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Abstract

In this paper, for a distributed parameter system
described by a partial differential equation of para-
bolic type, two optimal control problems are investi-
gated. From the engineering standpoint on the construction
of control devices, we assumed that both distributed and
boundary controls are respectively concentrated spatial-
ly onto some spatial domains or onto some parts of the
boundary. First, for a performance index in quadratic
form, an optimal control problem with continuous-
time control is considered. Applying the technique of
dynamic programming, a non-linear integro-partial dif-
ferential equation analogous to the Riccati equation has
been obtained. Second, using Green's function repre-
sentation, the same optimal control problem with discrete-
time control is discussed, and the recurrence relation-
ships to determine the optimal control policy have been
derived. Lastly, relationships between the above-
obtained optimal continuous-time and discrete-time controls
have been discussed.

1. Introduction and Problem Statement

Recently, control theory for distributed parameter systems
has been developing very rapidly, and we can notice this trend
from the excellent survey presented by A.C. Robinson [8].

In the development of this field of research, one of the basic
approaches is to extend the accepted theories for lumped param-
eter control systems to distributed parameter control systems.
Furthermore, we must investigate the peculiarities which only
distributed parameter control systems show. It is also important
to investigate the obtained results from more general viewpoints
and to establish a unified control theory within the framework
of distributed parameter systems, and to present rational
criteria for approximation. For example, in the optimal control
theory for linear lumped parameter systems with quadratic per-
formance indices, the relationships between optimal continuous-
time and discrete-time controls already have been well investi-
gated. For the cases of distributed parameter systems, the same




optimal control problems have been researched by many scientists,
for example, P.K.C. Wang [9], H. Erzberger and M. Kim [1,2],

and J. Lions [5]. However, the relationships between optimal
continuous~time and discrete-time controls have not been inves-
tigated thoroughly.

The purpose of this paper is to make clear the relation-
ships between optimal continuous- and discrete-~time controls
for a distributed parameter system described by a linear partial
differential equation of parabolic type, and to establish
rational criteria for approximation. The performance index is
assumed to be in quadratic form, and, as it is very difficult
in practice to construct control devices which can change the
intensity of control inputs continuously with respect to space
variable, we assumed that both distributed and boundary controls
are concentrated spatially onto some spatial domains or onto
some parts of the boundary. Thc latter assumption is admittable
from the practical engineering point of view (see Porter [7]).

From now on, let us mathematically describe the problem
in more detail. The dynamic behavior of the distributed param-
eter control system considered in this paper is described by
the following partial differential equation of the parabolic

type:

du(t,x)

— ] m
T = AU.(t,X) 7 r(t,X), x € DCR ’ t € (to'tf] [/ (1)

where the bounded spatial domain D is_an open, connected subset
of an m-dimensional Euclidean space R°. The function F(t,x)
represents a distributed control, and A denotes a linear partial
differential operator d~fined by

A= _ 4 oeeo 2L y(x1,...,x ) (2)

2
sz 3x2 m
1 m

where y(x) shows, for instance, the ratio of calorific power
which is lost by heat radiation.

For Egq. (1), the boundary condition

a(E)ule,8) + (-a() P 2UEEL _ g e)ge, e,

£ €S, te (to,t



is imposed, where du(t,f)/dn denotes the differentiation of
u(t,t) along the outward directed normal from the boundary
S of D, and G(t,%) is a boundary control function. The
initial state of the system is given a priori as

lim u(t,x) = u_(x) . (4)

Let us impose the following restrictions to the above-
mentioned distributed and boundary controls F(t,x) and G(t,£):

1) F(t,x) and G(t,£) are spatially concentrated respec-
tively onto some finite number of spatial domains
D1""’Dk in D and onto some finite parts of S,

1
say S1""'Sk .

2
2) F(t,x) and G(t,f) are constants with respect to x and
£ at each D1""’Dk , and S1""’Sk , respectively.
1 2

Let us define the following characteristic functions ¢i(x)

and wi(g) to each Di and Si' respectively; i.e.

{ 1 : x € Di.C D

@.(X) = (i = 1""Ik1) ’ (Sa)
1 LO : X § Dl
0 1 : £€ S; C s
. (&) = (1 =1,...k,) . (5b)
1 0 : Efi Sl 2

Then, we can write the control functions F(t,x) and G(t,§&)
respectively as

k1

F(t,x) = ] £.(8)¢;(x) , (6)
i=1
ko

G(t,8) = ] g;(®)p;(8) . (7)

i=1




Particularly, when the domain D, and/or boundary S, is con-
centrated into some respective points, say di and/or Siv

each characteristic function must be defined as

¢, (x) = Gm(x -4, G =1,...k) (8a)
and/or

vi(€) =6 (6 - s.), (1 =1,...k;) , (8b)
where dm and § _, are respectively m- and (m - 1)-dimensional

Dirac's delta functions (see Wiberg [10]).

Moreover, we introduce the vector valued functions as

b (x) = (¢1(x),...,¢k1(x))' ' (9a)

Y (g)= (w1(£),...,wk2(£))' ' (9b)
and

f(t) = (f1,...,fk1(t))' ' (10a)

g(t) = (g1(t),...,gk2(t))' ] (10b)

where the prime denotes the transpose. Then, two control
functions of (6) and (7) can be respectively represented as

F(t,x)

¢' (x)f(t) f£r(t)o(x) (11)

G(t,E) v (E)g(t) g'(eyv(g) . (12)



Summing up the foregoing assumptions, we consider finally the
distributed parameter system governed by

du(t,x)

TS = Au(t,x) + ¢'(x)E(t) , (13)

and

a(E)ult, &) + {1-a(5) X288 - weyp  ()g(t) . (14)

an

As the performance criterion function, we introduce the
quadratic one as

) .
JC = [ £ f f u(t,x)g(t,x,y)u(t,y)dxdy
t D"D

O

+ £ (DK, (D) £(8) + g' (B)K, (£)g(t) rdt

+ fD~/;) u(tf,x)r(x,y)u(tf,y)dxdy , (15)

where

glt,x,y), r(x,y): scalar valued, symmetric kernels defined
on DD, which are positive semidefinite, i.e.

Jgjg v(x)q(t,x,y)v(y)dxdy > 0 for all square-integrable
function v; and (16)

K](t), Kz(t): k1><k1 and k,%k, positive definite symmetric

matrices, respectively.

Now, we consider the following optimal control problem:
given the system equation (13), the boundary condition (14),
and the initial condition (4), find the optimal control functions,
f(t) = £*¥(t) and g(t) = g*(t), which minimize the performance
criterion function (15). We also consider the same optimal




control problem for discrete-time control policy, and the
relationships between the foregoing two optimal control policies.
These problems will be explained in more detail in the following
sections.

2. Derivation of the Riccati Equation

In this section, we shall use the technique of dynamic
programming to solve the problem stated in the previous sec-
tion, and as a result, the Riccati equation to determine the
optimal control law, which is a nonlinear integro-partial dif-
ferential equation, is derived. First, let us introduce the
minimum error function defined by

min tf
P(t,u(t,x)) = f£(1), g(T)f ff u(t,x)qgl(t,x,y)u(t,y)dxdy
ts t<tt ¥DJD

+ f'(T)K1(T)f(T) + g'(T)Kz(T)g(T)}dT

+./;_/; u(tf,x)r(x,y)u(tf,y)dxdy] . (17)

It is easy to show that it holds the relation as

min
t), agl(t) J ' (18)

P(t_,u(t_,x)) =
(@] (o] ; t<tf C

£(
t

and at time t = tf, we get the terminal condition

P(tg,ulty,x)) =foD ulty,x)r(x,y)ulty,y)dxdy . (19)

The next step is to apply the dynamic programming to the
minimization of the error functional given by (17). Invoking
the principle of optimality, it follows that

min t+At
P(t,u(t,x)) = f£(1), g(r).f. {jﬁ jﬁ u(t,x)g(t,x,y)u(r,y)dxdy
t< t<t+ At t DYD

+ f'(T)K1(T)f(T) + g'(T)Kz(T)g(T?}dT

+ P(t + At,u(t + At,x))] . (20)



The method of solving the functional equation (20) is similar
in principle to the method of solving the equation used for
lumped parameter systems; that is, the equation for lumped
parameter systems consists of assuming a specific form for P
which is then substituted into Eq. (20) in order to verify its
correctness. Here, by the analogical inference from lumped
parameter systems, P is taken to be the form

P(t,u(t,x)) =v/;‘/; u(t,x)p(t,x,y)u(t,y)dxdy . (21a)

Simultaneously, we assume that p(t,x,y) is symmetric with
respect to x and y because of the assumptions that q(t,x,y),
r(x,y), K1(t) and K2(t) are all symmetric; i.e.

p(tIXIY) = p(t,y,X) . (21b)

To solve the relation (20), we must expand the functional
P(t + At,u(t + At,x)) with respect to At. Because of the system
equation (13), for sufficiently small At, it follows that

Ju(t

u(t + At,x) = u(t,x) + Bt’X) At = u(t,x)

+ {Au(t,x) + ¢'(x)E£(t) At , (22)
and at the same time, we get
p(t + At,x,y) m p(t,x,y) + L) pe (23)

Then, from Egs. (21), (22) and (23), we can derive an expan-
sion such as

P(t + At,u(t + At,x))

=./D./D u(t + At,x)p(t + At,x,y)u(t + At,y)dxdy



z./g./; u(t,x)p(t,x,yju(t,y)dxdy
+ [/;./; {Au(t,x) + ¢v(x)f(t)}p(t,xﬁy)u(t,y)dxdy
+./;./; u(t,x)p(t,x,y){Au(t,y) + ¢'(y)f(t)}dxdy

+foD u(t,x)ap‘(g{:ﬁﬂ u(t,y)dxdy]At . (28)

After substituting Egs. (21) and (24) into Egq. (20), and
dividing both sides of this eqguation by At, let At tend to
zero; then we obtain

_ min '
0= f(t),g(t)[./;)fn u(t,x)qlt,x,y)ult,y)dxdy + £' (£)K, (£) £ (t)

+ g' (£)K, (£)g(t) +~/1;./13 {Au(t,X) + cb'(x)f(t)}p(t,x,y)u(t,y)dxdy
e o Sy u | |
(t, x,y)TAu (t,y) + ¢?(y)f(t)dedy

+ ./1; fD u(t,x)é—eu(--t—:-é}é-’—y—)— u(t,y)dxdy] . (25)

Our next step is to set up the procedure to transform Eqg.
(25) with the help of Green's formula [3] given by

_/I;{Av(x) c W(x) - v(ix) - Aw(x)}dx = fs{a_‘a’é_gl W(E) - v (g)aw(g)}dg

(26)

Using Eg. (26), we get

'/I;~/I; Au(t,x) . p(t,x,y)u(t,y)dxdy = / (t,vy) dy[f u(t,x)

[3u(t, &)
¢ Axp(tIXIY)dX + ,é 1_35___ p(t,&,y)

- u(t,g)iﬁ%r’l—gﬂldg] , (27)
J



where the symbol A denotes the operator defined by (2)
taken with respect to the x variable of p(t,x,y).

Next, we divide the boundary S into two parts, say 0 and
Py in the following manner;

-~

S = 01U02
a(§) >0 on oyl . (28)
a(¢) = 0 on o,

-

Then, from the boundary condition (14), we get

alt,e) = - 1= a(8) dult,e)

a(€) an +¥'(g)g(t) on o, , (29)
and

Substituting these two relations into Eq. (27), we can derive

r
/1;/0 Au(t,x) - p(t,x,y)u(t,y)dxdy = ./I;/I; u(t,x)A p(t,x,y)

- u(t,y)dxdy +/1; u(t,y)dy f ey el {G(E)p(t,EIY)

01 an

+ (1 - a(&))ME—Y)} a -fD u(t,y)dY/;1 v (6) LB Y) gpg g

—fD att,pdy [, uie,p L) gp (31)
2
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In the same way, we also get the relation

.[.[ p(t,x,y) - A ty)dde‘ff tx)Aptxy)

u(t,y)dxdy +,/1; u(t,x)dx _[01 a1(&;) auéi’g) «[a(ﬁ)p(t,x,ﬁ)

an

s (- a(a))QEiELELil}-da - Jg ate,ax f pr o REXE arge)
1

- f f op(t,x,t)
D u(t,x)dx o, u(t,&)———gﬁ—_—— ag . (32)

Substituting Egs. (31) and (32) into Eg. (25), it follows that

—_ mln 1 1 f f 1
0= 5" g(t)“f (£)K, () E(8) + g' (1)K, (E)g(e) + 2 Jp Jp ot ()

xp (t,x,y)u(t,y) dxdyf (£) - 2 j; ]21 vr gy BB ) (e y) arayg (k)

+_/;./; u(t,x){q(t,x,y) + éEi%%iLXL + (Ax + Ay)p(t,x,y) u(t,y)dxdy

|

+./; u(t,y)dy x[};1 aey St {G(E)p(t,i,y) + (1= alE)

o1l
2

*./. 1 su(t,s) | } Bg(t,x,i)}
o1 3TET —3n {a(a>p(t,x,a> + (1 - a(e) SRt e

- “é; u(e,5) Rl E) d;] : (33)

The optimal controls f*(t) and g*(t), which minimize the
right hand side of Eq. (33), are found by setting the functional
derivative of Eg. (33) with respect to £(t) and g(t) to zero,
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respectively. The resulting expressions can be given by

£*(t) = —K;1(t) Jg {Jg ¢(X)p(t,x,y)dx}u(t,y)dy . (34)
and
*x(t) = Ko (t) ./ {f w(e)2RLEE0Y) grru(e,y)d (35)
g 2 D 01 on (Y)Qy .

Substituting these optimal control functions into Eq. (33),
we obtain the equation that p(t,x,y) must satisfy; i.e.

0 = ];)»[D u(t,x) [q(t,x,y) + E.FLté‘}éi) + (A, + Ay)p(t,x,y)

_-/; ¢'(z)p(t,z,x)de¥1(t).[; p(t,z,y)¢(z)dz

Vo BP(E,E,X) a1 f 3p (£,£,7)
f01 v R as T g dpleee,y) wmda]u(t,y)dxdy

fD u<t,y)dy[f01 ey {a(g)p(t,a,y)

<+

+ (1 - OL(E))QP—(%ILL)}dE - fo a(e,g) 2RLELY) dg]
2 -

+

fD u(t,x)dx[_/(;1 rrey L.l {a(ap(t,x,a)

+

_ op(t,x,8) _ f dp(t,x,§8)
(1 G(E))a—n—}dg o U(t,E)T d{l . (36)

Eg. (36) must be satisfied for any state u. Therefore, the
coefficients of integrands multiplied by the same function
must themselves be zero. However, as it is possible to change
u in the interior of D without changing it on the boundary,
it follows that terms with different regions of integration
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are independent of each other and therefore must be equated

to zero separately. From Eg. (36), these observations yield

the relations as

- ap(§£X'Y) = qlt,x,y) + (Ax + Ay)p(tlxly)

- Jg ¢'(z)p(t,z,x)de;1(t) Jg pl(t,z,y)d(z)dz

_f ' ap(tvglx) -1 ap(tr€IY)
g v ()LL) qpyt Ty J BBLEEY) y(g)qe

a(E)plt,x,E) + {1 - u(g)}@i%lx'—g) =0 ono, |,

a(g)p(t,&8,y) + {1 - a(g)}§21§ﬁ§LZl =0 ono, ,

op(t,x,8) _ 3p(t,8,y) _
an an 2 ¢

Recalling that a(§) = 0 on 0,, We can express the boundary

conditions of Egs. (38) more concisely as

( | ap (e, x,8)
a(g)pl(t,x,8) + 11 - a(&?r———gﬁ———— =0 ons$S ,

~

| ap(t,&,y) =
an

!
o

a(E)p(t,£,y) + {1 - a(g) on § .

|
J

From Eg. (19), the terminal condition for p(t,x,y) can be
given by

p(tf’xly) = r(x,y) .

14

(37)

(38a)

(38Db)

(38c)

(39a)

(39Db)

(40)

Eg. (37) with boundary conditions (39) is a nonlinear integro-
partial differential equation analogous to the Riccati equation,

which has never been studied before in the vast literature on
partial differential eugations (see Erzberger and Kim [1,2]).
If we can solve the equation (37) with the terminal condition
given by (40), the optimal control policies, f*(t) and g*(t),

are given by (34) and (35) respectively, and at the same time,
the optimal error functional P(t,u(t,x)) can be calculated from
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Eq. (21). The resulting controls are obviously of the state
feedback type.

3. Discrete-Time Control Policy

In this section, we consider the same optimal control
problem stated in Section 1 but impose the following restriction
to the control functions: both the distributed and boundary
control functions, F(t,x) and G(t,£), are stepwise functions
with respect to time. In other words, for tj—1 <t < tj’ let

the respective control functions f(t) and g(t) in Eg. (10) be

f(t) = fj"1 (f1,j_1l---lfk1,j_1)' 4 (41a)
g(t) = gj_1 = (g1’j_1,...,gk2,j_1)' ’ (q1b)
where j = 1,...,N and N is the total number of sampling stages.

For the convenience of consideration, we shall choose all
sampling intervals to be equal to each other; namely

tj =t + 3T, (3 =1,...,N), T = (tg - t))/N, tg =t . (42)

We shall consider the performance criterion function of the
following discrete form, which corresponds to the one given
by Eq. (15);

VA
— 1]
Jq = ) { b Jp uj(x)qj(x,y)uj(y)dxdy + fj—1K1,j—1fj-1

j=1
+ gj_1K2,j_1gj_1}T + jg./; ulte,x)r(x,y)ulteryldxdy ,  (43)
wheré
uj(x) = u(tj,x) , (4u)
qj(x,y), r(x,y): scalar valued, positive semidefinite kernels,

which are symmetric on DxD,
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K1,j—1’K2,j—1: kyxky and k,xk, positive definite symmetric

matrices, respectively.

From now on, let us determine the sequences_  of optimal
control poliey f§_1 = E¥,. 0 f8 4} and {g§_1 = {9%r---s
g§_1 which minimizes” the performance” index Jg given by (43)
under the conditions of (13), (14) and (4). The above-mentioned
optimal control problem has already been investigated by the
author (see Ito [4] and Matsumoto and Ito [6]). Therefore,
let us here briefly explain only the derived results.

Let the function U(t,x,y) be the Green's function associated
with the homogeneous system of Egs. (1) and (3). Then, the
response of the inhomogeneous system can be written as (see
Friedmann [3])

t
ul(t,x) = jg U(t-to, x,y)uo(y)dy +~/; dT_/; Uu(t - 1,x,y)F(1,y)dy
o

t
+fto dTA UB(t - TIXIE)Q(E)G(TIE)dg ’ (45)
where
Ug (t,%,6) = U(t,x,E) - 39%3’5—5)— ) (46)

Particularly when wr consider the control functions given by
(4#1), we can get the following relation from Eq. (45); that is

— LAY ' 1 =
uj(X) ~<ulﬁj_1(X) + hj(ﬂ)fj_1 + hz(x)gj_1, (3 1,...,N)
(47)

where(xlﬂ is an integral operator defined as

ez(;(x) =,/; U(T,x,y)u(y)dy , (u8)

and both h1(x) and hz(x) are vector valued functions of the
form



T
.[ dTJ. U(T - 1,x,y)dy
0 D
:
hy(x) = ) , (49a)
T
.[0 dif; U(T - 1,x,y)dy
K
]
and
T
f dTJ' UL (T = T,%,E)a(E)dE
7 0 S1
hz(x) = - . (49Db)
T
\f dTJ' UL (T - T,x,8)a(E)dE
0 S
k2

From this place, for the convenience of mathematical
description, we adopt vectors and a matrix as follows;

fj-1 = - ’ (50a)
gj_1
h, (x)

h(X) = ’ (SOb)
hz(x)
K1,j-1 0

Kj-1 = . (50c)

\ 0 Kzlj-1
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Then, Egs. (43} and (47) can be written respectively

N — —
Jg = j=1'L/;'/; Uy (x)qy (x,y)uy(y)dxdy + fj_1Kj_1fj_1}T
+./;_/; u(tf,x)r(x,y)u(tf,y)dxdy ' (51)
uj(x) = guj_1(x) + h'(x)fj_1 . (52)

We shall now solve the optimal control problem stated above
by using dynamic programming technique. Let the error func-
tional Pj(uj(x)) be defined as

min % {
P.(u.(x)) = f. ff u. (x)q. (x,y)u. (y)dxdy
)3 i=j,..1,N-1li=5+1 (YD YD 1 + +

* fi—1Ki—1fi—1}T
+ ./I;_/I; u(tf,x)r(x,y)u(tf,y)dxdy] . (53)

Now, making an assumption that the error functional of
(53) be of the form

Pj(uj(X)) = ./D- ./I; uj(x)pj (x,y)uj (y)dxdy . (54)

and let the sequence {f§_1} = {f;,...,f§_1} be the optimal
control policy. Then the resulting form of the optimal control
law can be written as

t g = -/D s;_q(Xuy_y(xdx, (3 =1,...,0 , (55
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where

Tg. (x,Vy)
q]( Y

}h'(y dxdy:| -1 xfa/X{Tq-(X,y)
D

J

}h(y )dy, (3 =1,...,N) . (56)

Furthermore the function p (x,y) must satisfy the recurrence
relationship as

Py_q (x,¥) %xl: :%/;+qu(y,y) + pj(x,y)} - sj'-_1(x)[TKj_1
+./; jg h(x){qu(x,y) + pj(x,y?}h-(y)dxdy]sj_1(y),
(3 = 1,...,N) . (57)

As a result, starting with the terminal condition

pN(le) = r(x,y) r (58)

we solve the recurrence functional relationships of (56)
and (57) with respect to sj_1(x) and pj_1(x,y). Then, the

sequence of the optimal control policy {f§_1} and the error
functional Pj(uj(x)) can be determined by (55) and (54)
respectively. The control policy is also given as a feedbaclk
control.

L, Relationships Between Optimal Continuous-Time and Discrete-
Time Control Policies

In this section, let us investigate the relationships
between the results derived in the preceding sections. We
shall show that we can derive the Riccati equation of (37) from
the recurrence relationships of (56) and (57) when the sampling
interval T tend to zero. To begin with, as a preparation of
the following investigation, let us enumerate some properties

which the Green's function U(t,x,y) satisfies (see Friedmann
[31), 1i.e.
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1) ﬂ(—gg‘—ﬂ = A U(t,x,y) , (59a)
aU(trXrY) _
=t =AU xyY) (59b)
2) a(&)u(t,g,y) + {1 - a(E)}au(t oult,8,y) _ 0 , (60a)
a(E)U(t,x,E) + {1 - a(g)}3U(t X:8) _ o, (60b)
3) lim Jg U(t,x,z)p(z,y)dz = p(x,y) . (61)

t+0

The next step is to substitute Eq. (56) into Eq. (57) and
it follows that

pj_1 (x,y) = 54'94{'1‘(1]' (x,y) + pj (X’Y)}
—./g‘,é:{qu(x,z) + pj(x,z)}h'(z)dz[TKj_1
+./;./; h(x){qu(x,y) + pj(x,y{}h'(y)dxdy]

X./;)(..,/Y{qu(y,z) + pj(y,Z)}h(z)dz . (62)

Then, let us consider the case of (62) in the limit as the
sampling interval T tends to zero. First, using the relations
of (59) to (61) and Green's formula given by (26), we get

,/ij(x,y) = _/I; U(T,x,Z)pj(z,y)dz ~ ,/I; {U(O,x,Z)

U (t,x,2)

+ 5t

pj (x,y)

T!p.(z,y)dz
t=0 ]

+ T.(; AZU(O,X,Z) . pj(z,y)dz pj (x,y)

+ [./1') U(0,x,2z) - Azpj (z,y)dz
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[ puo.x.e) Py Ey)
+ Si. i g Pj(grY) - U(0,x,8&) n }dg T = pj(xly)

1 aU(OIXIE)
+ Axpj(x,y)T + [j£1 3 (E) "o {&(E)pj(i,y) + (1 - a(&))

Bpj(«i,y) f Bpj(a,y)
x—a3——d€ = J  U(0,x,8) ——— ag|T . (63)
2

an n

Equation (63) must be satisfied for the arbitrary Green's
function U(0,x,z). As mentioned in Section 2, since it is
possible to change U(0,x,z) with respect to z in the interior
of D without changing them on the boundary, it follows that
terms with different regions of integration are independent of
each other and therefore must be equated to zero separately.
At the same time, considering that Eg. (63) must be satisfied
for the arbitrary values of both x and y, we get

ofxpj (x,y) =~ P4 (x,y) + Axpj(x,y)T ' (64)
and
Bpj(a,y)
G(E)Pj(i,y) + 41 - al@)p—=57——=0o0n o, , (65a)
dp. (E,¥)
——135——— = 0 on 0y - (65Db)

Now let us tend the sampling interval T to zero and write
pj(x,y) as p(t,x,y); then the boundary conditions of (65)

can be written as

a(E)p(t,E,y) + {1 - a(g)}gﬁ%gx)_ =0onsS . (66)

In the same way, it follows that

.,J/ypj (x,¥) = pj(x,y) + A P (x,y)T , (67)

Yy

and we get another boundary condition for p(t,x,y) as

a(E)p(t,x,E) + {1 - am}%ﬁﬁﬂ =0ons . (68)
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Let us continue the same procedures, and we get the ex-

pressions

h1(X) ~ ¢(X)T ’

h, (x) = Tfs {U(O,X,E)- M}a(«s)w(a)da ,

n

.>4 L, {qu (x,y) + Py (x,y)} ~

~7 T .
y 9 (x,y)

+ pj(x,y) + Axpj(x,y)T + Aypj(x,y)T '

['I‘Kj_1 + j;L h(x){qu (x,y)

+pj(x,y{}h'(y)dxdy] ~ TKj_1 ,

JC QZ:{qu(x,z) + pj(x,z)}h1(z)dz ~ TJg pj(x,z)¢(z)

f e l f ap (x,8)
D .k{qu(x,z) + pj(x,z) h2(z)dz = ~TJ-

| R e T P (£)dg

After substituting Eqs. (64), (67) and

(69) to (72) into
Eq.

(62), we divide the both sides of this relation by T,
and tending T to zero, then we get the relation that p(t

r
must satisfy, which is equal to the Riccati equation of (
i.e.

- 9p(t,x,y) _
= glt,x,y) + (Ax + AY)P(tIXIY)

- '/1; ¢'(Z)p(’c,z,X)de;1 (t) '/1; plt,z,y)¢o(z)dz

' op(t,&,x) -1 ap(trgrY)
- fs v () RLELEX) e (t)-/s: p(Eele¥) y(g)at

(69a)

(69b)

(70)

(71)

dz ,

(72a)

(72b)

X,Y)
37);

(73)
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Applying the same procedure to sj_1(x) of Eq. (56), we
get the optimal control policy of continuous-time form; that is

£*(t) = —K;1(t) ./;{./D ¢(x)p(t,X.y)dX}u(t,y)dy ’ (74)

g* (t) = K (t) fD{f v(g)RlErley) da}uw,y)dy . (79)
1

o

Obviously, the terminal condition of p(t,x,y) can be given from
Eq. (58) as

plte,x,y) = r(x,y) . (76)

All these results are just the same as those of Section 2.

5. Concluding Remarks

Two optimal control problems have been discussed for a
linear distributed parameter system governed by a partial
differential equation of the parabolic type. We imposed a
restriction on both distributed and boundary control functions
such that these controls are concentrated spatially onto some
parts of a spatial domain from the standpoint of control
device construction.

In Section 2, the optimal control problem with continuous-
time control was considered. The performance criterion func-
tion of quadratic form was evaluated by using dynamic programming
technique, and the Riccati equation was derived. In Section
3, the same optimal control problem with discrete-time control
functions was investigated by using Green's function represcnta-
tion, and recurrence formulae for determining the optimal control
policy were obtained. Finally, the relationships between the
optimal continuous- and discrete-time control policies were
discussed in Section 4.

We can develop the foregoing discussions up to the problem
where the closed spatial domains D1""’Dk and boundaries
1

S1"“’Sk move with respect to time within the spatial domain.

In this cgse, the characteristic functions ¢i(x) and wi(g)

and the vector valued function h(x) become the functions of
time t. It is notable that when we disregard the assumption
that control functions are concentrated with respect to space
variables as shown by Egs. (6) and (7), then it becomes impos-
sible to derive recurrence formulae (56) and (57).
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