an evolutionary approach appears to offer an attractive 
alternative explanation of how an economy can 'bootstrap' itself in historical time through 
a succession of growth phases and market structures. The concepts of growth or development 
stages, takeoffs and changes of regime were prominent in a classical line of thought 
associated with Marx, Schumpeter and later Rostow. The criticism that these theories smacked 
of rigid mechanistic determinism is overcome by the artificial worlds methodology, which 
demonstrates that reversions, variable delays, and path dependence resulting from underlying 
stochasticity and nonlinearity cannot be excluded. Needless to say, such a broad and 
differentiated perspective on economic growth has mostly fallen by the wayside in the 
postwar literature on growth and development (cf. Rostow 1990). 

Our model also demonstrates that a bounded rationality approach to the theory of the firm, 
coupled with an evolutionary framework for analyzing market selection and collective 
learning, does yield dividends both in terms of explaining how identifiable patterns of 
behaviour emerge from profit-seeking rather than completely rational profit-maximizing 
assumptions, and how market structures and growth regimes may be simultaneously 
endogenized. We believe that the apparent inconvenience of bounded rationality and an 
artificial worlds, computer-based modelling strategy, is more than outweighed by the ability 
to go far beyond the mere reproduction of conventional wisdom and open up a range of 
phenomena and relationships to theoretical and quantitative empirical study that historians 
have repeatedly emphasized but economists have for the most part ignored. 



Appendix 

A summary of the parameters and the values employed in the runs analyzed in the paper is 
presented below. 

q = 10 
m = 0.9 
n = l  
a = l  
y (endogenous) 
c = 3  
o = o  
B = 0.01 
6 =  1 
z = 0.06 
A (variable) 
pmin = 0.01 
@, (variable) 
@, (variable) 
L = 5  
K = 4 
n = 0.02 
s = 0.02 
p = 0.02 
E = 0.005 
b = 0.1 

number of firms 
parameters of the Phillips curve eq. 1 

Soete-Turner coefficient eq. 2 
R&D/investment ratio in eq. 2 
capital-output ratio 
rate of physical depreciation in eqs. 2 and 3 
rate of growth of labour force eq. 3 
ratio of productivity in goods and R&D sectors 
proportional jump in labour productivity eq. 4 
innovation slope in eq. 5 
autonomous rate of innovation eq. 5 
type 1 spillover coefficient in eq. 7 
type 2 spillover coefficient in eq. 7 
lag for R&D moving average eq. 8 
catch-up parameter eq. 10 
mutation probability eq. 11 
standard deviation of mutation step size eq. 11 
maximum imitation probability eq. 12 
exit level in employment share 
labour productivity bandwidth for entrants 
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firm 1 

Figure 1. The technology space is a simple directed graph. Firms' current capital stocks are 
bracketed, and their next innovations are shown by the circular arrows. 

Figure 2. The space of behavioral evolution. A firm's strategy is represented as a point in a 
two-dimensional space whose diameter corresponds to the firm's market size. In the course 
of time the economy 'cloud' shifts through this space. 
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Figure 3. Histograms of strategy parameters from pooled data of five runs per value, last 
1000 years of 8000 year runs (random generation), for a linear innovation function. 
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Figure 5. Histograms of strategy parameters from pooled data of five runs per value, last 
1000 years of 8000 year runs (spontaneous generation), for a logistic innovation function. 
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Figure 6. The rate of technical change is an increasing function of the innovation slope ( A  
= 10, 50 firms, spontaneous generation). 
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Figure 7. Time paths of market share-weighted-strategy parameters in a spontaneous 
generation run (50 firms, z = 0.04). The light line is y,, the heavy line is y,. 

Figure 8. Time paths of rate of technical change (light line) and Herfindahl index of 
concentration (heavy line) for the same run as in Figure 5. 
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Figure 9. Histograms of strategy parameters for varying rates of the mutation probability (A 
= 10). 
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Figure 10. Histogram of strategy parameter for varying rates of the maximum imitation 
parameter (A = 10). 
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Figure 11. Ratio of R&D to value added for five industries in the USA. (Note: chemicals 
does not include pharmaceuticals.) 
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Figure 12. Ratio of R&D to value added for five industries in Japan. (Note: chemical does 
not include pharmaceuticals.) 


