
Working Paper

IIASA International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria

Telephone: +43 2236 807 • Telefax: +43 2236 71313 • E-Mail: info@iiasa.ac.at

Artificial neural networks and statistical
approaches to classifying remotely sensed

data.

Rudolf T. Suurmond
Erik Bergkvist

WP-96-131
November 1996



Working Papers are interim reports on work of the International Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member
Organizations, or other organizations supporting the work.

IIASA International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria

Telephone: +43 2236 807 • Telefax: +43 2236 71313 • E-Mail: info@iiasa.ac.at

Artificial neural networks and statistical
approaches to classifying remotely sensed

data.

Rudolf T. Suurmond
Erik Bergkvist

WP-96-131
November 1996



iii

Contents

1. INTRODUCTION ............................................................................................................................................. 1

2. NEURAL NETWORK CLASSIFIERS ........................................................................................................... 2

3. SELF-ORGANIZING FEATURE MAPS ....................................................................................................... 3

3.1 KOHONEN LEARNING AND RECALL..................................................................................................................... 3
3.2 EXPERIMENTS.................................................................................................................................................... 5
3.3 DISCUSSION........................................................................................................................................................ 6

4. LEARNING VECTOR QUANTIZATION ..................................................................................................... 6

4.1 EXPERIMENTS.................................................................................................................................................... 7
4.1.1 Number of units and learning iterations.................................................................................................... 7
4.1.2 Sensitivity to different learning parameters............................................................................................... 9

5. FUZZY ARTMAP ........................................................................................................................................... 11

5.1 EXPERIMENTS.................................................................................................................................................. 11
5.2 RESULTS........................................................................................................................................................... 12
5.3 DISCUSSION...................................................................................................................................................... 12

6. BACK-PROPAGATION ................................................................................................................................ 12

6.1 EXPERIMENTS.................................................................................................................................................. 13
6.2 RESULTS........................................................................................................................................................... 13
6.3 DISCUSSION...................................................................................................................................................... 13

7. RADIAL BASIS FUNCTION NETWORK................................................................................................... 14

7.1 EXPERIMENTS.................................................................................................................................................. 14
7.2 RESULTS........................................................................................................................................................... 14
7.3 DISCUSSION...................................................................................................................................................... 15

8. STATISTICAL CLASSIFIERS...................................................................................................................... 15

8.1 NONPARAMETRIC CLASSIFICATION METHODS.................................................................................................. 15
8.1.1 Results...................................................................................................................................................... 16

8.2 PARAMETRIC METHODS.................................................................................................................................... 17
8.3 RESULTS AND DISCUSSION............................................................................................................................... 17

9. COMPARISON OF THE TESTED CLASSIFIERS .................................................................................... 17

9.1 DISCUSSION...................................................................................................................................................... 18

10. INPUT DEPENDENCY ................................................................................................................................ 18

11. SIZE OF THE TRAINING SET .................................................................................................................. 19

12. CONCLUSION .............................................................................................................................................. 20



iv

Preface

Remote sensing is a technique which provides enormous amounts of data for monitoring land
use and land cover. In order to analyse the data statistical techniques can be used. Neural nets
provide an interesting alternative.

The present Working Paper explores the capabilities of different types of neural nets in this
respect and compares the results with the results of different advanced statistical methods.

The work is part of a cooperative study with the Department of Economic and Social
Geography of the Vienna University of Economics and Business Administration. It was
sponsored by the Austrian Ministry of Science.

Jaap Wessels

Department of Mathematics and Computing Science, Eindhoven University of Technology
and IIASA.
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Abstract

Substantial research has been done on automatic classification of  remotely sensed data.
Multispectral information about points on the earth is used to determine different types of land
cover. One of the latest approaches to doing this type of research is the use of artificial neural
networks. To train classifiers, we used a data set of pixels that were classified according to
ground truth information. The pixels were taken from a Landsat-Thematic Mapper (TM)
image of Vienna and its northern regions. The task was to classify the pixels into eight a priori
defined categories of urban land use. Several different neural network paradigms were
compared with more traditional statistical techniques. The self-organizing feature map
performed the best in our study. It correctly classified 91% of the data in the test set. The best
statistical method was the non parametric nearest neighbor method which correctly predicted
90% of the observations in the test set.



vi

Acknowledgements

The research team gratefully acknowledges the help of professor Karl Kraus (Department of
Photogrammetric Engineering and Remote Sensing, Vienna Technical University), for his
assistance in supplying the remote sensing data. We would also like to acknowledge professor
Manfred M. Fischer and Ms Petra Staufer (Institut für Wirtschafts- und Sozialgeographie,
University of Vienna) for valuable ideas and suggestions that helped us improve the paper.



1

Different artificial neural network and statistical
approaches in classifying remotely sensed data.

Rudolf T. Suurmond
Erik Bergkvist

1. Introduction

A number of satellites are continuously collecting data about the earth’s surface. These data
include spectral information that is, images of earth. Such images can be used to determine the
type of land use or land cover in a particular region. In this study we explore the potential of
several advanced techniques that facilitate the interpretation of such satellite images.

The data used in this study were taken from a Landsat-TM image of central Vienna and its
northern regions. The image consisted of 270 × 360 (97 200) pixels each representing 30m ×
30m areas. Six spectral bands were used: blue, green, red, near infrared, and two mid infrared
bands. The thermal band with a resolution of only 120m was not used for classification. The
spectral values were gray scaled in the 0−255 range.

In our study we interpret remotely sensed images by classifying them into eight urban land-
use categories. Although clearly distinguishable from the ground data, land use is not easy to
recognize from satellite images. Some categories are spectrally inhomogeneous, some are not
spectrally separable. For each category, a group of pixels was chosen from the image. This is
called the one site condition. The number of pixels in each category was chosen proportional
to the total number of pixels of that category in the image. This resulted in a set of 2460
classified pixels. Two thirds of these pixels were used to estimate free parameters of the
classifiers (learning), while the remaining one third were used to measure the accuracy of the
classifiers (testing). The same learn and test sets were used in all classifiers discussed in this
paper (with the exception of Sections 10 and 11).

The primary objective of the study was to explore the potential of neural networks in this
classification task. But the results that are obtained from neural classifiers become
considerably more interesting when they are compared with the results that can be obtained
from other advanced methods. The best methodology can be determined only by applying
different approaches to the same data and then compare the results.

Among the group of neural network classifiers we compared the performance of networks that
use unsupervised learning with those that use supervised learning. Among the group of
statistical classifiers, we compared parametric and nonparametric methods. Since artificial
neural networks are essentially nonparametric classifiers, their performance is best assessed
by comparing the corresponding statistical methods.

In this report we discuss the results we obtained from several different artificial neural
networks that were used to solve this classification problem. First we discuss the general
neural network approach. Next we investigate the self-organizing feature map, learning vector
quantization, fuzzy ARTMAP, back-propagation, and radial basis function networks. Then,
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we report on several statistical methods to solve this and compare the results. Finally, we
investigate the effect of modifications to the learn set on the learning vector quantization
network.

Table 1: Land-use categories and numbers of training and testing pixels.

Number of pixels
Category Description of the category Learning Testing

1 Mixed grass and arable farmland 167 83
2 Vineyards and areas with low vegetation cover 285 142
3 Asphalt and concrete surfaces 128 64
4 Woodland and public gardens with trees 402 200
5 Low density residential and industrial areas (suburban) 102 52
6 Densely built up residential areas (urban) 296 148
7 Water courses 153 77
8 Stagnant water bodies 107 54

Total number of pixels 1640 820

2. Neural Network Classifiers

Although the internal structure and operation of the different neural classifiers discussed in
this paper are quite diverse, it is possible to describe the general approach we used for training
and testing them. In this section we will describe the software, and the accuracy measures
used in the research and identify a few implementation issues.

The neural networks were implemented using the software package NeuralWorks Professional
II/Plus. The exact algorithms used in this package are listed in the software manual [1]. In
NeuralWorks, learning parameters are varied according to a so-called learn schedule. During
the beginning of the learning process, we used parameter values that allow fast learning. The
parameters are adjusted in later stages of the learning process to prevent oscillation and to
fine-tune the weights. The learn count determines which column of the learn schedule is
active. In Table 2, the learning rate is 0.06 for the first 12 300 learning iterations, 0.03 for the
iterations between 12 301 and 24 600, and so on. Decreasing the learning rate after a number
of learning iterations usually gives improves the results. In Table 2 the total number of
learning iterations is 49200.

NeuralWorks is a versatile package that supports many different neural network paradigms.
However, the facilities in this package for evaluating the performance of neural networks are
relatively limited. It is not even possible to calculate the percentage of correct classified pixels
in a set. Therefore, the evaluation was done by saving the output of the network and
calculating the desired accuracy measures by means of a specially written C program.

The most important accuracy measure of a neural classifier is the average classification rate.
The classification rate is the proportion of correctly classified pixels in a set of pixels. This
value was averaged over five networks that were trained with different random seeds. A
different random seed means that the initialization of the weights and the order in which the
learning examples are presented are varied. Because we trained five nets, we were also to
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calculate the standard deviation and confidence intervals of the classification rates. These
measures the stability of the network with different random initializations.

The second accuracy measure is the classification matrix. This matrix has eight rows and
eight columns; each row corresponds to a ground truth category and each column to a
category assigned by the classifier. The component in row n and column m gives the number
of pixels of ground truth category n that were classified as category m. This accuracy measure
shows which categories are confused by the classifier and is therefore also called confusion
matrix.

All accuracy measures were calculated for both the train set and test set. The performance on
the train set indicates how well the network is able to distinguish the pixels that were used to
estimate the free parameters in the network. The performance on the test set, which is
generally lower than on the train set, is the more interesting one. It is an indication of the
classifiers ability to correctly classify pixels it has never seen during the training process.

The coding of the inputs and outputs can have major influence on the performance of a neural
network The activation functions in the input layer are often very sensitive to the way in
which the inputs are scaled. The best results are obtained when the inputs range between zero
and one (and the weights initialized to random values in appropriate intervals). The inputs
have different distributions. None of the inputs uses the full 0−255 range. Therefore, the
inputs were scaled individually so that each scaled input used the full range [0.2,0.8].

The outputs were implemented with a one-of-N code. This means that our classification
problem had eight outputs, one for each category. Each category was coded as a vector with
one component equal to one and the remaining components equal to zero. This coding
generally gives better results than coding the category as one numeric value.

3. Self-organizing Feature Maps

The self-organizing feature map (SOM), developed by Kohonen [2], is a neural network that
creates a mapping of the input space onto a discrete, two-dimensional space while preserving
the order of  the input space. Thus, if two input vectors are close, then the images of these two
input vectors will also be close. Each unit in the Kohonen layer represents an image value. For
our purpose the most important aspect of the self-organizing feature map is that the mapping
can also be regarded as a classification. In short, each unit in the Kohonen layer represents an
image value of the mapping which represents a category.

The resulting classification is based not on the a priori classification provided in the learning
examples, but only on the structure of the inputs. The mapping is such that each Kohonen unit
is associated with an approximately equal number of input vectors and pixels that are close to
one another in input space are associated with the same Kohonen unit (i.e. image value or
category).

3.1 Kohonen learning and recall

The SOM network consists of two layers of units: the input layer and the Kohonen layer,
which is in our application also the output layer. The Kohonen layer is twodimensional in the
sense that its processing elements are arranged into rows and columns. When a learning
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example is fed to the network, the Euclidean distance to each Kohonen unit is calculated and
the nearest unit is chosen to be the winner. The weights of a group of units around the
winning unit are then moved in the direction of the learning example.

More formally, the input vector is denoted by X x xM= ( ,..., )1 . Since the input and Kohonen
layers are fully connected, each Kohonen unit has M weight values that can be denoted by
W w w wi i i iM= ( , , , )1 2 Κ . The Euclidean distance Di  is calculated for each Kohonen unit as
follows:

D X W x w x wi i i i= − = − + ⋅ ⋅ ⋅ + −( ) ( )1 1
2

1 1
2 .

During recall the unit with the minimumDi  is declared the winner. During learning, a bias is
added toDi . The value of the bias depends on the frequency with which the unit has won in
the past. It is calculated by

B N Fi i= ⋅ −γ ( )1 ,

where N is the number of units in the Kohonen layer, Fi  is an estimation of the win frequency
of unit i, and γ  is the conscience parameter set by the user. The unit for which D D Bi i i' = +
is minimal is the winner.

The win frequency estimations are initialized toF
Mi =
1

 for all i N= 1,..., . After each

learning iteration, with winning unit j, they are updated to

F F Fi i ij i new  old  old= + −β δ( ) ,

where δ ij  is the Kronecker delta function and β  the frequency estimation parameter set by the

user.

During learning, the weights of the winning unit j and of a group of units called the
neighborhood is updated according to the formula

W W X Wij ij j ij new  old  old= + −α( ) ,

where α  is the learning rate, which is a learning parameter set by the user.

The shape of the neighborhood can be either square or diamond. It consists of all units within
a square or diamond around the winning unit.

Upon recall, the unit closest to the input vector with respect to Euclidean distance is chosen to
be the winner and is the only Kohonen unit to have nonzero output.

After the SOM has been trained, it’s classification is analyzed and compared with the a priori
classification provided by the learning examples. Since there are more Kohonen units than a
priori categories, a post-processing phase was implemented that associates every Kohonen
unit with the most appropriate a priori category. For each unit in the Kohonen layer, the group
of learning examples that activates this unit is considered. We determined to which a priori
category the majority of these learning examples belong. Then, when applying the network to
unclassified data, the data were first presented to the SOM net, which selected a Kohonen
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unit. Finally, it is checked which a priori class had been associated with this unit and the
unclassified vector is assigned to this category.

3.2 Experiments

Simulations were done for three different numbers of units in the Kohonen layer. The
networks were trained for 49200 iterations each, according to the learn schedule given in
Table 2. Experiments were also carried out with a constant learning rate of 0.06 for every
learn count. The results from these can be seen in Table 3.

Table 2: Learn schedule for self-organising feature map.

Learn count 12300 24600 36900 49200

Learning rate 0.06000 0.03000 0.01500 0.0075

Frequency Est. 0.00100 0.00050 0.00025 0.00013

Conscience 1.50000 0.75000 0.37500 0.18750

Neighborhood width 7 5 3 1

Neighborhood shape Square Diamond Square−

Table 3:  Performance of the SOM network with learn schedule given in Table 2. The 95%
confidence intervals for the classification rates (lower bound, average, upper bound,
respectively are listed in boldface).

Units Train set Test set
Rows Cols Total Classif. rate Average Std. dev. Classif. rate Average Std. dev.

4 4 16.000 0.893 0.898 0.008 0.867 0.868 0.004
0.889 0.876
0.897 0.863
0.899 0.867
0.911 0.868

C.I 95 % 0.881 0.898 0.914 0.859 0.868 0.877

10 10 100.000 0.922 0.922 0.001 0.888 0.896 0.011
0.922 0.895
0.923 0.902
0.921 0.911
0.924 0.884

C.I 95 % 0.920 0.922 0.925 0.874 0.896 0.918

16 19 304.000 0.940 0.938 0.004 0.899 0.890 0.009
0.935 0.878
0.933 0.893
0.938 0.896
0.941 0.884

C.I 95 % 0.931 0.938 0.945 0.873 0.890 0.907
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Table 4.  Performance of the SOM net with the learning rate 0.06.  The 95% confidence
intervals for the classification rates (lower bound, average, upper bound, respectively are
listed in boldface).

Train set Test set
Classif. rate Average Std. Dev. Classif. rate Average Std. Dev.

0.930 0.929 0.002 0.911 0.910 0.002
0.928 0.913
0.929 0.910
0.926 0.910
0.932 0.909

C.I. 95% 0.925 0.929 0.933 0.907 0.910 0.914

The classification matrices for the second SOM network in Table 4, with 100 Kohonen units
and a constant learning rate, are shown in Table 20 in the appendix. The whole data set
consisting of 97 200 pixels were used with the SOM, LVQ and RBFN nets to create an image
of Vienna (see Figures 9, 10 and 11 in the appendix). This was done to see if they show
similar behaviour when it comes to generalization on a greater data set. Here it is apparent that
the SOM net is better when it comes to separating group 6 from 7 (urban areas and water
courses areas).

3.3 Discussion

The SOM network gives the best results when applied to many units in the Kohonen layer.
This makes that the use of the SOM network requires considerably memory and
computational power.

The performance of this type of network is remarkable because only part of the available
information is used for learning. Indeed, the learning algorithm of the SOM uses only the
input vectors and not the desired output vectors. In section 4 we will modify the SOM
network to take into account the desired outputs during learning, namely, the learning vector
quantization.

4. Learning Vector Quantization

A learning vector quantization (LVQ) network combines the advantages of a Kohonen layer
and supervised learning. Unlike the self-organizing feature map, the Kohonen layer in an
LVQ network does not preserve the order of the input space. Instead, each a priori category is
assigned a fixed number of units in the Kohonen layer. During learning, the weights of each
Kohonen unit move toward learning examples in its assigned category and move away from
examples in other categories. A conscience mechanism similar to that used in the self-
organizing feature map was implemented to prevent the same Kohonen unit from winning too
frequently.

Like the self-organizing feature map, the learning vector quantization neural network
paradigm was introduced by Kohonen [3].
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4.1 Experiments

Of the network paradigms in our study, we explored the learning vector quantisation most
thoroughly. First, we determined the optimal number of units in the Kohonen layer and the
optimal number of learning iterations. Next we investigated the sensitivity with respect to
other learning parameters.

The learn schedule used in most experiments is given in Table 5. The explanation of the
different learning parameters as well as the exact algorithms used can be found in the software
manual [1]. The first 75% of the learning iterations were LVQ1 iterations; the remaining
iterations were LVQ2 iterations.

Table 5: Learn schedule for LVQ nets. The learn count is given as a fraction of the total
number of learning iterations.

Learn count (fractional) 0.25 0.5 0.75 0.875 1

Attraction rate 1 0.06000 0.03000 0.01500 0.03000 0.01500

Attraction rate 2 0.06000 0.03000 0.01500

Repulsion rate 0.03000 0.01500

Conscience 1.50000 0.75000 0.37500

Frequency estimation 0.00060 0.00030 0.00015

LVQ2 width 0.20000 0.40000

4.1.1 Number of units and learning iterations

The performance was measured for all combinations of five different numbers of Kohonen
units and five different numbers of learning iterations. To determine the preferable values of
parameters, the average performance is important as well as the standard deviation. Therefore,
both are presented in this paper. In this subsection we present the results of the experiments
with different numbers of Kohonen units and different numbers of learning iterations in the
various tables and figures.

The performance on the train set is as expected: increasing monotonically with both the
number of units and learning iterations. The performance on the test set is more interesting.
Almost all values are in the range between 85% and 90%. The best results have been obtained
with either a small number of units or a large number of units. The difference between using
16 units or 304 units is only 0.2%, whereas the best values for network sizes in between is 1%
to 2% less. Therefore, we continued with 16 units in the Kohonen layer.

The number of learning iterations behave remarkably in comparison with the number of
Kohonen units. The networks between 56 and 200 units work best when trained for only 16
400 iterations, while the networks with 16 and 304 units require significantly more learning
iterations.
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Table 6: Average classification rates on the learn set.

Learning iterations
Units 16400 32800 49200 65600 82000

16 0.910 0.912 0.923 0.925 0.917
56 0.916 0.925 0.923 0.924 0.923

104 0.933 0.940 0.944 0.944 0.949
200 0.937 0.948 0.960 0.963 0.969
304 0.916 0.946 0.957 0.965 0.970

Table 7: Average classification rates on the test set.

Learning iterations
Units 16400 32800 49200 65600 82000

16 0.879 0.874 0.893 0.899 0.893
56 0.873 0.870 0.873 0.871 0.872

104 0.890 0.881 0.886 0.882 0.886
200 0.892 0.887 0.870 0.874 0.871
304 0.853 0.900 0.892 0.874 0.879

Table 8: Standard deviations of classification rates on the test set.

Learning iterations
Units 16400 32800 49200 65600 82000

16 0.010 0.008 0.011 0.004 0.015
56 0.006 0.004 0.005 0.005 0.005

104 0.009 0.007 0.004 0.007 0.006
200 0.007 0.003 0.006 0.003 0.006
304 0.022 0.009 0.008 0.008 0.007
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Figure 1: Average classification rates on the learn set.
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Figure 2: Average classification rates on the test set.
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Figure 3: Standard deviations of classification rates on the test set.
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4.1.2 Sensitivity to different learning parameters.

We analyzed the sensitivity of four different learning parameters on the small net with 16
hidden units and 65 600 learning iterations. One parameter was varied and the other
parameters were kept at the values listed in Table 5. In Tables 9, 10, 11 and 12 list only the
initial values for the parameters. We can complete the learn schedule for the nets by
maintaining the same ratios within rows as used in Table 5. The classification matrices shown
in Table 21 in the appendix have been obtained from a 16-unit network that was trained for 65
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600 iterations. The learning parameters are shown in Table 5. Results from these experiments
can be seen in Table 6, Table 7 and Table 8 with their graphical representation in Figure 1,
Figure 2 and Figure 3 respectively

Tables 9, 10, 11 and 12 show stable behaviour with respect to most learning parameters,
although each parameter has an interval that gives optimal results.

Table 9: Sensitivity of LVQ1 with respect to learning rate.

Train set Test set
LVQ1 LR Average Std. dev. Average Std. dev.

0.01 0.919 0.002 0.889 0.009
0.06 0.925 0.004 0.899 0.006
0.08 0.915 0.015 0.886 0.020
0.10 0.924 0.002 0.901 0.006
0.20 0.919 0.011 0.887 0.013
0.40 0.919 0.008 0.885 0.009
0.80 0.921 0.007 0.883 0.010
1.00 0.915 0.009 0.881 0.010

Table 10: Sensitivity of LVQ1 with respect to conscience.

Train set Test set
Consc. Average Std. dev. Average Std. dev.

0.00 0.910 0.002 0.843 0.006
0.50 0.912 0.009 0.876 0.008
0.75 0.922 0.007 0.898 0.015
1.00 0.925 0.003 0.902 0.004
1.50 0.925 0.004 0.899 0.006
2.00 0.919 0.005 0.892 0.010
3.00 0.924 0.005 0.900 0.004

Table 11: Sensitivity of LVQ2 with respect to learning rate.

Train set Test set
LVQ2 LR Average Std. dev. Average Std. dev.

0.00 0.904 0.003 0.872 0.006
0.01 0.909 0.002 0.878 0.006
0.03 0.925 0.001 0.899 0.004
0.10 0.922 0.007 0.898 0.006
0.30 0.919 0.007 0.881 0.014
0.50 0.880 0.034 0.835 0.042
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Table 12: Sensitivity of LVQ2 with respect to width.

Train set Test set
LVQ2 width Average Std. dev. Average Std. dev.

0.01 0.902 0.005 0.865 0.010
0.05 0.921 0.002 0.886 0.001
0.10 0.920 0.008 0.886 0.005
0.20 0.925 0.001 0.899 0.004
0.30 0.918 0.008 0.897 0.006
0.40 0.921 0.005 0.895 0.011
0.50 0.923 0.003 0.900 0.004
0.60 0.910 0.025 0.890 0.021
0.80 0.910 0.020 0.883 0.019
1.00 0.913 0.012 0.888 0.016

5. Fuzzy ARTMAP

The fuzzy adaptive resonance theory MAP (FZARTMAP) comprises three main parts: two
ART networks and a match tracking system (MTS) that connects the two. In contrast to a
regular ART1 network, the FZARTMAP can handle continuous input data. Another main
difference is that the FZARTMAP uses supervised learning. A standard ARTMAP uses
unsupervised learning, hence it forms its own appropriate classes from the input data. In doing
this it tries to form templates which are compared to the input. During learning, if the
similarity between the input and a template is strong, the ART will adjust this template. If the
similarity to all of the templates is weak, it will create a new template. The ”minimum degree
of similarity” when deciding whether to create a new class is user definable and controlled by
the vigilance parameter. The FZARTMAP has the capability of increasing the vigilance
above this value to obtain the best possible classification. The basic idea behind the
FZARTMAP is to use two ART networks (a and b) and simultaneously feed the input
respectively the desired output through these. If the networks are not connected they would
each create their own classes but when connected via the MTS the FZARTMAP will create as
many internal classes as needed to create an almost total fit of the training data. The
FZARTMAP then assigns these internal classes to a correct output. In our experiments, the
output data form a one-of-N-coded category. In this special case, the FZARTMAP can be
reduced to consist only of the ARTa and the MTS.  For a detailed description of the fuzzy
ARTMAP see the articles by Carpenter [4,5,6].

5.1 Experiments

In the experiments we gave the network a maximum of 135 internal classes. The base
vigilance was set to 0; the recode rate to 1, the choice parameter, to 0.001; the epoch size
1640; and number of iterations, to 16 300. All parameters were kept constant during learning,
so the learning schedule for the FZARTMAP is not necessary. Other parameters such as the
number of units and the number of learning iterations were varied. This resulted in slightly
decreased performance, although still within the confidence interval of the best net.
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5.2 Results

The results in Table 13 show that the forecast of the FZARTMAP is excellent in the training
set. However, its generalization capability on the test set is the worst of the network
paradigms tested. It, nevertheless, shows the same behaviour as the other nets, its predictions
are very good except for classes 6 and 7 were all nets perform at their worst (see Table 22 in
tha appendix).

Table 13: Performance of the FZARTMAP. The lines in boldface hold the 95% confidence
intervals for the classification rates (lower bound, average, upper bound, respectively).

Train set Test set
Classif. rate Average Std. Dev. Classif. rate Average Std. Dev.

0.991 0.994 0.002 0.871 0.875 0.005
0.995 0.879
0.994 0.868
0.994 0.878
0.995 0.877

C.I. 95% 0.990 0.994 0.997 0.865 0.875 0.884

5.3 Discussion

The fuzzy ARTMAP is able to reproduce the learn set to any degree of accuracy. The
generalization capability of the network for the given application, however, is not as good as
that of the other network types that are discussed in this paper.

6. Back-propagation

The back-propagation network is one of the most widely used types of neural networks. A
back-propagation network for classification consists of an input layer, one or more hidden
layers, and an output layer. The number of units in the input and output layers equals the
number of explanatory variables and the number of a priori classes, respectively. The number
of hidden layers and units in the network is not directly defined by the structure of the
problem. The researcher chooses values for these numbers depending on the complexity of the
problem,. The number of hidden layers is usually set to one. Since there is no definite rule for
estimating the number of units in the hidden layer, it is usually determined by trial and error.

The back-propagation network feeds the inputs to each unit in the first hidden layer; in these
units the inputs are scaled by an individual weight and totaled. This weighted sum is applied
to a transfer function, the result of which is a scaled unit output. The outputs in one layer are
inputs for units in the next layer and this process is repeated foro each layer. The output from
the net is compared with the desired output using an error function. The weights are then
adjusted by a gradient descent algorithm that involves back-propagating the error to previous
layers. This network type is described in more detail in [7]. The network developer has several
choices such as the number of hidden layers and units, the size of the step during error
correction for each layer (learning coefficient), the number of inputs to be presented between
every weight update (epoch size), the transfer function, and the learning rule.
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6.1 Experiments

In Fischer et. al. [8] a back-propagation network model that uses a pruning algorithm, epoch
size 3, learning coefficient 0.8, and no momentum is described. Learning starts with 22 units
in the hidden layer, eight of which are pruned away. A classification rate of 90% was achieved
in their study. We reproduced this experiment with 14 hidden units, without a pruning. We
used the learn schedule displayed in Table 14 to train a network with 14 units in the hidden
layer. Epoch size 1 was selected for this experiment.

Table 14: Learn schedule for back-propagation neural network

Learn count 10000 30000 50000

Learning rate 0.30000 0.15000 0.03750

Momentum 0.40000 0.20000 0.05000

6.2 Results

Our simulations showed that an initial value of 0.3 for the learning coefficient gave the best
performance. Table 15 present the average and the 95% confidence interval from five
simulations.

Table 15: Performance of back-propagation network with 14 hidden units.

Train set Test set
Run Classif. rate Average Std. Dev. Classif. rate Average Std. Dev.

1 0.920 0.920 0.001 0.893 0.893 0.004
2 0.918 0.888
3 0.920 0.890
4 0.921 0.896
5 0.920 0.898

C.I. 95% 0.918 0.920 0.997 0.885 0.893 0.901

Appendix Table 23 provides details of the number of correctly predicted observations in each
class for the best individual net. As mentioned earlier we tried many unit sizes and also a
different learning rule but they are not presented because these results were compatible and
within the confidence interval of the winner.

6.3 Discussion

Our simulations show that although the back-propagation network is not the best net, its
average performance is well inside the confidence interval of the best-performing LVQ net.
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7. Radial Basis Function Network

The radial basis function network (RBFN) in this study is a combination of two network
paradigms: unsupervised learing and supervised learning. The unsupervised phase used the
inputs Euclidean distance  to find centers of clusters with the mean of a K-mean clustering
method. The nearest neighbour method (see chapter 8.1) was then used to estimate the width
of a Gaussian transfer function. This method was followed by a softmax linear transfer
function in the output layer. The RBFN gets it name from the radially symmetric patterns it
creates from the inputs. For this pattern to result there must be a center which is a vector in the
input space, a distance measure from the center to the input vectors, and a single variable
transfer function which maps the output from the transfer function and thereby determines the
output of the single unit. The weights estimated in this self-organizing phase are referred to as
prototype weights. Finally when the unsupervised phase is over a standard delta rule can be
used to perform supervised learning. A detailed description is given in [9].

7.1 Experiments

During our experiments we found that the following parameters gave the best results; 64
prototype weights, Euclidean distance measure, normalized cumulative delta rule, 90,000
learning iterations, a Gaussian transfer function in the hidden layer and softmax output.
During experiments the optimal number of prototype weights were found to be the above
mentioned. The values we used for training the best net are shown in Table 16. In this table
the columns with momentum 0 correspond to the self-organizing phase in which the input to
hidden layer weights are learned. The other columns correspond to the phase in which the
hidden-to-output-layer weights are learned by a gradient descent algorithm. The first phase
consisted of 49,200 iterations.

Table 16: Learn schedule for RBFN. Total number of learning iterations.

Learn count 12 300 24 600 36 900 49 200 59 200 79 200 90 000

Learning rate 0.3 0.15 0.075 0.0375 0.8 0.4 0.1

Cluster threshold 0.1 0.05 0.025 0.0 0.0 0.0 0.0

Momentum 0.0 0.0 0.0 0.0 0.4 0.2 0.05

Error tolerance 0.0 0.0 0.0 0.0 0.1 0.1 0.1

7.2 Results

During experiments the optimal number of prototype weights was found to be 64, but we also
tried different epoch sizes with the delta-rule. Performance of the resulting nets did not differ
that much from one another but the best performance came with parameters presented in
Table 16. Table 17 shows that the RBFN is one of the best performing nets. It fails
nevertheless as all other methods in correctly separating categories 6 and 7 as seen in Table 24
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in the appendix. The confidence interval is in this case overlapped the confidence intervals of
the other best nets (LVQ, SOM).

Table 17: Performance of radial basis function network with 64 prototype weights.

Train set Test set
Classif. rate Average Std. Dev. Classif. rate Average Std. Dev.

0.931 0.930 0.003 0.911 0.907 0.005
0.924 0.899
0.931 0.909
0.932 0.905
0.929 0.910

C.I. 95% 0.923 0.930 0.936 0.897 0.907 0.916

7.3 Discussion

The RBFN has the second best performance; this is not surprising given that it is similar to the
LVQ net in that it resembles a SOM net with supervised learning. One reason for the
improved performance may be that the learning rules in the RBFN are better suited for the
relationships mirrored in our data set than in other supervised networks.

8. Statistical classifiers

In this section we present the results of four statistical methods used in our classification
problem. The purpose of showing the results of these methods is to to compare the
performance of the proposed neural classifiers with other widely accepted methods.

The classifiers covered in this section can be divided into parametric and nonparametric
methods. All of the statistical methods discussed in this paper calculate a probability density
estimation for each of the eight categories. The a posteriori probabilities are then defined by
Bayes’ theorem: they are defined by the a priori probability multiplied by the density
estimate, and divided by the total density estimate for all categories.

8.1 Nonparametric classification methods

The nonparametric methods that have been examined are kernel methods and nearest neighbor
methods. The kernel methods calculate the probability density estimations based on
generalized distances from the out-of-sample observation of each training example in a
category. In our experiments, normal kernels were used with radii ranging from 0.375 to 3.
The a posterior probabilities are then calculated by means of Bayes’ theorem, taking into
account the a priori probabilities.

When classifying a new observation, the k nearest neighbor method uses only the k
observations in the train set that are nearest to a generalized distance function. The probability
density function for category C is then determined by the number of category C observations
among the k nearest observations relative to the total number of category C observations in the
train set and the a priori probability of an observation to have category C. The a posterior
probability of category C is then defined by Bayes’ theorem. In our experiments, k varied
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from 1 to 35. The a priori probabilities were chosen so that they would be proportional to the
numbers of learning examples in each category.

8.1.1 Results

These methods can easily compete with the neural network classifiers. Only the best network
types give a somewhat higher accuracy. Because the performance for even numbers of nearest
neighbors was consistently lower than those for odd numbers, Figure 4 and Figure 5 shows
the results.

Figure 4: Results of the kernel method (normal kernel)
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Figure 5: Results with the k-nearest neighbours method.
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8.2 Parametric methods

The third and fourth statistical methods are parametric discriminant analysis methods, also
known as the Gaussian maximum likelihood methods. They are well-established classification
tools that have been implemented in commercial statistical packages. The software used in our
study is Minitab. Both linear and quadratic discriminant analyses have been employed. The
results obtained with these methods are given in Table 18. The classification matrices for the
statistical method that performed best, linear discriminant analysis, are displayed in Table 26
in the appendix.

8.3 Results and discussion

Table 18: Classification rates for the different statistical methods used.

Method train set test set

Nearest Neighbor 0.929 0.898
Kernel classifier 0.956 0.894

Linear discriminant analysis 0.911 0.873

Quadratic discriminant analysis 0.909 0.852

Results from the distribution-free show that these methods can compete with the neural
network classifiers. The parametric methods give significantly lower results than the non-
parametric statistical methods. This is in accordance with the remark in Section 1 that neural
network methods are best compared with nonparametric methods.

9. Comparison of the tested classifiers

In summary, the best network type is the self organizing feature map, followed by the radial
basis function network (see Figure 6).

Figure 6: Overview of all classifiers in this paper, with error bars for the neural classifiers.
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9.1  Discussion

Almost all of the methods achieved a classification rate that was close to 90%. Parametric
statistical methods and the fuzzy ARTMAP neural network differed from the best performing
methods in this aspect. All of the statistical methods assumed that the inputs of each category
had a multivariately normal distribution; something that does not apply to the non-parametric
methods. One reason for the bad performance of the fuzzy ARTMAP could be its internal
structure. It is very good at learning a train set and should be good at predicting as well. Why
this is not the case may be that when new data differ greatly from the data in the train set, it
cannot correctly assign them to the internal classes and fails.

10. Input Dependency

The complexity of the problem is determined by, among other things, the dimension of the
input space.

In the data set at hand, the three input vector components that correspond to the visual part of
the spectrum show high correlation. This can be seen in Table 19. To determine if all of the
inputs are necessary, we left out one spectral band and trained an LVQ net with the remaining
five-dimensional inputs. We also trained a net with four inputs: the infrared channels and the
average of the three visible channels.

Table 19: Correlation matrix for the six spectral bands.

C1 C2 C3 C4 C5

C2 0.959

C3 0.940 0.961

C4 -0.487 -0.367 -0.376

C5 0.196 0.312 0.321 0.644

C6 0.685 0.734 0.770 0.101 0.795

The network used for these experiments was a 200-unit learning vector quantization network
(see Section 4) trained for 41 000 iterations. The learn schedule was identical to that listed in
Table 5.

Figure 7 displays the results with error bars. Other tested network types show similar results.
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Figure 7: Effect of reducing the dimension of the input space.
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These results indicate a very small decrease in accuracy when one of the visisble channels is
left out or even when the three visible channels are replaced by their average, leaving only
four inputs and thereby considerably reducing the network complexity. The infrared channels
are more important, which is in accordance with the values shown in the covariance matrix.

11. Size of the Training Set

Determining the class of a pixel by sight is a cumbersome process. Therefore, it is important
to know how many examples are needed to have a network that is capable of generalization.
We tested four different train set sizes. The network used for these experiments was a 200-unit
learning vector quantization network (see Section 4) trained for 41 000 iterations. The learn
schedule was identical to that listed in Table 5.

Figure 8 shows that 500 elements in the training set give results that are almost as good as
those obtained by training with the whole set. However, the results tend to improve as the size
of the training set increases. Experiments with larger data sets are needed to arrive at definite
conclusions.
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Figure 8: Effect of the size of the training set on the performance of an LVQ net.
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12. Conclusion

All methods compared in this paper produce similar results except for two methods:
discriminant analysis and the fuzzy ARTMAP artificial neural network which achieved lower
classification rates. The best-performing network architecture, which was the self-organizing
feature map correctly classified 91 percent which is slightly better than the radial basis
function network’s 90%. The overall performance is very good and the results are
encouraging.

However, it should be stressed that these data were gathered with the so-called one-site
condition, which means that all examples for an a priori category are taken from a single site.
This results in overly homogeneous data, which are not available in many practical situations.
Furthermore, distribution-free statistical methods achieved over 89% classification accuracy
which is very close to the neural classifiers.

The results in this paper are useful as a starting point for studies with more heterogeneous
data. Future research is needed to determine if the results in this study achieved here are
general and can be applied to other data. That is, will these methods perform in a similar way
when used on other data sets?
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Appendix

Table 20: Classification matrices of the best SOM net at a constant learning rate.
Classifier's categories (train set)

Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8 Total
C1 157 9 0 1 0 0 0 0 167
C2 1 282 0 2 0 0 0 0 285
C3 0 0 126 0 0 2 0 0 128
C4 2 1 0 393 6 0 0 0 402
C5 0 0 2 5 95 0 0 0 102
C6 0 0 1 0 0 277 12 6 296
C7 0 0 0 0 0 63 90 0 153
C8 0 0 0 0 0 5 0 102 107

Total 160 292 129 401 101 347 102 108 1640

Classifier's categories (test set)
Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8 Total

C1 78 5 0 0 0 0 0 0 83
C2 1 141 0 0 0 0 0 0 142
C3 0 0 63 0 0 1 0 0 64
C4 3 2 0 194 1 0 0 0 200
C5 0 3 0 0 49 0 0 0 52
C6 0 0 0 0 1 127 20 0 148
C7 0 0 0 0 0 29 48 0 77
C8 0 0 0 0 0 5 0 49 54

Total 82 151 63 194 51 162 68 49 820

Table 21: Classification matrices of the best performing LVQ network.
Ground truth categories Classifier's categories (train set)

C1 C2 C3 C4 C5 C6 C7 C8 Total
C1 163 4 0 0 0 0 0 0 167
C2 2 283 0 0 0 0 0 0 285
C3 0 0 127 0 1 0 0 0 128
C4 1 2 0 390 9 0 0 0 402
C5 0 0 0 0 102 0 0 0 102
C6 0 0 1 0 1 266 7 21 296
C7 0 0 0 0 1 69 83 0 153
C8 0 0 0 0 0 0 0 107 107

Total 166 289 128 390 114 335 90 128 1640

Ground truth categories Classifier's categories (test set)
C1 C2 C3 C4 C5 C6 C7 C8 Total

C1 81 2 0 0 0 0 0 0 83
C2 1 139 0 0 2 0 0 0 142
C3 0 0 64 0 0 0 0 0 64
C4 2 3 0 189 3 0 0 3 200
C5 0 1 0 0 51 0 0 0 52
C6 0 0 0 0 2 119 17 10 148
C7 0 0 0 0 0 33 44 0 77
C8 0 0 0 0 0 1 0 53 54

Total 84 145 64 189 58 153 61 66 820



23

Table 22: Classification matrices of the best fuzzy ARTMAP.
Classifier's categories (train set)

Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8 Total
C1 167 0 0 0 0 0 0 0 167
C2 0 285 0 0 0 0 0 0 285
C3 0 0 128 0 0 0 0 0 128
C4 0 0 0 402 0 0 0 0 402
C5 0 0 0 0 102 0 0 0 102
C6 0 0 0 0 0 291 3 2 296
C7 0 0 0 0 0 5 148 0 153
C8 0 0 0 0 0 0 0 107 107

Total 167 285 128 402 102 296 151 109 1640

Classifier's categories (test set)
Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8 Total

C1 79 4 0 0 0 0 0 0 83
C2 3 133 5 0 1 0 0 0 142
C3 0 0 63 0 0 1 0 0 64
C4 2 2 0 194 1 0 0 1 200
C5 0 4 0 0 48 0 0 0 52
C6 0 0 0 0 1 99 44 4 148
C7 0 0 0 0 0 24 53 0 77
C8 0 0 0 0 0 3 0 51 54

Total 84 143 68 194 51 127 97 56 820

Table 23: Classification matrices of the best back-propagation net.
Classifier's categories (train set)

Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8
C1 158 7 0 2 0 0 0 0 167
C2 2 282 0 1 0 0 0 0 285
C3 0 0 127 0 0 1 0 0 128
C4 3 0 0 392 7 0 0 0 402
C5 0 0 2 5 95 0 0 0 102
C6 0 0 1 0 0 259 24 12 296
C7 0 0 0 0 0 60 93 0 153
C8 0 0 0 0 0 4 0 103 107

Total 163 289 130 400 102 324 117 115 1640

Classifier's categories (test set)
Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8

C1 77 4 0 2 0 0 0 0 83
C2 1 139 0 0 2 0 0 0 142
C3 0 0 64 0 0 0 0 0 64
C4 1 2 0 192 2 0 0 3 200
C5 0 2 0 0 50 0 0 0 52
C6 0 0 0 0 1 113 31 3 148
C7 0 0 0 0 0 29 48 0 77
C8 0 0 0 0 0 1 0 53 54

Total 79 147 64 194 55 143 79 59 820
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Table 24: Classification matrices of the best radial basis function net.
Classifier's categories (train set)

Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8
C1 164 3 0 0 0 0 0 0 167
C2 2 282 0 1 0 0 0 0 285
C3 0 0 127 0 0 0 1 0 128
C4 0 0 0 395 7 0 0 0 402
C5 0 0 0 5 97 0 0 0 102
C6 0 0 1 0 0 269 17 9 296
C7 0 0 0 0 0 59 94 0 153
C8 0 0 0 0 0 8 0 99 107

Total 166 285 128 401 104 336 112 108 1640

Classifier's categories (test set)
Ground truth categories C1 C2 C3 C4 C5 C6 C7 C8

C1 81 2 0 0 0 0 0 0 83
C2 0 137 5 0 0 0 0 0 142
C3 0 0 64 0 0 0 0 0 64
C4 1 3 0 196 0 0 0 0 200
C5 0 3 0 0 49 0 0 0 52
C6 0 0 0 0 2 121 25 0 148
C7 0 0 0 0 0 29 48 0 77
C8 0 0 0 0 0 3 0 51 54

Total 82 145 69 196 51 153 73 51 820

Table 25: Classification matrices of a classifier based on linear discriminant analysis.
Ground truth categories Classifier's categories (train set)

C1 C2 C3 C4 C5 C6 C7 C8 Total
C1 163 3 0 1 0 0 0 0 167
C2 2 280 0 0 3 0 0 0 285
C3 0 0 123 0 2 3 0 0 128
C4 7 2 0 381 12 0 0 0 402
C5 0 1 1 0 100 0 0 0 102
C6 0 0 0 0 1 247 27 21 296
C7 0 0 0 0 0 60 93 0 153
C8 0 0 0 0 0 0 0 107 107

Total 172 286 124 382 118 310 120 128 1640

Ground truth categories Classifier's categories (test set)
C1 C2 C3 C4 C5 C6 C7 C8 Total

C1 81 2 0 0 0 0 0 0 83
C2 2 138 0 0 2 0 0 0 142
C3 0 1 62 0 0 1 0 0 64
C4 4 3 0 183 9 0 0 1 200
C5 0 2 0 0 50 0 0 0 52
C6 0 0 0 0 2 100 36 10 148
C7 0 0 0 0 0 29 48 0 77
C8 0 0 0 0 0 0 0 54 54

Total 87 146 62 183 63 130 84 65 820
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Table 26: Classification matrices of the K-nearest neighbor method.
Ground truth categories Classifier's categories (train set)

C1 C2 C3 C4 C5 C6 C7 C8 Total
C1 162 4 0 1 0 0 0 0 167
C2 0 283 0 0 1 0 0 0 285
C3 0 0 127 0 0 0 0 0 128
C4 3 3 0 388 7 0 0 0 402
C5 0 1 1 0 98 0 0 0 102
C6 0 0 0 0 0 259 16 20 296
C7 0 0 0 0 0 52 101 0 153
C8 0 0 0 0 0 1 0 106 107

Total 165 291 128 389 106 312 117 126 1640

Ground truth categories Classifier's categories (test set)
C1 C2 C3 C4 C5 C6 C7 C8 Total

C1 81 2 0 0 0 0 0 0 83
C2 0 141 0 0 1 0 0 0 142
C3 0 1 62 0 0 1 0 0 64
C4 1 2 0 192 2 0 0 0 200
C5 0 2 0 0 50 0 0 0 52
C6 0 0 0 0 1 109 29 9 148
C7 0 0 0 0 0 29 48 0 77
C8 0 0 0 0 0 1 0 53 54

Total 82 148 62 192 54 140 77 62 820
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