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Scope and Purpose--In this paper, we explore how recently developed artificial intell igence techniques can be 
used to determine or approximate the preference ratings in the Analytic Hierarchy Process (AHP). In panicular, 
we show that the dynamics of a modified Hopfield network are equivalent to the power method in computing 
the principal eigenvector of a square matrix that is used in the AHP to determine the preference ratings. This 
network cannot generalize the preference structure in the case of imprecise preference judgments. Hence, its 
appeal is limited co the conceptual link it provides from anificial intelligence techniques to traditional numerical 
methods. We also introduce a feed-forward neural network formulation that, as shown in a number of simulation 
experiments, is able to learn the preference patterns in the training set, to generalize the preference structure, and 
to accurately approximate rating vectors, when the pairwise comparison judgments are imprecise. The current 
paper indicates chat artificial intelligence techniques hold great promise in terms of modeling discrete alternative 
multicriteria decision problems with imprecise preference information . 

Abstract-In this paper, we introduce two anificial neural network formulations that can be used to assess the 
preference ratings from the pairwise comparison matrices of the Analytic Hierarchy Process. First, we introduce 
a modified Hopfield network that can determine the vector of preference ratings associated with a positive 
reciprocal comparison matrix . The dynamics of this network are mathematically equivalent to the power method, 
a widely used numerical method for computing the principal eigenvectors of square matrices. However, this 
Hopfield network representation is incapable of generalizing the preference patterns, and consequently is not 
suitable for approximating the preference ratings if the pairw·ise comparison judgments are imprecise. Second, 
we present a feed-forward neural network formulation that does have the ability to accurately approximate the 
preference ratings. We use a simulation experiment to verify the robustness of the feed-forward neural network 
formulation with respect to imprecise pairwise judgments. From the results of this experiment, we conclude that 
the feed-forward neural network formulation appears to be a powerful tool for analyzing discrete alternative 
multicriteria decision problems with imprecise or fuzzy ratio-scale preference judgments. Copyright © 1996 
Elsevier Science Ltd 

I . INTRODUCTION 

In this paper, we introduce two artificial neural network (ANN) representations of hierarchical 
preference structures, in particular as these relate to the Analytic Hierarchy Process (AHP) [l]. An ANN 
is a set of processing units or computational elements, called nodes, connected with links, called arcs, 
with connectivity weights representing the strength of connections. We first show that the dynamics of 
a modified Hopfield neural network formulation are identical to the power method of computing the 
principal eigenvalues and principal eigenvectors of square matrices, and hence to the calculation of the 
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vector of preference ratings of the AHP. Since this ANN representation cannot generalize preference 
information, it cannot produce accurate results when used for approximating preference structures where 
the decision maker's (DM's) preference judgments are imprecise. Next, we introduce a feed-forward ANN 
formulation that is capable, in the presence of imprecise judgments, of approximating the mapping from 
any positive reciprocal pairwise comparison matrix to its preference rating vector more accurately than 
the principal eigenvector. Through a simulation experiment, we verify that the trained feed-forward ANNs 
yield preference ratings that are robust with respect to perturbations in the pairwise preference judgments. 
Thus, the feed-forward ANN formulation is a powerful tool for analyzing discrete alternative multicriteria 
problems, in particular if the pairwise preference judgments are imprecise. 

This paper is organized as follows . Section 2 gives a brief review of the AHP. In Section 3, we show 
how a modified Hopfield artificial neural network can be used to exactly determine the principal 
eigenvectors of the pairwise comparison matrices, in the same way as the power method does. In Section 
4, we introduce a feed-forward ANN formulation that can be used to approximate AHP preference ratings, 
describe how the ANNs were trained, and provide information regarding ANN architecture. Section 5 
details the results of a simulation study that illustrates the generalizing ability of the feed-forward ANN 
formulation, rendering it very suitable for approximating the AHP preference ratings if the pairwise 
preference information provided by the DM is imprecise . The paper concludes with final remarks in 
Section 6. 

2 . THE ANALYTIC HIERARCHY PROCESS 

The AHP (1) is a widely used method for analyzing complex discrete alternative decision problems 
with multiple qualitative criteria. In the AHP, the decision problem is decomposed into a tree-like 
hierarchical structure, with the overall goal at the top and the discrete alternatives at the bottom. The 
intermediate levels of the hierarchy represent lower level criteria that contribute to the overall goal. 

One rationale of the AHP is that decomposing a complex decision problem into more easily managed 
smaller-scale sub-problems, and sequentially evaluating the trade-offs between alternatives or sub
criteria for these sub-problems, facilitates a meaningful analysis of the overall problem. At each level of 
the hierarchy, the DM evaluates the relative importance or attractiveness of each pair of elements 
(alternatives or criteria) with respect to elements (criteria) at the next higher level of the hierarchy. The 
process of eliciting preference judgments proceeds in a top-down fashion, one level at a time, from the 
overall goal to the lowest level of the hierarchy, and results in a set of positive reciprocal pairwise 
comparison matrices. The top-down preference elicitation requires the DM's direct involvement at every 
stage. The principal eigenvalues and the principal eigenvectors of these reciprocal comparison matrices 
are then computed. The AHP is based on the premise that the principal eigenvector components of a 
matrix of pairwise comparisons are accurate measures of the relative importance or attractiveness of the 
elements (alternatives or criteria) with respect to an element at the next higher level, and interprets the 
normalized principal eigenvector components as preference ratings of the elements (1 , 2). Saaty also uses 
the principal eigenvalue to develop a measure of consistency of the DM's pairwise comparison judgments 
[I]. 

After preference elicitation, a bottom-up approach is used to aggregate (combine) the eigenvectors of 
the pairwise comparison matrices into composite preference ratings of the alternatives, starting with an 
aggregation of their relative attractiveness with respect to the lowest level criteria. In contrast with the 
top-down process of eliciting preferences, the bottom-up preference aggregation is purely mechanical, 
and does not involve the DM's participation. The sequential aggregation of the normalized principal 
eigenvectors at all levels of the hierarchy results in global preference ratings of the alternatives with 
respect to the overall objective. Clearly, the major numerical effort in the AHP involves computing the 
principal eigenvectors and the principal eigenvalues of the pairwise comparison matrices. We refer the 
reader to Saaty [I] for the computational details. 

In the remainder of this paper, we will assume that the decision problem has one criterion level. This 
assumption merely simplifies the notation, and does not represent any limitation to the methodology 
outlined below. In the case of multiple criterion levels, the sub-problems are to be aggregated sequentially 
across the levels of the hierarchy. 

In the literature, there has been considerable criticism of the original AHP scale, in terms of its range, 
as well the choice of discrete points within the range, and the relevance and interpretation of the scale 
itself (3-6). The use of the principal eigenvector as a measure of relative preference has been questioned 
as well (7). Even though these are interesting research topics, these issues fall outside the scope of this 
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paper, and we will not discuss them in detail. 
We will adopt the following notation. Suppose that the decision problem has n alternatives. Denote the 

relative pairwise preference of alternative i over alternative j with respect to criterion m by aijm· In the 
AHP, the range of values of aiim is limited to [ 1/9, 9). The reciprocity assumption of the AHP implies that 
aiim = llau,,,, for all i, j. Denote the n X n matrix of pairwise comparisons with respect to criterion m by 
A,. = (au,,, }. To simplify the notation, we will omit the subscript m, so that aii•• = aii• and A,. = A. 

The AHP [I, 2] uses the components of the principal eigenvector v1 of A, after normalization, as 
measures of the preference ratings of the alternatives (or criteria). The power method [8, 9) can be used 
to numerically compute the principal eigenvalue A.'2 and v, . The power method is an iterative method 
which starts with an arbitrary vector v<0J E R". At each iteration k, the pwer method computes a vector 
net<*' by multiplying v<* - IJ by A on the left: 

(I) 

and normalizing net<*' to obtain a new vector v<*> with, depending on whether the L1- or Lx-norm is used 
in the normalization, components vj*> in (2): 

«> _ net~k > <*> _ net~kJ 
v; - - . - - , or v,. -----~ 

2: net<*> max ( lnet<kJI} 
j = I J I S)Sn J 

If A. 1 exists, v<k> converges to v 1 = (v;1, ... , v,, 1)T, and 2:}=1netj*1 or max (lnetj*11} 
IS.)S n 

converges to A. 1 ask increases [8, 9) . 

(2) 

Denote the normalized principal eigenvector by r, where r;=v 1fi,}=1v1i . Saaty [l) poses that, if the aij 
values indeed represent the true preference structure, the ratio r/ri exactly equals the true relative 
preference of alternatives i andj, i.e., aij = r/ri, so that the vector r is interpreted as a measure of the true 
preference rating vector, and r; represents the rating of alternative i. We will adopt this interpretation 
throughout this paper, and-unless stated otherwise-will refer to the normalized principal eigenvector 
r as the true rating vector. However, it is important to keep in mind that in practice the a;i will be 
approximate, and within the AHP framework r will be a proxy for the true preference ratings vector. The 
fact that elicited preferences are usually approximate was a major motivation for using ANNs to represent 
these structures. 

3 . A MODIFIED HOPFIELD NETWORK FORMULATIO N FOR THE AHP : EXACT PREFERENCE 

RATINGS 

3.1 . The Hopfield neural network 

We will only describe the Hopfield network to the extent needed to explore its relationship with the 
power method, as applied to the AHP. In a Hopfield net, all artificial neurons (also called nodes or units) 
are fully connected by bi-directional arcs (artificial synapses) [ 10, 11 ]. Denote the connectivity weight of 
the arc from node j to node i by wii' and the matrix of connectivity weights by W = { wul· Let net'/1 and 
vjk> represent the input and output of neuron i at iteration k, respectively. The state of an n-neuron 
Hopfield network at iteration k is defined as the output vector vCk>=(vjk>, ... ,v~*>/ ER". In the original 
Hopfield network, w;; =0, the off-diagonal entries are symmetrical, i.e., w;i = wii• for all i andj, and the 
network outputs are discrete [10, 11) . Recently, more general Hopfield network formulations with W;; # 
0 and continuous-valued outputs have been developed [II, 12). At iteration k, the input to neuron i is 

obtained by nerj0 = ± wijvy- 11
• Each neuron has a transfer (activation) function which converts the 

j= I 

neuron's input nef;*1 to its output vjk1. In the original Hopfield network, threshold activation functions are 
used. More recently, Hop field [ 11) proposed the use of a continuous-valued sigmoidal activation function 
of the type vjkl = ( 1 +exp( - f3ner j0 )) -

1, where f3 controls the slope of the function . Of course, other types 
of activation functions are possible as well. 

The output of the network at one iteration serves as input at the next iteration. This process is repeated 
dynamically until either the network converges to a stable state or a pre-specified number of iterations 
has been performed. In the latter case, the network may be unstable. The dynamic convergence to a stable 
state minimizes an energy function which measures the overall difference between the network outputs 
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of consecutive iterations. A network converges to a stable state when its energy function reaches a local 
or global minimum. For the mathematical details we refer the readers to Hop field [I 0, 11). 

3.2. A modified Hopfield network for determining the AHP preference ratings 

We will next show how a Hopfield network formulation with a customized activation function can be 
used to compute the principal eigenvalue and principal eigenvector of the reciprocal comparison matrix, 
i.e. the preference weights in the AHP, and how the dynamics of this Hopfield network formulation are 
equivalent to the power method, as long as A is fully specified. 

In contrast with the symmetric weights of the original Hopfield network, this modified Hopfield 
network formulation has reciprocal weights (wu = au = 1/wF = l/aj; ). so that the connectivity weight 
matrix W = A is asymmetric. Moreover, we set W;; =I. The output vector of the network at each iteration 
represents an estimate of the principal eigenvector. Since A is positive irreducible, the Hopfield network 
is the irreducible graph of Ar. Rather than selecting activation functions that have traditionally been used 
for Hopfield networks, such as threshold and sigmoidal functions, we customize the transformation of the 
inputs netlkJ to outputs vlk\ according to (2). Hence, the input to the neurons is defined by net<kJ = Av<t1>, 

which corresponds exactly to (I) of the power method, and the neuron output vector equals v1kl , 

normalized using either the L 1- or Lx-norm as in (2). 
Since each step of the power method is identical to one iteration of this modified Hopfield network 

formulation, the computational aspects of the two methods are equivalent. Thus, the modified Hopfield 
network with reciprocal connectivity weights and node activation functions in (2) will converge to a 
stable (optimal) state which is identical to the solution obtained using the power method, and the 
conditions under which both methods will converge to a finite nonzero vector (state) are the same. While 
the power method converges to the principal eigenvector, the Hopfield network memorizes exactly one 
vector, the principal eigenvector of the connectivity matrix. 

4 . FEED - FORWARD NEURAL NETWORK FORMULATION FOR THE AHP 

4.1. Feed-forward ANN 

A feed-forward ANN is an ANN where the nodes are organized into layers, and the directed and 
weighted arcs from a node are only linked to nodes in the next higher layer (13, 14). Nodes in the input 
layer (layer 0) accept input from the outside world and nodes in the output layer generate output to the 
outside world. The input nodes are used to distribute inputs onl y, and do not serve any processing or 
computational function . The output of the output layer is the output of the feed-forward ANN. Nodes in 
layers between the input layer and the output layer are called hidden nodes, and the corresponding layers 
are the hidden layers. Hidden layers enable a feed-forward ANN to represent complex mappings. 

Denote the connectivity weight from node r in layer i - I to node k in layer i by w~r Each node, except 
for the input nodes, has a node bias or threshold. Denote the node bias of node kin layer i by 61~. Further, 
denote the set of connectivity weights and node biases by W = { w~,., 61 ~ } . The components of Ware usually 
determined throughout the training process. 

A feed-forward ANN maps from the input space R"1 to the output space R"0 , that is, for any given input 
vector a eR"1, the network computes an output vector o e R"0 • The mapping is a dynamic process, in which 
node inputs and outputs are computed sequentially from the input layer to the output layer. For i>O, the 
input to node k in layer i, denoted by neik, is the weighted sum of the outputs of all nodes directly 
connected to it in layer i - I plus 61~. i.e., 

net;,= "f w~,o~- i + 61~ (3) 
r=I 

where o~- 1 is the output of node r in layer i - I, and n; _ 1 is the number of nodes in layer i - I . Each 
node has an activation function which computes the node's output based on its input. The most frequently 
used activation function is the sigmoidal function, as in (4), 

(4) 

Feed-forward ANNs have been applied to many non-trivial numerical tasks [I 5) and real world problems, 
notably to classification and pattern recognition problems [16, 17). Recently, feed-forward ANNs have 
also been proposed for solving multi criteria decision problems [ 18, 19). Sanger [20) proposed an 
unsupervised learning algorithm in a single layer feed-forward ANN that is similar conceptually to 
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algorithms in principal components analysis and factor analysis. The mathematics of these statistical 
techniques are similar conceptually to those underlying the approximation of the principal eigenvector. 

4.2. The feed-fo1Ward ANN formulation and training 

A feed-forward ANN is usually trained to represent an unknown mapping. The purpose of training is 
to determine the values of the components of W such that the network closely represents the unknown 
mapping. In the training process, the network learns from training patterns in the training set, which is 
a collection of paired input and output vectors observed from the unknown mapping. Once a feed
forward ANN has been trained, the knowledge of the unknown mapping is stored in the components of 
w. 

The training of a feed-forward ANN is accomplished by applying input vectors from the training set 
to the network, mapping the input vectors to the computed output vectors, and then comparing the 
computed output vectors with the desired or target output vectors in the training set, after which the 
values of the components of Ware adjusted to reduce the differences between the computed and desired 
output vectors. After a number of training iterations, the components of W will converge to a set of values 
that minimize the difference between the computed and desired output vectors, and the network will 
organize itself internally, constructing a model to represent the unknown mapping from R"1 to R"0 • A well
trained ANN is able to generalize to patterns it has never seen before. Any new input vector presented to 
an appropriately trained network will yield an output vector similar to the one which would have been 
given by the actual mapping. 

Given their generalizing capability, feed-forward ANNs are used to approximate the mapping from a 
reciprocal comparison matrix in the AHP to the associated preference ratings of the DM. The preference 
information provided by the DM through the n x n pairwise comparison matrix A serves as the input to 
the feed-forward neural network. Let a ER"cn- IY2 be the vector consisting of the elements of A above the 
main diagonal, i.e., those au for which i <),ordered such that a= (a 12, .. ., a 1", a 23,. .. , Gin, .. ., an_ 1)T. Since 
A is reciprocal, a contains all relevant preference information in A, and is used as the input to the feed
forward ANN. Thus, the neural network will have n1 = n(n - 1)12 input nodes. The desired output vector 
consists of the n-dimensional true preference rating vector r of the DM, so that the number of output 
nodes is n0 = n. The compound vector (a T, rT) represents one pattern in the training set. The number of 
hidden layers and the number of hidden nodes in each hidden layer depends on the complexity of the 
mapping. In this paper, we limit ourselves to pairwise comparison matrices of sizes 3 X 3, 4 X 4, 5 X 5 and 
6X6. 

The software NeuralWorks Professional II/Plus [21] was used to train separate neural nets for each 
matrix size. For the problems analyzed in this paper, networks with two hidden layers provided good 
results. After experimenting with a number of alternative network configurations, training set sizes and 
network parameter settings, we found the network configurations in Table 1 to yield tolerable errors and 
to converge within reasonable time. The number of patterns P in the training set used for these different 
matrix sizes is given in Table I. During the training process, the learning rates were gradually decreased 
from between 0.8-0.9 to 0.1, and the momentum factors from 0.6-0.7 to 0.05. Other network parameters 
not mentioned in Table I were kept at the default values of the NeuralWorks software package. Larger 
problems (5 X 5 and 6 x 6) are more complicated than smaller ones (3 X 3 and 4 X 4), and consequently 
require more nodes in the hidden layers and more patterns in the training set to represent the mapping. 
The network in Fig. I is a graphical representation of a feed-forward ANN for the 3 X 3 pairwise 
comparison matrices, with 10 nodes in the first hidden layer and 6 in the second. 

In this study, the components of the network output vector o = (01, .. ., o")T are normalized to sum to 
unity. Denoting training pattern t by (a;,r;). and the corresponding normalized output vector of the ANN 

Table I. Network configur:uions for various size pa irwise comparison matrices 

M<1.trix Size of the Number of 
size training set training epochs Size of the Size of the Number of 
(nXn) (P) Consistent lnconsis1ent verifica1ion set validation sample .. hidden layers 

3X3 IOOO 1200 2400 200 1000 
4X4 1000 1200 2400 200 1000 2 
5X5 3000 490 800 200 1000 2 
6X6 3000 490 800 200 1000 2 

·The verification patterns are not pan of the training set, and serve as an unbiased monitor of the training process. 
··The validation patterns serve as an unbiased ex·post validation sample for measuring network accuracy. 
···These figures represent the number of hidden nodes in the first and second hidden layer, respectively. 

Number of 
hidden nodes 

... 
IO. 6 
20, 8 
25. 8 
30, 10 
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Output Layer 

Second Hidden Layer 

First Hidden Layer 

Input Layer 

Fig. I. Example of a feed-forward neural network architecture for pairwise comparison matrices of size 3 X 3. 

by o,, the network error associated with all P training patterns is measured by E given in (5) : 

I P ~ 
E= - 2: 2.. (o,1 - r,Y. 

2 t=I j =I 
(5) 

In the training process, E is minimized. The network error associated with training pattern t can be 
measured by the root mean square error (RMSE,) [22] in (6): 

RMSE,= 
I ~ 

- 2.. (o0 - r,)2. 
n0 1=1 

An equivalent network error measure associated with Q patterns is the RMSE in (7), 

- I .Q 
RMSE= - 2: RMSE, . 

Q, t=I 

(6) 

(7) 

In order to avoid pattern memorization or network paralysis due to overtraining, the training progress was 
monitored by calculating RMSE for Q =200 randomly generated verification patterns that were not part 
of the training set. Each network was trained either until RMSE <0.001 for these 200 patterns in the 
verification set, or until it appeared that the RMSE of the training set could not be improved further. 

The computational effort of training the ANNs is considerable, but not prohibitive. A typical training 
session using the NeuralWare software package [21, 22] on a compatible 486 PC, 25 MHz, took several 
hours. This computational time is reasonable, since only one network needs to be trained for each matrix 
size. Once trained, this ANN can be used to assess the ratings for any pairwise comparison matrix of that 
size. 

5 . EXPERIMENTAL RESULTS 

At this point, we need to distinguish between two issues: (I) whether a feed-forward ANN is able to 
closely approximate the mapping from a pairwise comparison matrix to its principal eigenvector, and (2) 
whether the output vector of a feed-forward ANN representation is more accurate than the principal 
eigenvector in estimating the preference ratings if the preference information is imprecise. The former 
issue is a<l<lrcssc<l in Section 5.1, while the latter is analyzed in Section 5.2. 
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5.1. Approximation of the principal eigenvector using feed-forward neural networks 

In this section, we only compare the output vector of a trained ANN with the actual principal 
eigenvector obtained with the power method, and do not consider the issue of imprecise preference 
judgments. In order to verify that feed-forward ANNs are indeed capable of yielding close 
approximations of the principal eigenvectors, we trained separate networks for two types of problem 
settings: (I) the pairwise comparison matrix A of each training pattern is perfectly consistent, and (2) A 
is moderately inconsistent [l] . Thus, 8 different neural networks were trained for the purpose of the 
analysis in this problem sizes and 2 problem settings). As the goal is to verify if the output of the trained 
network can approximate the principal eigenvector of A, we used the normalized principal eigenvector 
of A (either consistent or inconsistent) obtained with the power method as the desired output in the 
training process. 

Saaty [I] argues that few DMs are fully consistent in their pairwise preference judgments, and 
inconsistency indices of less than 0.1 are reasonable in practice. Accordingly, we randomly generated the 
matrices of inconsistent judgments such that their inconsistency index did not exceed 0.1. We decided 
against including matrices with inconsistency indices exceeding 0.1, as in such cases there may be a 
fundamental flaw in the elicited preference information, in which case Saaty [ l] recommends re
evaluating and double-checking the judgments, rather than proceeding with the preference analysis. 

Given the desired output vector r, and the network output vector o, of pattern t, the angle y, (in degrees) 
between r, and o, is determined by (8) and the maximum bit error (MBE,), i.e. the largest absolute error 
among all output nodes, is defined in (9): 

n 

360 o,. r, 360 2: 0 ur,i 
y,=- arccos -- = - arccos --~·-=-1 ----

2rr lo,llr,1 2rr ~~ 
±~ 

1= I 

(8) 

MBE,= Max {lo,i -r,)). (9) 
J 

In network training, the RMSE of (7) was used to monitor the training progress. In model validation, we 
used not only RMSE, but also two alternative error measures, the average angle y and the average 
maximum bit error MBE of all validation patterns, as defined in (I 0) and ( 11 ), respectively: 

'Y= _QI ~ y,, 
t=I 

(10) 

- 1 .l/. 
MBE= - 2: MBE,. 

Q t=I 
(11) 

We use the symbol Q for the size of both the verification and validation sets, but this should not cause 
any confusion. Obviously, smaller values of y (and of RMSE, of course) are indicative of higher overall 
degrees of similarity, and thus of higher accuracy of the ANN models. Smaller values of the MBE are 
indicative of a more favorable worst case accuracy of the neural network. 

Table 2 and Table 3 summarize the approximating abilities (RMSE, M BE and y) of the 8 trained ANNs, 
comparing the actual principal eigenvectors with the output vectors of the trained ANNs for Q = 1000 
independently generated moderately inconsistent and perfectly consistent validation patterns, respec
tively, that were not in the training set. From Table 2, we see that the values of RMSE, MBE and y for 

Matrix 
size 

3X3 
4X4 
5X5 
6X6 

Table 2. Estimation accuracy of networks for moderately inconsistent validation samples 

Perfectly consistent training sets Moderately inconsistent train ing sets· 
y (Std.)"' MBE (Std.) RMSE (Sid.) y (Sid.) MBE (Sid.) RMSE (Sid.) 

7.976 (5.539) 0.078 (0.051) 0.059 (0.039) 1.103 (0.646) 0.010 (0.006) 0.008 (0.005) 
9.728 (5.686) 0.083 (0.050) 0.054 (0.031) 1.919 (J.151) 0.010 (0.001) 0.010 (0.006) 
11.759 (6.323) 0.088 (0.050) 0.051 (0.028) 2.332 (1.198) 0.0 17 (0.009) 0.010 (0.005) 
13.081 (5. 792) 0.091 (0.044) 0.048 (0.021) 2.906 ( 1.292) 0.019 (0.009) 0.011 (0.005) 

·All of the training p:mems have an inconsistency ratio [I] between 0 and 0.1. 
·· Std. stands for standard deviation. 
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Table 3. Esrimation accuracy of networks for pelieclly consistent validation samples 

Matrix Perfectly consis1ent trainin~ 
size y (Srd.f" MBE (Std.) RMS£ (S<d.) 

Moderately inconsistent training sers · 
i' (S td.) MB£(Std.) RMS£ (S<d.) 

3 x 3 0.435 (0.324) 0.005 (0.004) 0.003 (0.003) 0.878 (0.592) 0.009 (0.006) 0.007 (0.004) 
4 X4 0.428 (0.30 1) 0.004 (0.003) 0.002 (0.002) 1.759 ( 1.084) 0.015 (0.009) 0.0JO (0.006) 
5 x 5 0.924 (0.608) 0.007 (0.005) 0.004 (0.003) 2.349 (1.232) 0.017 (0.010) 0.010 (0.005) 
6 X6 0.913 (0.578) 0.007 (0.004) 0.004 (0.002) 2.840 ( 1.2 I I) 0.0 18 (0.008) 0.010 (0.004) 

·All of the training patterns have an inconsistency riltio [I] between O and 0.1. 
··Std. stands for standard deviation . 

the ANNs trained using inconsistent preference information are uniformly lower than the corresponding 
values for the ANNs trained using consistent preference information. For instance, the ANN for the 4 x 4 
matrices trained with perfect consistency has a RMSE of 0.054, a MBE of 0.083 and a )'of 9.728, whereas 
the ANN trained using inconsistent 4 X 4 matrices yields values of 0.010, 0.0 I 0 and 1.919, respectively. 
This suggests, as one might expect, that it is better to assess the preference ratings based on moderately 
inconsistent pairwise comparison matrices using an ANN that was also trained on moderately 
inconsistent pairwise comparison matrices, rather than using an ANN trained on perfectly consistent 
preferences. From Table 3 it is clear that, as anticipated, those ANNs that were trained on consistent data 
generally estimate rating vectors of consistent pairwise comparison matrices more accurately than those 
trained on inconsistent data. For example, for the ANN for the 6 X 6 matrices trained with perfect 
consistency, the values of RMSE, MBE and y are 0.004, 0.007 and 0.913, respectively, while the 
corresponding values for the ANN trained using moderately inconsistent matrices are 0.010, 0.018 and 
2.840. 

Summarizing, Table 2 and Table 3 confirm the notion that the approximating accuracy of the ANN will 
be higher as the characteristics of the training and validation sets match more closely. Importantly, the 
low values of RMSE, MBE and yin both Table 2 and Table 3 clearly indicate that the trained ANNs are 
capable of closely approximating the principal eigenvectors of the pairwise comparison matrices, no 
matte( whether inconsistency is involved. 

5.2. Network generalization: estimated ratings for imprecise preference structures 

In this section, we investigate further the generalization properties and robustness of the feed-forward 
ANNs by comparing their approximating accuracy with that of the principal eigenvector approach, in the 
presence of imprecise preference judgments. In the simulation experiments below, we perturbed the 
components of the perfectly consistent pairwise comparison matrices to introduce impreciseness into the 
preference judgments. The purpose of introducing impreciseness is to simulate actual decision making 
situations. Although there are many ways to introduce impreciseness in a systematic simulation 
experiment, none of which will correspond exactly with an actual decision situation. The limited 
simulation discussed in this section appears sufficient for the purpose of assessing the viability of 
estimating preference ratings using ANN models. However, this study does not intend to provide a 
comprehensive investigation of the conditions under which such models perform best. 

For the purpose of this study, we assume that the DM's true preference structure is perfectly consistent 
and known, but the elicited pairwise comparison matrix is moderately inconsistent, reflecting the fact that 
the OM may provide somewhat imprecise preference information. Accordingly, we constructed the 
training set in the following way. First we generated perfectly consistent pairwise comparison matrices 
A with normalized principal eigenvectors r, and then perturbed the components of A to obtain moderately 
inconsistent matrices B according to (12), 

(12) 

where U is a uniformly distributed random variate over the interval [ - I, + I) and T/ is a constant. Thus, 
the mean disturbance factor f.L~ua equals 0, with a standard deviation of <T~ua =0.57735T[aij. All matrices 
in the training set were generated using Tf =0.8, so that a~ua,, =0.46l88aij, in::plying a mild perturbation. 
In this study, the average inconsistency indices of the perturbed matrices in the training sets were between 
0.02 (for the 3 X 3 matrices) and 0.06 (for the 6 X 6 matrices). Any perturbed matrix with an 
inconsistency index exceeding 0.1 was discarded. We ensured that all elements of B were within the 
range of 119 to 9. Also, we ensured that the direction of the individual relative preferences was not 
reversed during the perturbation process (i.e., bij> 1 if aij > 1, and bij < 1 if a;1 < 1). Let b represent the 
vector consisting of the components bij of B with i < j , with the components ordered in the same way 
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Table 4. Tests of significant difference in mean approxi mating accuracy betwe;n neural network models and 
power method, for perturbed preference matrices 

Average 
inconsistency Once-penurbed matrices (C) Twice-penurbed matrices (D) 

Matrix index r-values for t-values for 
size c D y(Std.) MBE(Std.) RMSE(Std.) y(Std.) MBE(Std .) RMSE(Std.) 

3X3 0.025 0.058 -5.65 -5.88 -5.58 -4.83 -5.07 -4.70 
4 X4 0.041 0.071 -2.26 -2.76 -2.48 -3.00 -3.32 -3.16 
5 X 5 0.050 0.071 -8.49 -8.52 -8.59 -9.50 -9.26 -9.58 
6X6 0.055 0.071 -7.77 -6.62 -7.38 -6.53 -5.18 -6.18 

· Null hypothesis: the ourpm vector of the ANN model does not estimate the preference weights more accurately than 
the principal eigenvector; Alternative hypothesis: the output vecror of the ANN model does estimate more accurately. t

values below - 1.67 and - 2.38 indicate that the null hypothesis is rejected, implying that the neural network 
estim:uions are significantly better. at the a =0.05 and a =0.0 1 level , respectively. 
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as in a, so that the compound vector (b T, rT) is a pattern in the training set. Other than the fact that the 
preference patterns in the training set now reflect impreciseness, the network training was conducted in 
the same way as described in Section 4, using the network configurations and number of training and 
verification patterns as specified in Table I. By doing so, we enabled the ANN to learn to deal with 
somewhat imprecise preference judgments. Two types of validation samples were used in model 
validation, each consisting of Q = 1000 independent replications. None of the validation patterns is part 
of the training set. First, we generated each perturbed pairwise comparison matrix C in exactly the same 
way as we did for B, i.e., cii = aii + 11Uaii• again with 1J =0.8. We experimented with other values of TJ, 
and obtained similar results to those reported in Table 4. Table 4 shows that the average inconsistency 
index of the matrices C for the different matrix sizes varies between 0.025 and 0.055 . 

Realizing that the way in which the C were generated might bias the performance in favor of the ANN 
models, we generated doubly perturbed validation matrices D. by first generating perturbed matrices in 
the same way as we did for C above, with 1J =0.8, and then perturbing these matrices once again with 
a factor 1J =0.8, so that dii = c11 + 1J Ucii. Again, in generating these matrices, any matrix with an 
inconsistency index exceeding 0.1, with elements outside the range of 119 to 9, or with reversals in the 
preference direction, was excluded from the analysis. From Table 4 we see that, depending on the matrix 
size, the average inconsistency of the D matrices varies between 0.058 and 0.071. While of course higher 
than those of C, these figures are well below 0.1. As the ANNs had not been trained directly to recognize 
the kind of impreciseness created by the double perturbation, the matrices D provide an additional means 
of testing the generalizing abilities of the ANN models. 

Since the vector of actual preference ratings, i.e. the principal eigenvector of A, for each validation 
pattern is known, we can compute RMSE, MBE and y separately for the output vector of the ANN models 
and for the principal eigenvectors of the inconsistent comparison matrices obtained with the power 
method, and use them to measure the relative performance of the two methods. In order to support the 
conclusions, we used the validation samples to test the null hypothesis that the output vector of a given 
ANN model does not yield more accurate preference ratings than the principal eigenvector obtained with 
the power method, on average, against the alternative that it does provide more accurate results, on 
average. The t-test statistics of difference in means for all three performance measures (RMSE, MEE and 
y) are provided in Table 4. 

The results in Table 4 show that without exception, the output vectors of the feed-forward ANNs 
estimate the preference ratings more accurately than the principal eigenvector obtained with the power 
method, since all t-values are negative. In each case, the difference in mean accuracy is significant at the 
a =0.05 level. All except one !-value are in fact significant at the a =0.01 level. These results hold for 
all three performance measures, and for the once-perturbed, C, as well as for the twice-perturbed, D, 
matrices. In fact, the t-values associated with the once- and twice-perturbed matrices were remarkably 
similar. 

Even though each trained network converged and proved quite accurate and robust in assessing the 
preference ratings, ANN representations of these mappings are not unique, so that it might be possible to 
obtain results similar to or better than those reported in this paper when alternative network 
configurations are used. Nevertheless, we believe that the robustness of the particular networks reported 
in this section clearly illustrates the effectiveness of using feed-forward ANNs for modeling AHP-type 
preference structures, and more accurate ANN architectures would only strengthen the conclusions of this 
study. 

The conclusion from this limited simulation experiment is that-at least for the types of problems used 
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in this study-ANN representations of ratio-scale pairwise preference structures can provide robust 
estimates of the DM's preference ratings. This study clearly provides preliminary but compelling results. 
Further studies evaluating various different ways in which impreciseness can play a role in a DM's 
assessment of relative preferences should also provide a more definite answer to the question to which 
extent ANN representations of preference structures are viable. 

The feed-forward ANN representations can easily be included in any AHP software package, just as the 
power method for calculating the principal eigenvector. Since a given feed-forward ANN is trained to 
learn and generalize the mapping from any positive n X n reciprocal comparison matrix to its preference 
rating vector, it can be used to approximate the preference ratings for any decision situation involving n 
alternatives. Hence, implementation of the proposed ANNs merely involves embedding the already 
trained ANNs in the existing software. The user would then have the option to use the ANN approach 
(rather than the power method) if the pairwise comparison values elicited from a given DM are likely to 
be imprecise. 

6 . CONCLUSIONS 

There is ample evidence that certain ANN structures are well-suited for accurately identifying patterns, 
if these patterns are imprecise or fuzzy (14, 23-25] . In the AHP, the patterns consis t of the DM's 
preference statements in the form of pairwise comparison matrices. In this paper, we investigate two 
different ANN structures in terms of accurately approximating (generalizing) the preference ratings of the 
alternatives, if some or all of the preference judgments are imprecise. 

The dynamics of the modified Hopfield network formulation correspond exactly with the power 
method, but this formulation is inflexible and unable to generalize the resulting ratings. Hence, even 
though the connection between the modified Hopfield network and the AHP is interesting in itself, this 
network formulation appears to be of limited use in estimating preference ratings in the presence of 
impreciseness. However, the feed-forward ANN formulation is approximate and is able to generalize the 
preference structures, yielding robust preference ratings when the preference statements are imprecise. 

Several researchers have recently studied the problem of how the preference ratings of the alternatives 
can be approximated if the preference information is incomplete or imprecise (26-33] . This is an 
important research topic, as in many real life decision problems the preference information elicited from 
the DM is imprecise. In the current study, we have found preliminary but compelling evidence that, due 
to their generalizing abilities, ANN representations can provide robust approximations of a DM's 
preferences when the preference information at hand is imprecise. Hence, it appears that the feed-forward 
ANN formulation, perhaps in conjunction with methodologies aimed at reducing the degree of 
impreciseness during the preference elicitation process [29-3 I] , is a potentially powerful tool in 
determining preference ratings for effective decision support. 

The ANN representation appears even more attractive, because once one network has been trained for 
each matrix size, the trained ANNs can easily be embedded in any AHP software package. Thus the user 
does not need to be familiar with ANNs, and is not required to train a network for his/her particular 
application. 

The analysis in this paper is based, directly or indirectly, on the methodology of the conventional AHP 
[!].As alluded to in Section 2, there exist many worthwhile alternative ways to analyze and interpret the 
information contained in pairwise comparison matrices. Most of these variants of the AHP (as well as 
perhaps other preference representations, such as value functions) can easily be implemented within an 
ANN framework. Moreover, impreciseness can be operationalized and introduced to the analysis in 
numerous different ways, and can take on many different characteristics that depend on the particular 
decision situation. It may also be useful to explore ANN paradigms other than Hopfield and feed-forward 
networks. It appears that extending the current study into these research directions will provide 
interesting and useful findings, both for the theory and practice of decision analysis. 

In our study, we did not conduct a systematic analysis of how well neural networks can generalize 
imprecise preference structures if the pairwise comparison matrices are incomplete. However, some 
exploratory experiments suggest that a good approach may be to first apply a method similar to that in 
[28] to predict the missing values, and then use neural network to determine the approximate preference 
ratings based on the resulting complete matrix. Further research is needed to investigate this issue. 
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