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Abstract-This paper introduces an approach to modeling the uncertainties concerning future 
characteristics of energy technologies within the framework of long-term dynamic linear program­
ming models . The approach chosen explicitly incorporates the uncertainties in the model, endo­
genizing interactions between decision structure and uncertainties involved. The use of this 
approach for future investment costs of electricity generation technologies in the framework of 
very long-term energy scenarios shows improvements in model behavior and more robust solutions 
with respect to technology choices made. Copyright © 1996 Elsevier Science Ltd. 

I. INTRODUCTION 

Workers at the ECS Project at IIASA are using the dynamic linear programming model, MESSAGE III, 
for the analysis of long-term energy strategies to mitigate climate change. 1 MESSAGE III is a techno­
economic optimization model. Other well-known models in this class are, MARKAL, which was 
developed by the International Energy Agency (IEA)2 and is mostly used for national energy studies3 

and EFOM, the model used by the European Union.4 Analyses with such models involve the use of 
information on potential future technology characteristics, energy-service demands and resource avail­
ability to investigate paths to a sustainable future energy system. 

A major shortcoming of conventional long-term energy-optimization models is the requirement to 
use point estimates for technology characteristics and other important system parameters. Here, we 
present an approach to overcome this problem by introducing distribution functions for technology 
parameters into model formulation. The stochastic version of MESSAGE III captures the risk of under­
estimating future technology costs. Computational overhead for applying the approach is very low 
compared with that of the original model; for the runs investigated here, no increase in CPU time was 
detected. Another problem often encountered with deterministic models, in particular, linear program­
ming models, is their sensitivity to input parameters . Linear programming models are, by definition, 
the worst in this respect because they tend to favor single solutions and extreme developments instead 
of mixing various technologies or strategies. In such cases, modelers develop scenarios that are robust 
with respect to uncertainties in input data. They use parameter variations and delimit the solution space 
to the area that yields acceptable and robust results. The concept of robustness applied here does not 
correspond to the concepts found in the literature of energy planning. There, robust solutions should 
help in the decision making process and should therefore define choices that are relatively attractive 
under all conceivable conditions.5·6 In scenario analysis of potential energy futures, different basic 
assumptions are expected to define different scenarios. A model is robust if, within a generic scenario, 
reasonable variations in input data do not generate drastic changes. This variation of input data lies 
within the variance possible within the scenario. Robust solutions are not expected to stretch over 
different scenarios. Investigating the effect of data variations within a family of scenarios is rather labor 
intensive and requires modeling experience. The important parameters for variation have to be found, 
and model runs with combinations of such parameter variations have to be performed. Such investi­
gations can result in a large number of model runs. Additional constraints that are introduced to stabilize 
model results reflect expert judgement, which is always subjective to some degree and involves the 
risk of over or underestimating parameters. Studies on formalized approaches to incorporating uncer-
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tainties and deriving robust solutions have focused on abrupt changes in uncertain exogenous constraints 
and the required robust strategies,7·8 on approaches to exogenously analysing uncertainties using Monte 
Carlo-based methods such as Latin Hypercube Sampling,9

•
10 or on other statistical methods. 11

•
12 Con­

siderable effort has been put into improving the methodology applied by electric utilities, where uncer­
tainties concerning demand, resource availability, or environmental constraints imply additional risk in 
the decision making process. 13

•
14 

The stochastic approach presented here explicitly introduces uncertainties concerning experts' opi­
nions of future investment costs for technologies. Compared with other approaches, it has the advantage 
of incorporating the required model additions into the LP formulation, thus avoiding the substantial CPU 
times required for approaches using exogenous sampling. The data used for the distribution function of 
investment costs were derived from the greenhouse-gas mitigation-technology inventory called C02DB 
and developed by ECS over the last five years. 1 ~ Some sample technology descriptions from C02DB 
are given by Schafer et al, 16 while the data and distribution functions used for the current analysis are 
documented by Wei. 17 

Strategies derived with the stochastic approach possess the required technological diversity without 
exogenous flexibility constraints. They also have a more robust structure with respect to present uncer­
tainties concerning future parameters than strategies obtained on the basis of deterministic parameters. 
Moreover, the strategies derived with the stochastic model extension are less costly than strategies 
obtained using a purely deterministic model. 

2. MODEL DESCRIPTION AND DAT A REQUIREMENTS 

MESSAGE III analyses future energy strategies in terms of available technologies, resources, energy­
service demands, and pollutant emissions. It is dynamic over time by integrating optimization for the 
whole time horizon into one objective function and linking different time steps (periods) in the model 
by various types of constraints. 

MESSAGE III has three major types of variables and a variety of equation types. The variables are: 
(a) technology activity; (b) annual new installations of technologies; and (c) annual resource extraction. 
The constraints of MESSAGE III can be grouped as follows: (a) demand constraints assuring that the 
exogenous demand is satisfied by the appropriate technologies; (b) balancing constraints for the energy 
carriers (e.g. electricity) that guarantee that no more is consumed than is produced; (c) capacity con­
straints relating production of a technology in a period to the overall capacity existing in the period; 
(d) dynamic constraints relating the activity in one period to the activity in the previous period; and 
( e) two types of resource constraints limiting the overall resource consumption to the quantity available 
and the annual extraction to a fraction of the quantity still available in a period. All variables and most 
of the constraints can be attributed to one specific time period. Only the dynamic constraints link two 
time periods to each other; capacity constraints construct the sum of new installations over the plant 
life of the technology, and the resource constraints are overall constraints that pool the extraction 
variables into one overall limit. 

The simplified formulation of MESSAGE III may be written as follows:t 

T 

min 2: (C,.x'), 
t=O 

B,x' 2! <f, t = 0, I, ... , T, 

t 

L Pkx" :s e',t = 0, I, . . ., T, 
/c=O 

0 :s r :s ?, t = 0, I, .. ., T, 

tFor two vectors x = (x, , ... , x0 ) and y = (y,, . .. , y0 ) the term (x,y) denotes li-o XJ';. 

(I) 

(2) 

(3) 

(4) 

(5) 
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where C=(Q, .. ., ~)is the cost vector at the time interval t=O, 1, .. ., T; r=(r1, •• ., rm) is the 
vector of overall resources; cf= (d/, .. ., ~) is the vector of energy demands at time t or zero for the 
energy balances, e' =(el, .. ., eD is the vector of other exogenous right hand sides, e.g. attributable to 
capacities existing in the base year; A, is the identity to sum all consumption of one resource over time; 
B, is the matrix of the technologies' input/output coefficients; Pk is the matrix providing relations 
between periods, e.g. the capacity constraints. 

MESSAGE III incorporates technical information on technologies, such as efficiency, technical plant 
life, and pollutant emissions. The objective function used in most applications minimizes the sum of 
the discounted costs, including the technologies' investment costs and operation and maintenance costs. 
The costs or profits from international energy trade and from energy or emission taxes can also be 
considered in the objective function. Technical, social, political, or environmental limitations to the 
utilization of technologies are represented by several types of constraints. Examples are the quantity 
of biomass available in a region and the maximum share of wind-power plants tolerable in an electric 
grid without stability problems. Other constraints are introduced by the modeler to combat the LP 
models' inherent feature always delivering the cheapest option available to the maximum degree poss­
ible. In mathematical terms the model provides a solution that minimizes the objective function and is 
at an extreme of the solution space. A consequence is that minor changes in cost assumptions can lead 
to qualitatively different results . This common "flip-flop" behavior is counteracted by the introduction 
of smoothening constraints, for example, limiting changes over time, limiting new installations of a 
technology, or linking technologies to each other. 

MESSAGE III is applicable to a wide range of energy-related issues such as regional or urban energy 
planning 18

-
20 and to investigations of the future energy system. 21

-
23 Its most recent application has been 

in the joint IIASA/WEC (World Energy Council) study on long-term energy perspectives,24 for which 
three families of global energy scenarios for the next century were developed. This analysis relies on 
assessments of technological characteristics over the coming century, which, due to the nature of the 
problem and the very Jong time horizon, are bound to be uncertain. 

A major effort in the preparation of the technology data was the development of C02DB, the IIASA 
greenhouse-gas mitigation-technology inventory, 15 which currently covers over 1400 technologies. Of 
these, approximately 1000 represent various electricity and cogeneration technologies. This extensive 
database was used to perform a statistical analysis and develop empirical distribution functions of 
capital costs and other characteristics of future energy technologies. 17 These distribution functions can 
be interpreted to encompass energy experts ' views, or ··conventional wisdom", about future performance 
characteristics of electricity generation technologies. It should be noted, however, that these estimates 
of future technology characteristics may not all be independent of each other. Such studies are quite 
often cross-referenced and there can be considerable variation in performance and cost due to locational 
and other factors that for obvious reasons cannot be excluded from our statistical analysis. 

Performance characteristics of technologies that are mature and widely applied are quite well known. 
In contrast, for new technologies that currently hold low market shares (e.g. power plants based on 
combined-cycle technology) or undergo fundamental changes (e.g. nuclear reactors) the range of para­
meters is considerably wider. For technologies that are not economically (e.g. PY, fuel cells) or even 
technically viable (e.g. fusion), the funnel of future costs and other characteristics continues to widen 
due to growing uncertainties. 

Of the technologies analysed by Wei, 17 eight classes were chosen for uncertainty analysis. Table 1 
shows the range of investment figures and the arithmetic mean for each of these technologies. The 
uncertainty of investment cost estimates is considerable for most of them. For coal power plants, the 
range of estimates varies by US$ l 700-l 800 per kWe, irrespective of whether conventional or advanced 
systems are investigated. For the cheaper conventional systems this translates into a ! 77% variation; 
for the capital-intensive advanced systems, such as integrated gasification combined-cycle systems or 
pressurized fluidized bed combustion, the variation is only 43%. For solar thermal power generation 
the range is also 50%, but the absolute difference between minimum and maximum estimate is 
US$2700/kWe, a value approaching the maximum estimate for advanced coal power plants. Compared 
with the other options, gas-based systems have low capital costs, which makes the absolute uncertainty 
rather low, while the relative range is higher than a factor of two and approximately the same as for 
new nuclear power generation. For solar thermal systems the range of investment estimates is compara­
ble with that of nuclear plants (US$2500 US/kWe), while solar PY are most uncertain with a range 
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Table I. lnvcstment-<:ost range and arithmetic mean for eight new electricity generation technologies [costs are in US(90)$/kWe]. 

Technology Arithmetic Minimum, Maximum, Range, Range, 
Mean, $/kWe $/kWe $/kWe $/kWe max./min. 

Conventional Coal 1350 650 2450 1800 2.77 
Advanced Coal 1695 1195 2905 1710 1.43 
Conventional Gas 570 330 1050 720 2.18 
Gas Combined-Cycle 815 514 1702 1188 2.31 
Biomass Power Plant 1580 500 3020 2520 5.04 
Nuclear Electricity 2145 1070 3600 2530 2.36 
Solar Thermal Electricity 3010 1790 4490 2700 1.51 
Solar-PY Electricity 6120 1740 12540 10800 6.21 

of more than US$10,000/kWe. For all estimates the arithmetic mean of estimates lies below the middle 
of the range covered. 

The model analysis is based on the global energy model used for the joint IIASA/WEC study.24 The 
model developed for this study consists of 11 regional models covering the world energy system. Energy 
flows include all relevant energy carriers and conversion technologies from coal mining and oil drilling 
via various electricity-generation options to final consumption, e.g. in industrial boilers or in road trans­
port. The study's time-frame is to the year 2100. For the current analysis a compressed version of this 
global energy model is applied. It aggregates the 11 world regions into one region but includes all 
technological detail concerning electricity generation from the more detailed regional approach. The 
time-frame is to the year 2050. 

Figure 1 shows the sensitivity of electricity generated from gas combined-cycle power plants to 
variations in investment costs of this and other technologies for the year 2050. The straight line at 
100% represents the initial model run using the arithmetic mean as investment costs for the new techno­
logies (here labeled arithmetic mean). In addition, two types of sensitivity runs were performed: the 
low-cost cases reduce investment costs of one specific technology or all new technologies (labeled 
"ALL") to the minimum estimate from Table 1; the high-cost cases use the maximum estimates. The 
results, as displayed for the gas combined-cycle technology, show that sensitivity is very high to the 
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Fig. I. Electricity production of gas combined-cycle systems for the year 2050 as a function of varying cost 
assumptions for the other technologies, relative to the arithmetic mean case. 
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own cost estimates of the technology: high costs reduce the use to zero and low costs increase it by 
another 40% compared with the arithmetic mean. If all investments are changed at once (i.e. taking 
either all low or all high ends of the range), the gas combined cycle is a loser, either because at least 
one of the others becomes cheaper (low cost) or because the combined cycle is too expensive (high 
cost). In all cases where other single technologies are at the low end of cost estimates the gas combined­
cycle system is reduced between 15 and 30%; the only case showing major gains is when new nuclear 
reactors become expensive. 

The extreme sensitivity of the model results to admittedly very high cost variations points to the 
weakness of the deterministic cost-minimization approach: in order to find strategies that are resilient 
with respect to parameter changes, a multitude of model runs would be required to further investigate 
synergies and competition of the technologies, and to locate more exactly the investment cost points 
at which the model starts to flip into another stratum of the energy system. The approach suggested in 
the next section enables the modeler to perform such analyses in a closed form by incorporating the 
uncertainties and risk concerning future investment costs of the technologies into the mathematical 
formulation of the model. 

3. INCORPORATING UNCERTAINTIES 

In the stochastic application of MESSAGE III the vectors C described in the previous section are 
treated as random vectors. We define them as C(w), where w is an element from a probability space 
indicating the dependence of the cost vector C"(w) on a random event that is characterized by a prob­
ability measure dP(w). This measure may be derived from observations or from expert judgements. We 
assume that the initial distributions at t = 0 are as given in Wei 17 and described in the previous section. 

If the cost vector C" is stochastic, then the cost l~=0 (C(w),x') of a given strategy x = (x°, ... , xT) 
can be derived from the probability distributions of C(w). The underestimation of the expected cost 
incurred by using the deterministic model is calculated as follows . For a given strategy {.x' ).t = 0, 1, 
. .. , T and an observed scenario w of the cost path { C( w)}. t = 0, 1, . .. , T, the positive deviation of 
the observed total cost l~=0 (C(w),x') from the calculated cost l~=0 (C ,x') is defined as 

T 

L max{O, (C(w) - C,x')}. 
r=O 

where 

max{O, (C(w) - C ,x') } =max{ 0, ± (Cj(w) - Cj) xj }· 
pl 

Let us denote this deviation as R(x,w) for strategy x = (x° ,x1, •• • , xT). This is an expression of the 
underestimation of the costs for the strategy x using the deterministic cost function . The expected cost 
of underestimating R(x) = ER(x,w) can be used as an indicator of the economic risk associated with 
strategy x. The risk function R(x) can be taken as an additional nonlinear constraint to the original 
deterministic model, or it can enter the objective function as an additional "penalty" term. An extensive 
discussion of motivation, formulation, and solution procedures for the optimization of functions, 
expressed in terms of expectations similar to R(x), is given by Ermoliev and Wets.25 

Applying the second alternative, using the "penalty" term, the stochastic model that explicitly takes 
into account the risk of underestimating future investment costs can be formulated as minimizing 

T 

F(x) = L (C ,x') + pR(x) (6) 
r=O 

subject to the original constraints [Eqs. (2-4)]. It is also possible to add some or all constraints [Eq. (5)]. 
Choice of decisions under uncertainty is analysed by many authors on the basis of the mean and variance 
of gains or losses.26

·
27 The proposed model also incorporates this type of analysis. It uses directly 

available information on monetary losses and does not incorporate social values of losses expressed as 
utility functions. The function R(x) reflects asymmetric variances of losses, the non-negative parameter 
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p represents risk aversion similar to the mean-variance analysis described by Pratt.26 The case where 
p = O corresponds to risk neutrality. When p = I the first term of F(x) corresponds to the expected cost 
associated with the energy developments and the second term corresponds to the expected underestim­
ation of the cost. Applying a risk factor p > I emphasizes the risk (risk aversion), whereas p < l 
reflects a tendency toward risk neutrality. 

It is possible to impose additional constraints on the level of risk R(x): 

R(x) ::5 R, (7) 

where R is an upper bound on the underestimation of the costs. In a sense the parameters p and R 
regulate the robustness of a strategy x with respect to the uncertainties. Here the trade-off is between 
robustness and cost: the more robust a strategy is with respect to potential changes in system parameters, 
the higher the cost of implementing this strategy will be. 

The resulting stochastic optimization problem is solved on the basis of simultaneous approximation 
of R(x) by N sample functions : 

I N 

R(x) - NL R(x,w' ), 
.r-1 

where w 1, ••• , w', .. . , wN are independent simulations ("scenarios") of possible cost paths { C(w')}. 
t = 0, I, ... , T and s = 1, 2, ... , N. The performance function F(x) is then approximated by including 
the sequence of random functions: 

T I N 

FN(x) = L (C ,x') + p NL R(x,w' ). 
t=O .t=I 

The solution path of the optimal strategies {xNJ with N-+ x that are derived from optimization of the 
functions { fN(x)) converges to an optimal solution minimizing Eq. ( 6 ). 

The model is solved for a sufficiently large N, where the size of N is evaluated by experiments. 
Several successive model runs with the same N are compared; if no major changes in the solutions 
occur, N is sufficiently large. It would also be possible to design an iterative sampling procedure to 
derive the optimal size of N. 

4. RES UL TS OF l'\UMERICAL EXPERIMENTS 

As described in Sec. 2, the model used for this analysis is based on a large-scale, Jong-term energy 
model developed for the IIASA/WEC analysis of the global energy system.24 The 11 regional energy 
models combined into a world model were developed by a team of experts in a cooperative effort. 
Constraints were used to derive realistic, perhaps more costly, strategies involving combinations of 
technologies and to represent technical, social, or other limitations on the energy system. An example 
of such a limitation is to constrain solar and other renewable sources of electricity with stochastic 
availability to a maximum share of the total electricity generated. In the IIASA/WEC analysis the 
model was used to quantify six partly very diverging scenarios. These scenarios were modeled with 
minimum intervention, i.e., only model parameters belonging to the scenario definitions, such as 
demands or available resources, were changed. The wide range of futures expressed with the model is 
an indication that the model is not overconstrained. When assumptions are changed, the model outcomes 
change. The compressed version of the global energy model used here relies on the same data base as 
the large model and was calibrated to this model, mainly by additional constraints emulating the greater 
degree of detail in the large model. 

To study the performance of the stochastic version of MESSAGE III, three cases were analysed: the 
detenninistic bounded case, where the solution structure of the detenninistic model is regulated (bounded) 
by additional exogenous constraints on the decision variables, was the basis of the analysis. This case 
corresponds to the arithmetic mean case in Sec. 2. For the deterministic unbounded case the exogenous 
constraints to guide the deterministic model were not included in the model, and in the stochastic 
unbounded case the stochastic performance function was added to the deterministic unbounded model. 
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This choice of cases was influenced by the problem analysis in Sec. 2, where one of the shortcomings 
of a deterministic approach using MESSAGE-type models was identified as requiring additional con­
straints to make the model more robust . The model of the arithmetic mean case, referred to here as 
the deterministic bounded case, is relaxed in terms of the exogenous constraints on the investigated 
technologies. This model with a larger solution space, the deterministic unbounded case, shows where 
the modelers have applied their expert judgement in order to constrain the solution toward the direction 
they think more appropriate and to gain results that are more resilient to parameter changes. Based on 
this case, the stochastic model was used to investigate strategies that minimize the risk of cost overrun 
due to the uncertainties in investment costs. 

Figures 2 and 3 show the development of coal and gas-based electricity generation for the three cases 
to the year 2050. One of the reasons for the limitations in the arithmetic mean case is that the effects 
of present policies and planned installations are incorporated this way. Figures 2 and 3 indicate that in 
the deterministic bounded case more coal and less gas is used for electricity generation in the nearer 
future than in the other cases. This reflects the regulations that were or still are applied in many European 
countries,t the strong emphasis that international organizations such as the IEA put on coal-based 
electricity generation, and a general reluctance of utilities to use natural gas for electricity generation. 
In the unbounded cases this constraint is relieved and leads to an immediate substitution of natural gas 
for coal. In future applications, constraint relaxation will have to be related only to the more distant 
future and limits on the nearer future should remain intact. 

The general trend for all model applications is similar, with coal use declining and gas use increasing 
over time . However, the deterministic unbounded case uses the most gas, with a strong swing around 
2030. This swing is reduced in the deterministic bounded case and practically avoided in the stochastic 
model. This generally leads to reduced gas use toward the end of the horizon, and, in the deterministic 
unbounded case, to a rebound of coal-based power generation. This rebound can be avoided in the 
deterministic bounded and the ~(ochastic cases. The main reason for the generally smoother curves in 
the stochastic case compared with the other cases is that the approach avoids running into short-term 
optima for single time steps. The stochastic approach helps generate strategies where more technologies 
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Fig. 2. Electricity generation from gas for the deterministic bounded (Det Bd), deterministic unbounded (Det 
Unbd) and stochastic cases as share of the total. 

t Germany still suppons the use of domestic coal in power generation by a subsidy system. In the UK power generation is 
contractually bound to domestic coal production despite the privatization of the industry .28 
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Fig. 3. Electricity generation from coal for the deterministic bounded (Det Bd), deterministic unbounded (Det 
Unbd) and stochastic cases as share of the total. 

are involved and general trends are not neglected to obtain short-term cost reductions. This neglect is 
exemplified by the two very distinct peaks in gas-based electricity generation in Fig. 2. 

Figure 4 compares electricity generation by technology for the year 2050. In the deterministic cases 
the use of conventional coal power plants and, to a lesser degree, nuclear power plants is reduced in 
the bounded case compared with the unbounded case. On the other hand, gas-fired combined-cycle 
power plants are used less in the unbounded model. Introducing the stochastic model formulation gives 
an interesting result: the tendencies enforced in the bounded versus the unbounded deterministic case 
are supported by the model outcomes. Gas combined cycles are applied to an even higher degree than 
in the deterministic bounded case and coal-based power generation and nuclear reactors supply even 
less electricity. This result suggests that in the deterministic bounded case the modeler, anticipating the 
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Fig. 4. Electricity generation by technology for the deterministic bounded (Det Bd), deterministic unbounded 
(Det Unbd) and stochastic cases in 2050 as share of the total. 
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uncertainties concerning future developments of model parameters, chose bounds to minimize the risk 
of selecting the wrong technology. In the stochastic unbounded case these modeler's choices are applied 
in an even more pronounced manner. 

The split between the two different systems for coal-based and gas-based electricity generation deserves 
special attention. In the case of coal-based systems, i.e. conventional and advanced coal power plants, the 
cheaper and slightly less efficient conventional systems are preferable. If the uncertainties of investments 
are incorporated, a diversification takes place and some 20% of the coal-based systems are advanced 
systems. For gas-based systems, the effect is different: the new systems, combined cycles, are already 
preferable in the deterministic cases. The stochastic case has two effects: it sharply increases the application 
of combined-cycle technology and it reduces the use of conventional steam-based power generation from 
gas. This shows that the gas combined cycle has the most attractive cost structure, even with uncertainties 
of future investment costs. The reason lies in the distribution of investment costs of gas combined cycles: 
30% of the estimates are at the lower end of investment figures, around US$500/kWe. Clearly the majority 
of experts envisage gas-based combined-cycle systems to be very competitive technologies. 

Finally, one general conclusion is attributable to the approach taken. Because the diversification in the 
stochastic model is obtained in a "natural" way, without constraining model flexibility, there is a high 
probability that the overall cost of the optimal strategy derived by the stochastic model will be lower than 
in the deterministic model. Hard limits could also eliminate desired solutions at any time whereas incorpor­
ating additional information in the objective function leaves the model the flexibility to choose good sol­
utions. 

5. CONCLUSIONS AND OUTLOOK 

The goals of this paper were to introduce the stochastic version of MESSAGE III and to analyse 
and compare structures of energy development strategies derived from the deterministic and stochastic 
versions. The stochastic version deals with uncertainties concerning future investment costs by incorpor­
ating the expectation of incurring higher costs due to these uncertainties into the objective function. 

The first, rather striking result of the experiments is that skilled model application of a deterministic 
model yields results with diversificatiOn features comparable with those of the stochastic version. By 
using iterative model adaptations and analysing the result, experienced modelers will reach results 
displaying adequate robustness with respect to the model parameters. 

However, the results of the numerical experiments also show several advantages of the stochastic model. 
In stochastic models the diversification of development strategies is reached in a natural way as a result 
of an anticipation of possible variations rather than as a result of additional flexibility constraints. Conse­
quently, diversification in the stochastic case tends to be Jess "expensive" than diversification through 
flexibility constraints. In the described application, the optimal value of the objective function in the 
stochastic model is lower than the optimal value of the objective function in the bounded deterministic 
model. 

Applying the stochastic approach to energy strategy evaluation leads to a shift of energy production 
from technologies with high sensitivity to parameter changes toward technologies with Jess sensitivity, 
even if they are more expensive in some cases. A consequence of this and the inherent minimization of 
risks related to singular development paths is early diversification into new technologies. 

Uncertainties concerning future technology characteristics clearly do not concern economic indicators 
alone. A prime candidate for further investigations is technical performance, primarily expressed by 
conversion efficiency and accompanying pollutant emissions. Distribution functions for efficiency esti­
mates of electricity generation technologies are available in the same fashion as the investment cost 
functions and could be readily incorporated into an extended stochastic version of MESSAGE III. More­
over, other parameters, such as the date of introduction of new technologies and perhaps the cost 
and performance effects of "learning by doing" (so-called technological leaming),29 are of interest for 
future investigations. 

Leaving aside the representation of technologies in MESSAGE III, this model incorporates many 
more constraints where experts' opinions diverge, such as resource quantities available worldwide or 
limits on C02-emissions required to mitigate global warming. The developments of stochastic 
approaches covering these cases are challenging from a methodological point of view, especially taking 
into account the large-scale applications of MESSAGE III. 
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An important direction of further studies concerns the development of generators for dependent ran­
dom parameters with a possible reduction of uncertainties. In our study we ignored dependencies 
between variations of investment costs for a technology and, for example, total cumulative investment 
in this technology. On the other hand, economic recession or an increase of economic activity affects 
all activities and shows the correlation between changes in time and between various types of model 
parameters. The analysis reported in this paper could serve as a basis for possible approaches to 
investigating such situations in a more realistic manner. 
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