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1. Introduction 

A venerable problem in the modern system theory lit- 

erature is the so-called Kalman filtering question in which 

we desire to determine the optimal least-squares estimate of 

a noisy signal, given a model for the observation process 

(details later). The central importance.of this problem 

is primarily due to the fact that its solution is recursive, 

enabling one tor in principle, employ straightforward computa- 

tional methods for the solution. However, if the dimension 

of the system state is large, the computational problem is no 

longer negligible sincej in the Kalman formulation, to determine 

2 the optimal filter gain we must solve O(n ) simultaneous 

quadratic equations, where n is the ,dimension of the state. 

In these cases, many refinements of the standard algorithms 

have been proposed to take advantage of the structure which the 

system presents, e.g. sparseness, weak coupling, and so forth. 

In recent years, mathematical steps have been 

taken to substantiate the conjecture that, regardless of the 

dimension of the system state, if the dimensions of the input 

and output spaces are small, it should be possible to exploit 

this situation and reduce the computational complexity of 

the equations needed to calculate the optimal filter gain 



(or the optimal feedback control law). Beginning with the 

work [ 7 ] ,  and continued in [4,6,10], it has been shown that this 

conjecture is valid and that indeed it is possible to reduce 

the number of needed equations to O(n) without increasing the 

analytic complexity of the problem (still quadratically nonlinear). 

The ideas which motivated the new filtering equations had their 

origin in radiative transfer, special cases having been 

developed by Ambartsumian and Chandrasekhar [g] in the 

1940's. As a consequence of the transport terminology, the 

new filtering functions have been called "generalized X-Y 

functions" [4] or "Chandrasekhar-type" algorithms [ 101 

Unfortunately, the finite interval versions of the 

X-Y functions do not readily lend themselves to an algebraic 

equation for the infinite interval case, in contrast to the situation 

for standard matrix Riccati equation of optimal filtering. T ~ U S ,  

our objective in this paper is two-fold: to review the basic 

hypotheses and results of the finite-interval reduction for 

the Kalman filtering problem and secondly, to present a 

derivation of the appropriate algebraic equation which may 

be used instead of the algebraic Riccati equation in 

order to determine the optimal steady-state gain function. 

In addition, we present results of comparative numerical 

experiments, as well as some directions for future work. 



2. The Kalman Filter 

The standard Kalman filtering problem which we study 

is the following: a noisy signal z, 

is observed. We assume z to be the output of the linear 

system 

where u is a white noise process. Here X, U, z are n, m, and 

p-dimensional vectors, respectively, with F, G, H being constant 

matrices (we are only interested in the stationary case in 

this paper). The observation noise v, the system noise u, 

and the initial state xo are assumed to satisfy the statistical 

conditions 

Further, the covariance matrices Q and satisfy the definiteness 

properties 



Thus, the noises in the system are independent, zero-mean 

white gaussian processes. 

Within the context of the foregoing situation, we 
A 

desire to determine an estimate, x(t), of x such that for every 

constant vector X we have 

for every measurable functional f(z(t) such that 

A 

In other words we wish to choose x(t) to minimize the covariance 
A 

of the error between the true state x and the estimated state x. 

The classical Kalman filtering solution to the fore- 
A 

going problem shows that the optimal estimate x(t) is 

generated by the differential equation 

where P(t) is the solution of the matrix Riccati equation 



- dP = GQG' + FP + PF' - PH'HP , 
dt 

For future reference, we note that the Kalman gain function 

K(t) is given by 

The steady-state gain K(w) is obtained by solving the algebraic 

Riccati equation 

GQG' + FP (a) + P(w)Ft - P(m)HtHP(w) = 0 , 

GQG' + FP(w) + P(m)Ft - K(m)Kt(w) = 0 . (6) 

Our subsequent development will concentrate on deriving a 

substitute for Eq. (6) involving only np unknown quantities, 

rather than the n(n + 1)/2 unknowns in (6) (recall that p 

is the dimension of the observation process (1)). 



Generalized X-Y Functions 

Since the finite interval version of the generalized 

X-Y functions for the Kalman filter are of some interest in 

their own right, we present them without proof in this 

section. The results follow the development in [4]. The 

basic result is 

Theorem 1. 14,101 Let 

(i) rank Z ( -  GQG' + FT + rF' - rH'IIr) = r , 

(ii) rank H'H = p , 

and let Z be factored as Z = BB', where B is an n x r matrix. 

Then the solution to the matrix Riccati equation (4) satisfies 

the alsebraic relation 

FP(t) + P(t)F1 = L(t)L1 (t) - K(t)K' (t) - GQG', 0 - < t < - w ( - 1 )  

where L and K are n x r, n x p matrix functions, respectively, 

satisfying the equations 

Remarks -- 
1) Eqs. (7) - ( 8 )  represent a system of n ( p  + r) equations 

suitable for computing the functions L and K. The importance 

of this representation is that, by definition, K(t) = P(t)H', 



the Kalman gain itself. Thus, not only are there fewer equations 

in the L-K system, but they allow a direct computation of the 

physically relevant quantity K. 

2 )  The algebraic relation (7) is often useful in 

determining the error covariance P(t) for selected values 

of t, provided that the inversion of (IBF + FfdI) can be 

readily accomplished (here B denotes the Kronecker product). 

3 )  Since (8)-(9) represent n(p + r) equations, a 

computational savings over the Riccati equation (4) is 

anticipated whenever p + r < (n + 1)/2. However, from the 

rank conditions (i) and (ii), we see that p is always equal 

to the dimension of observation process, while reis always 

bounded from above by the number of inputs to the system 

model. Thus, for most physical processes there is a high 

likelihood that the condition p + r < (n + 1)/2 will be 

satisfied. 

4. Steady-State Solutions 

In many instances, it is of interest to know the 

steady-state gain K(m) so that either it may be used as a 

sub-optimal, easily implementable filter, or so that one can 

determine the minimal possible error covariance over an 

infinite observation horizon. In these casesthe usual 

approach is to solve the algebraic Riccati equation (6) for its 

unique positive semi definite solution P(m), then form the 

gain function K(m). As earlier discussed, this procedure 

requires the solution of n(n + 1)/2 simultaneous quadratic 



equations. Our main result, given below, is to show that 

the optimal gain, K(a), may be directly determined by solving 

np simultaneous quadratic equations. Thus, when p < (n + 1)/2, 

we have fewer equations. As will be pointed out below, our new 

equation also possesses some analytic features which may suggest 

its use even if p > (n + 1)/2. 

The result upon which all else follows is the 

Steady-State Theorem: Assume F has no purely imaginary 

characteristic values and no real characteristic values 

symmetrically placed relative to the orgin. Then the steady- 

state gain K satisfies the algebraic equation 

where 64 denotes the Kronecker wroduct and a is the column 

stacking operation, i. e. if A = [a. .I then -g - 

Proof. Applying a to the algebraic Riccati equation 

(6) , we have 

Now we utilize the following property of the operation a: 

a(PAQ) = (Q1@P)a(A) , 



valid for all P, A, Q for which the product PAQ is defined. 

Applying this result to (11) yields 

But, 

which implies 

which completes the proof. 

There are several remarks in order regarding the above 

Theorem: 

a) the presence of the matrix inverse (IQF + FPI)-' 

seems, at first glance, to present a serious computational 

obstacle, being an n2 x n2 matrix. However, being of special 

structure, it is possible to carry out this inversion utilizing 

the characteristic polynomial of F and inversion of an n x n 

matrix (see [2] for details) . 
In addition, for many parametric studies the system 

dynamic matrix F is reasonably well known and our interest is 

in exploring the effect of changing G, H, and/or Q. Thus, 

the inversion need be done only once and stored for future use. 



b) the form of equation (10) is more well-suited 

to standard successive approximation algorithms than the usual 

algebraic Riccati equation since the unknown quantity appears 

by itself on the left side of the equation. While this is 

a minor point, it does enable us to directly appeal to many 

standard results from functional and numerical analysis in 

which a form 

is assumed for the equation to be solved in the unknown u. 

C) it is important to note that the number of equations 

in (10) depends only upon the number of observation points p 

and is totally independent of the number r, which played a 

role in the finite-interval equations (8) - (9) for L and K. 
In view of the proof of the Steady-State Theorem, one might 

conjecture that an equation for K alone could be developed 

for the finite-interval problem. Further remarks on this 

situation in the context of control theory, as well as 

implications of (10) for the Inverse Problem of Control are 

given in [3,5,8,11] . 



5. Numerical Resuits 

Interesting as Eq. (10) nay be on theoretical grounds, 

the proof is in the program and the final test is its numerical 

efficacy vis-2-vis the algebraic Riccati equation (6). To 

investigate this question, several comparative numerical 

experiments were performe$ involving the matrices 

with six different F matrices. In all cases F has the companion 

form 

Thus, F is completely determined by its characteristic roots. 

The computing procedure used was the following: 

1) the finite-time Riccati equation (4) was integrated 

to a value T at which the relative change in its components 

is going from T - A to T was less than lom4. This determined 

an initial approximation Po to P(m). Using Po and a built in 

subroutine for solving sets of nonlinear algebraic equations 



(a hybrid procedure combining Newton iteration and steepest 

descent, see 1111 for details and a program), the algebraic 

Riccati equation was solved to an accuracy in the residuals 

of 5 

2) Using the initial guess KO = POH1, the algebraic 

equation (10) was solved by the same algorithm as used in 

step (1) to the same degree of accuracy. 

The results of the above experiments, calculated on 

the CDC Cyber 74 computer by Dr. 0. Kirschner, are given in 

Table 1. 

Table 1. Computing times (in seconds) for 
four-dimensional problem. 

Algebraic Riccati Eq. Case Number 
(Roots of F) 

Approx. Time 
Factor 

Eq. (10) 

From Table 1, it is evident that Equation (10) 

results in a dramatic improvement over the computing time 

,required for the algebraic Riccati equation. What is surprising, 

perhaps, is the large magnitude of the improvement since, on a 

strictly equation-counting basis, we would expect a factor of 



between two and three as there are four equations in (10) as 

opposed to ten equations in the algebraic Riccati equation (6). 

Thus, it is evident that not only does Eq. (10) represent 

fewer equations, but they sxhibit better analytic behavior than 

the algebraic Riccati equation (6). This observation is 

consistent with other calculations carried out for the finite 

time equations (8) and (9) using a variable step integration 

routine. For a fixed accuracy, it was found that Eqs. (8)-(9) 

allowed a much larger integration step to be taken indicating 

a smoother right hand side than the Riccati equation (4). 

As yet, we have no analytic results to explain this phenomenon, 

but it seems most likely due to the fact that (8)-(9) 

separate the linear and quadratic parts of the Riccati 

equation into different equations, rather than combining 

them as is done in the Riccati equation. 

6. Discussion 

We have seen the possibil.ity of substantially reducing 

the work needed to compute the steady-state gain K ( a )  if the 

rank of the observation matrix is much less than the dimension 

of the state. Also, it has been seen that the actual com- 

puting time required is a function not only of the number 

of equations, but also depends upon the particular structure 

of the system. Thus, we pose the following issues as worthy 

of further study: 

a) Numerical Studies: further experiments on many 

different system structures are needed to determine what 



structures of F ,  G, H, Q, give rise to particularly favor- 

able (or unfavorable) computational cases vis-a-vis the 

algebraic Riccati equation. These experiments should also 

give limits as to what directions analytic investigations 

might profitably take. 

b) Infinite-Dimensional Problems: some work has been 

done in extending the finite-time case to infinite-dimensional 

problems [ 8 ] .  However, it remains to create the proper setting 

in order that the Steady-State Theorem be valid. 
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