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Nonpararnetric Two-Group Classification: 
Concepts and a S ~ S @ - ~ a s e d  Software Package 

ABSTRACT 
In this paper, we introduce BestClass, a set of SAS macros, available in the mainframe and 

workstation environment, designed for solving two-group classification problems using a class of 

recently developed nonparametric classification methods. The criteria used to estimate the 

classification function are based on either minimizing a function of the absolute deviations from the 

surface which separates the groups, or directly minimizing a function of the number of misclassified 

entities in the training sample. The solution techniques used by BestClass to estimate the classification 

rule utilize the mathematical programming routines of the SAS/OR@ software. 

Recently, a number of research studies have reported that under certain data  conditions this 

class of classification methods can provide more accurate classification results than existing methods, 

such as Fisher's linear discriminant function and logistic regression. However, these robust 

classification methods have not yet been implemented in the major statistical packages, and hence are 

beyond the reach of those statistical analysts who are unfamiliar with mathematical programming 

techniques. 

We use a limited simulation experiment and an example to compare and contrast properties of 

the methods included in BestClass with existing parametric and nonparametric methods. We believe 

that BestClass contributes significantly to the field of nonparametric classification analysis, in that it 

provides the statistical community with convenient access to this recently developed class of methods. 

BestClass is available from the authors. 

Keywords: Two-Group Classification Analysis, Computer Software for Statistical Analysis. 
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1. Introduction 

The classification problem in discriminant analysis (DA), which involves assigning (classifying) 

entities (observations) to exactly one of several well-defined mutually exclusive groups or classes, based 

on their characteristics on a set of relevant attributes, is important in almost any field of applied 

science. Many different approaches have been proposed for solving the classification problem in DA. 

Let the entities belonging to one of two mutually exclusive groups be described by the p-dimensional 

attribute vector x, denote the attribute vector associated with entity i by xi, and indicate membership 

in group j by Gj. 

The classical approach to classification is to first estimate the probability (density) functions 

p(xi 1 G .), and then derive the classification rule which minimizes either the probability of 
3 

misclassification or the expected misclassification cost. Another approach is to estimate the posterior 

probabilities p(Gj  I xi) of group membership directly, and use a classification rule that weighs these 

probabilities by the appropriate misclassification costs. A third approach is to pre-specify a particular 

form of classification function, and then determine the parameter values of this function that optimize 

some accuracy criterion, i.e., some measure of classification accuracy in the training sample. 

The origins of the latter approach can be traced back to Fisher's Linear Discriminant Function 

(LDF), derived as the linear function of the attributes that maximizes the ratio between among-group 

squared distances and within-group variances (Fisher 1936). The choice of optimization criterion 

depends on the objectives of the analysis and the nature of the particular data set to be analyzed. As 

Fisher was more interested in maximizing group discrimination than in classification accuracy, he chose 

a criterion directly related to discrimination. Nevertheless, the LDF is also often used for classification 

purposes. In fact, Welch (1939) and Wald (1944) have shown that the LDF has optimal properties for 

the two-group classification problem if the attribute populations are multivariate normally distributed 

with a common covariance matrix. However, for non-normal data conditions, optimization criteria 

that - like the LDF - use distances based on the L2-norm might not be appropriate. It is well known 

that criteria based on higher order norms tend to weigh larger distances more heavily than ones based 

on low order norms, and yield classification functions that are heavily influenced by extreme training 

sample entities. Examples of situations where extreme entities occur include data  sets that are 

contaminated by outliers, and data  sets with highly skewed distributions or distributions with heavy 

tails. 

For the two-group classification problem, some authors have proposed classification models 

that optimize robust training sample accuracy criteria (Koford and Groner 1966; Ibaraki and Muroga 

1970; Liittschwager and Wang 1978; Freed and Glover 1981a, 1981b; Bajgier and Hill 1982; Glover et 
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al. 1988; Stam and Joachimsthaler 1989; Duarte Silva and Stam 1994a). The classification 

performance of these methods is mixed, but somewhat promising for non-normal data conditions 

(Joachimsthaler and Stam 1988, 1990). Although many different criteria have been proposed, the most 

important ones are based on the location of the entities with respect to the surface which separates the 

two groups, e.g., criteria based on the L1-norm distances from this surface, on the number of 

misclassified cases, or on the total misclassification cost in the training sample. Since the derivation of 

such classification rules requires formulating and solving mathematical programming (MP) models, this 

approach is often referred to as the MP approach to classification. 

In this paper we compare the MP approach with several existing parametric and 

nonparametric approaches, and describe BestClass, a software package that implements the most 

widely used two-group classification methods in the SAS System (SAS Institute Inc. 1989a, 1989b, 

1989c, 1990). In Section 2, we review the most important classical approaches to two-group 

classification. Section 3 describes a number of methods that are based on the MP approach. In 

Sections 4 and 5 we use a limited simulation experiment and an example to compare the MP and 

classical approaches, and Section 6 presents the conclusions. More detailed information regarding the 

MP formulations is provided in Appendix A. In Appendix B we highlight the BestClass classification 

package. A related problem, cluster analysis, where entities are assigned to groups that are not defined 

a priori, will not be discussed in this paper. 

2. Classical Approaches to TwwGroup Classification 

The classification problem in two-group DA involves estimating a rule that assigns an entity i 

to one of the groups based on the observed attribute vector xi. Denote the prior probabilities of 

membership in group j by rj, and the cost of misclassifying an entity belonging to group j by Cj. The 

rule that assigns entity i to the group for which rjp(x, I Gj) is largest minimizes the total probability 

of misclassification (Welch 1939). The expected cost of misclassification is minimized by the rule that 

assigns entity i to the group for which Cjirjp(xi I Gj) is highest (Wald 1944). 

The derivation of these "optimal classification rules" requires the exact knowledge of Cj, irj 

and p(xi I Gj), j = 1, 2. In practice, usually the p(x, I Gj), irj and C j  are not all known, and may have 

to be estimated. The Cj  values are usually based on previous knowledge about the problem. The irj 

values can either be approximated using substantive knowledge about the problem, or estimated from 

the proportion of elements belonging to group j in a representative training sample, i.e., a 

representative sample with known group membership. Parametric classification methods assume that 

each p(xi I Gj) follows a known probability distribution, and can be described fully by a small set of 

parameters that can be estimated from a training sample. For instance, the assumption that p(xi I GI) 

and p(xi 1 G2) follow multivariate normal distributions with different mean vectors and equal 
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covariance matrices implies the LDF rule, while a multivariate normal distribution with different 

covariance matrices leads to Smith's Quadratic Discriminant Function (QDF) (Smith 1947). 

There exists a vast body of literature comparing the classical two-group classification methods. 

The LDF has been found to provide relatively robust classification results for problems with attributes 

that do not follow multivariate normal distributions, but do have similar covariance matrices across 

groups (Lachenbruch et  al .  1973). Likewise, the QDF is robust with respect to small deviations from 

normality in the case of unequal covariance matrices across groups, but is not recommended when the 

training sample is "small" relative to the number of attributes (Marks and Dunn 1974; Wahl and 

Kronmal 1977; Bayne et  al .  1983), as quadratic classification rules have substantially more parameters 

than linear ones. If the underlying distributional assumptions are violated, for instance in the case of 

highly skewed or heavy-tailed distributions, the LDF and QDF may not give accurate classification 

results (Lachenbruch et  al .  1973; Fatti et al .  1982), and under these conditions classification methods 

based on logistic regression models tend to give better results (Press and Wilson 1978; Byth and 

McLachlan 1980; Bayne et al.  1983). 

As non-normal data  conditions occur frequently in practice, it is of interest to explore 

alternative, distribution-free (nonparametric) classification methods. One approach is to replace 

p(xi 1 Gj) in an "optimal rule" by nonparametric estimates. The most important nonparametric 

methods for multivariate probability density estimation are kernel and nearest neighbor methods. 

Kernel methods estimate p(xi I Gj) by a weighted average of some function (the kernel) of 

distances between xi and the training sample entities belonging to group j. The relative weights of 

these distances is usually controlled by a smoothing parameter. k-nearest neighbor methods use the 

volume of the region containing the k training sample entities belonging to the group j that are closest 

to xi, according to some distance norm to estimate p(xi 1 Gj). If the prior probabilities and 

misclassification costs are equal across groups, the k-nearest neighbor method simply assigns entity i to 

the group with the largest number of entities among the 2k+ 1 training sample vectors that are closest 

to xi. Nearest neighbor methods can be thought of as a particular class of kernel methods, in which 

the kernel function equals a positive constant inside a neighborhood of xi and zero outside this 

neighborhood. 

Due to their flexibility, kernel and nearest neighbor methods generally classify most effectively 

if the attribute distributions are highly irregular and large training samples are available. For small 

training samples, the relative performance of kernel and nearest neighbor methods is mixed. In some 

studies, these methods were found to perform better than the LDF and the QDF, even for multivariate 

normally distributed conditional attribute densities (Gessaman and Gessaman 1972; Van Ness 1979). 

However, it has been argued that the kernel functions used in these studies were particularly favorable 

to the data  conditions analyzed. Later studies with data  conditions less favorable to these functions 
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have not confirmed the good performance of kernel methods in small training samples. Empirical 

evidence of performance of kernel methods for large training samples and non-normal data  conditions 

can be found in Remme e t  al. (1980). See Murphy and Moran (1986) and McLachlan (1992, pp. 

313-318) for a discussion of the performance of these methods for small training samples. 

Nearest neighbor and kernel methods with fixed smoothing parameters are available in major 

statistical packages such as SAS or SPSS. More sophisticated kernel methods with adaptable 

smoothing parameters are included in specialized nonparametric estimation packages such as X-plore 

(Ng and Sickles 1990) and Nkernel (Delgado and Stengos 1990). Kernel and nearest neighbor methods 

are widely used in artificial intelligence and pattern recognition applications. However, their use is rare 

in business applications and social science studies. In these fields, DA applications tend to rely either 

on normality-based parametric (LDF or QDF) or logistic regression methods. 

The most common among methods that estimate the p(Gj  lx,) directly, without the 

intermediate step of first estimating p(xi I Gj), is the linear logistic model. Anderson (1972) shows that 

the linear logistic model is valid when the p(xi I Gj) belong to the exponential family of distributions, 

for several models with binary independent variables and mixtures of continuous and binary variables. 

While the LDF is more efficient than the logistic method in the case of multivariate normality with a 

common covariance matrix (Efron 1975), the logistic method is more robust with respect to deviations 

from normality than the LDF (Press and Wilson 1978; Crawley 1979). Other methods for the direct 

estimation of p(Gj  I xi), such as the probit (Albert and Anderson 1981) and the quadratic logistic 

(Anderson 1975), are less effective due to the large number of parameters to be estimated. 

3. MP Approaches to Two-Group Classification 

McLachlan (1992, p. 16) notes that the accuracy of a classification rule depends mostly on how 

well it can handle entities of doubtful origin, rather than on how it handles entities of obvious origin. 

Hence, methods that provide the best overall approximations of p(xi 1 Gj) and p(Gj  I xi) do not 

necessarily yield the highest classification accuracy, and it may be possible to estimate accurate 

classification rules by focusing on the region of group overlap where Clp(Gl 1 xi) and C2p(G2 I xi) are 

about equal, instead of estimating p(xi I Gj) over the full attribute domain. As long as the group 

overlap is moderate, Clp(G1 I xi) and C2p(G2 I xi) will tend to differ substantially in the central region 

of the distributions, and for classification purposes a good approximation of p(xi 1 Gj) is required only 

for the tails of the distributions where the groups overlap. 

A major motivation for using MP-based classification is that these methods establish the 

boundaries of the regions assigned to each group, without making any assumptions about the 

distributional characteristics of the groups. In two-group MP-based classification, the group boundaries 

are described by the equation Ab, x) = c, where b is a vector of unknown parameters and c is a 
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threshold value. The equation Ab, x) = c separates the two groups, and Ab, xi) represents the 

classification score of entity i. The classification rule is to assign entity i to group 1 if Kb, xi) < c, and 

to group 2 if Ab, x,) > c, whereas the assignment of i is undetermined if Ab, xi) = c. The estimate of b 

(and in some methods the threshold c) optimizes some criterion directly related to classification 

accuracy for the training sample. 

Rather than estimating conditional densities or posterior group membership probabilities, most 

MP-based methods use the magnitude of I Ab, xi)-c I as a heuristic index of "confidence" in the group 

assignment of entity i. IAb, xi)-c I represents the external (undesirable) deviation d, if entity i is 

classified incorrectly, and the internal (desirable) deviation ei if i is classified correctly. In particular, 

di is the L1-norm distance between xi and the border of the attribute region assigned to the group to 

which entity i belongs. Depending on the method used, the parameter estimates c and b may be 

unique only up to a proportionality factor and need to be normalized. 

Similar to regression analysis, in the MP approach the form of Ab, xi) is assumed to be known 

a priori. This restriction does not impose a serious limitation, since in practice classification rules with 

relatively simple functional forms perform reasonably well. For instance, the LDF and QDF imply a 

linear and quadratic function, respectively, and for several non-normal populations the form of the 

optimal rule is still linear or quadratic (McLachlan 1992, p. 238), providing a rationale for using MP- 

based classification methods. 

We next discuss the most important issues in MP-based two-group classification: the functional 

form of the classification rule, the accuracy criterion and the normalization scheme for c and b. The 

relevant formulae are presented in Appendix A. 

3.1. The Choice of Functional Form of the Classification Rule 

Until recently, research on MP-based two-group classification focused on linear classification 

functions. Duarte Silva and Stam (1994a) and Banks and Abad (1994) extended this approach to  

quadratic classification functions. The issues involved in deciding between linear and quadratic 

functions in the MP approach correspond exactly to the factors affecting the choice between the LDF 

and the QDF, and between linear and quadratic logistic models. In principle, functional forms other 

than linear and quadratic can be used within the MP approach as well. For instance, Rubin (1994) 

discussed polynomial classification functions. However, we are not aware of any research that has 

studied the properties of such functions. 
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3.2. The Choice of Accuracy Criterion 

One can view MP-based two-group classification as an extension of the ideas presented in 

Fisher's original derivation of the LDF (1936)) replacing Fisher's discrimination criterion by a 

classification accuracy criterion, and replacing the linear function of the LDF by one that is not 

necessarily linear. 

The first MP-based criterion proposed may be due to Koford and Groner (1966), who proposed 

a linear classification rule with a fixed value of c, estimating b such that a weighted sum of the 

external deviations (d,) is minimized. However, Koford and Groner utilized an adaptive algorithm that 

does not guarantee convergence to the optimal solution. Smith (1968) noted that Koford and Groner's 

classification rule can be determined by solving a linear programming (LP) model. Mangasarian 

(1965) introduces LP formulations designed to estimate linear and quadratic classification functions 

that correctly classify all training sample entities in the case of perfectly separable groups (i.e., no 

group overlap). Models that optimize the criterion introduced by Koford and Groner were popularized 

by Freed and Glover (1981b) and are known as the MSD (minimize the sum of deviations). 

Another L1-norm model is the OSD (optimize the sum of deviations) (Bajgier and Hill 1982), 

with a criterion involving a weighted sum of the external (d,, to be minimized) and internal (e,, to be 

maximized) deviations. Freed and Glover (1986) proposed the Maximize the Sum of Internal 

Deviations (MSID), which simultaneously minimizes the maximum of the weighted external deviations 

and maximizes the sum of the weighted external deviations. Glover et al. (1988) proposed HYBRID, 

which simultaneously considers global (common to all entities) and entity-specific deviations, and 

suggested some variants of HYBRID that include only the most important of the subcriteria considered 

in the original model. Glover (1990) notes that the these deviations cannot be interpreted in the same 

way as the maximum and absolute deviations from the separating surface, as they are estimated 

simultaneously. For notational simplicity, however, we will ignore this difference in interpretation, and 

use the same notation for HYBRID as the other models (see Appendix A). 

The OSD and HYBRID essentially extend the MSD criterion, incorporating additional 

information. The MSID may be viewed as an extension of either the MMD. There is some evidence 

(Glover et al. 1988, Duarte Silva and Stam 1994a) that the inclusion of additional information can 

improve the classification performance. Each of these methods requires subjective judgments about the 

relative importance of several classification criteria. In the case of HYBRID, the number of subjective 

judgments can be large, and it is arguable whether the potential improvement is important enough to 

justify the use of less intuitive criteria. 

Freed and Glover (1981a) proposed to minimize the maximum external deviations (MMD). 

While the MSD criterion is based on an Ll-norm distance measure, the MMD uses an L,-norm 

measure. At the opposite end of the spectrum of Lp-norm measures is the criterion to directly 



7 

minimize the number of misclassifications in the training sample (Ibaraki and Muroga 1970; 

Asparoukhov 1985), which can be viewed as the limit of an Lp-norm measure, as p goes to 0. Glick 

(1976) proves that this criterion leads to a rule that, under general regularity conditions, has an 

expected error rate that asymptotically approaches the minimum expected error rate among all rules of 

the same functional form. This result is important, because no assumption is made about the p(xi I Gi) 

and p(Gj  lxi). Liittschwager and Wang (1978) show how in this formulation the per unit 

misclassification cost in the training sample can be minimized, by incorporating prior probabilities of 

group membership and misclassification costs. The Liittschwager and Wang criterion includes the sum 

of the group-specific misclassification proportions as a special case. 

Minimizing the criterion proposed by Ibaraki and Muroga (1970) and Liittschwager and Wang 

(1978) requires solving a mixed-integer programming (MIP) optimization model. The solution time 

required for solving MIP models increases exponentially with the number of training sample entities, so 

that - given current technology - solving these models using commercial MP software packages is 

practical only for small size problems, e.g., problems with a t  most 100 entities, up to 4 attributes and a 

group overlap of a t  most 10 percent). Recently developed specialized formulations and algorithms can 

alleviate the computational burden of the MIP somewhat (Warmack and Gonzalez 1973; Liittschwager 

and Wang 1978; Koehler and Erenguc 1990; Banks and Abad 1991; Soltysik and Yarnold 1994; Duarte 

Silva 1995). 

Stam and Joachimsthaler (1989) proposed a criterion based on a general Lp-norm measure, 

with p > 0. For p different from 0, 1 and m, the estimation of the classification rule requires nonlinear 

programming (NLP) optimization methods. Noting that the objective function is non-convex if p < 1, 

leading to convergence problems in the optimization, Stam and Joachimsthaler (1989) do not 

recommend using Lp-norm measures with 0 < p < 1. Of course, the MIP (Lo-norm) criterion also 

implies a non-convex model, but, as noted above, computationally intensive special-purpose solvers are 

available to solve MIP problems to optimality, as long as the training sample is small. 

Consistent with findings in Lp-norm regression, Stam and Joachimsthaler (1989) showed that 

Lp-norm criteria with 1 5 p < 2 tend to be more robust with respect to outliers and extreme deviations 

than the LDF, which is based on an L2-norm measure. Models based on an L,-norm distance 

measure, like the MMD, tend to be very sensitive to extreme entities. There is ample empirical 

evidence confirming that the classificatory performance of the MMD and MSID on validation samples 

tends to be inferior to L1-norm models (Joachimsthaler and Stam 1990). 

Most studies have found that the relative classification accuracy of Lo-norm models is sensitive 

to training sample sizes (Stam and Joachimsthaler 1990; Stam and Jones 1990; Koehler and Erenguc 

1990; Banks 1991), and improves substantially as the training sample size increases. However, in a 

recent study Duarte Silva (1995) does not confirm these results, and found that Lo-norm methods did 
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not perform as poorly with small sample sizes as reported in previous studies, perhaps because this 

study used a secondary objective to  break ties training sample rules associated with the same error rate, 

thus reducing the variability in the classification performance for the Lo-norm models. 

Bajgier and Hill (1982) analyzed criteria that combine Lo- and L1-norm distance measures. 

One of the simplest of these criteria is the MSD/MIP model, which uses a weighted average of the 

criteria used in the MSD and the MIP. However, these models have not been found to be very effective 

and have rarely been used in practice. 

As most MP classification approaches may lead to non-unique optimal solutions, yielding 

several non-equivalent classification rules with the same training sample misclassification error rate (or 

cost), it is recommend in general to include a secondary criterion to break ties among the rules which 

yield the same value for the primary criterion. Including a secondary criterion implies a lexicographic 

MP formulation which ensures that the secondary criterion will never improve a t  the expense of the 

primary criterion. Different tie-breaking schemes can be found in Warmack and Gonzalez (1973), 

Bajgier and Hill (1982), Koehler (1989), Erenguc and Koehler (1990), Rubin (1990a, b), Soltysik and 

Yarnold (1993, 1994) and Duarte Silva (1995). 

Several studies have found that MP methods tend to give better results than the LDF and 

QDF if the distributions are skewed or contaminated with outliers, whereas the LDF and QDF tend to 

perform better if the distributions are approximately normal (Bajgier and Hill 1982; Glorfeld and Olson 

1982; Freed and Glover 1986; Srinivasan and Kim 1987; Rubin 1990b; Joachimsthaler and Stam 1990; 

Stam and Joachimsthaler 1990; Duarte Silva and Stam 1994a). Few studies have compared the MP 

approach with logistic regression methods or methods based on the nonparametric estimation of 

p(xi I Gj) (Joachimsthaler and Stam 1988). Duarte Silva (1995) found that while MP methods based 

on Lo distance norms (with an appropriate criterion to resolve ties) are particularly accurate in 

classifying for problemswith few attributes, skewed distributions and small training samples. Logistic 

regression methods generally tend to outperform the MP methods for problems with large training 

samples, for problems with skewed distributions, many attributes and large training samples. 

3.3. The Choice of Normalization Scheme 

Most MP models require a normalization constraint. A detailed discussion of this topic is 

beyond the scope of this paper. Rather, we discuss some considerations of this choice in Appendix A. 

For an overview of the advantages and disadvantages of different normalization schemes, see 

Markowski and Markowski (1985), Freed and Glover (1986), Erenguc and Koehler (1990), Koehler 

(1989), Mahmood and Lawrence (1987), Glover (1990), Rubin (1990a, b), Ragsdale and Stam (1991) 

and Stam and Ragsdale (1992). 
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4. Comparison of the Different Approaches 

We next illustrate the relative performance of the different approaches using a limited Monte 

Carlo simulation experiment, using a three-attribute data condition with skewed distributions based on 

the multivariate log-normal distribution (Johnson and Kotz 1972, p. 20). Specifically, the attributes 

were generated using ( I ) ,  

where 4 represents attribute k of group j, the .zL represent independently generated standard normal 
. . 

random variates, and the P3, ykk are parameters, j= 1, 2; k =  1, .., 3; m = 1, ..., 3. In our 

experiment, we used the parameter value combinations in Table 1, yielding an expected error rate for 

the optimal classification rule of 6.67 percent; a group 2 to group 1 covariance ratio of 4 to 1; a within- 
. . 

group correlation between $ and 23, xi and x;, and xi and 4, of 0.8, 0.4 and 0.4, respectively, and a 

attribute skewness of attributes in group 1 of 10. 

Table 1: Parameters of the Log-Normal Distributions Used in the Simulation Experiment 

Group j ~j 711 $2 7i3 7 iI  ~ $ 2  $3 731 732 733 

1 -1.2087 1.1651 0 0 1.0271 0.5500 0 0.6588 0.1653 0.9466 
2 0.9046 0.6103 0 0 0.5051 0.3426 0 0.2719 0.0835 0.5400 

The classification methods compared in our experiment are described in Table 2, and include 

the LDF, QDF, logistic regression (LGST), 18 methods based on the nonparametric estimation of 

p(xi I Gj) (10 nearest neighbor methods and 8 kernel methods), and 4 MP-based methods. Two 

different Mahalanobis distance metrics were employed in the nearest neighbor methods, based on the 

full and diagonal pooled sample covariance matrix, respectively. Two different types of kernel 

functions were used in the kernel method, one based on multivariate normality, the other on an 

Epanechnikov kernel function (Epanechnikov 1969). For each kernel function, we created four different 

kernels by combining pooled versus within-group covariance matrices with diagonal versus full kernel 

covariance matrices. The kernel smoothing parameters were determined by minimizing a leave-one-out 

estimate of the error rate in the first training sample (Lachenbruch and Mickey 1968). 

The experiment involved estimating classification rules for each method using 50 different 

independently generated training samples with 15 entities in each group. The expected error rates were 

estimated by applying each function to an independently generated validation sample with 7,000 

entities in each group. The means and standard deviations of the validation sample error rates across 

the 50 replications are provided in Table 3. 
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Table 2: Classification Methods Compared, Simulation Experiment 

Method 

LDF 

QDF 

LGST-R 

NND(k) 

KNDP 

KNDW 

KNFP 

KNFW 

KEDP 

KEDW 

KEFP 

KEDW 

MIP 

MSD 

MIPl  

OSD 

Description 

Fisher's linear discriminant function 

Smith's quadratic discriminant function 

Logistic regression 

k-Nearest neighbor method with a Mahalanobis norm based on a diagonal covariance 
matrix 

k-Nearest neighbor method with a Mahalanobis norm based on a full sample covariance 
matrix 

Normal kernel method based on a diagonal pooled sample covariance matrix 

Normal kernel method based on a diagonal within-group sample covariance matrix 

Normal kernel method based on a full pooled sample covariance matrix 

Normal kernel method based on a full within-group sample covariance matrix 

Kernel method using an Epanechnikov kernel based on a diagonal pooled sample 
covariance matrix 

Kernel method using an Epanechnikov kernel based on a diagonal within-group sample 
covariance matrix 

Kernel method using an Epanechnikov kernel based on a full pooled sample covariance 
matrix 

Kernel method using an Epanechnikov kernel based on a full within-group sample 
covariance matrix 

MP model minimizing the error rate of the training sample with a linear classification rule 

MP model minimizing the sum of external deviations with a linear classification rule 

MP model minimizing the MIP objective as a primary criterion and the MSD objective as 
a secondary criterion with a linear classification rule 

MP model minimizing a weighted sum of the external deviations (weight of al = 3.0) and 
the internal deviations (weight of a? = 0.5) with a linear classification function 

Table 3 S ~ O W S  that the error rates yielded by the parametric classification methods (LDF and 

QDF), 15 and 14 percent, respectively, were more than double that of the optimal rule (6.67 percent). 

This result is not surprising, because both the LDF and QDF are known to classify relatively poorly if 

the attribute distributions are highly skewed. The performance of the kernel and nearest neighbor 

methods varied considerably. The nearest neighbor methods with an odd number of neighbors and a 

diagonal covariance matrix tended to give the best results, with estimated error rates of about 10 

percent, while the methods based on an Epanechnikov kernel yielded the worst results, with error rates 

between 18 and 28 percent. These results illustrate one of the major problems of these methods in 

general: although kernel methods may give excellent results when fine-tuned properly, their 

performance can be sensitive to the choice of parameter values, and general guidelines for the choice of 

the parameter values do not exist. 



Table 3: Validation Sample Error Rates, Simulation Experiment 

Classification Method Mean Standard Deviation 

LDF 0.152 0.035 
QDF 0.143 0.024 
LGST-R 0.119 0.025 
NNF(3) 0.125 0.030 
NNF(4) 0.178 0.042 
NNF(5) 0.126 0.027 
NNF(6) 0.168 0.044 
NNF(7) 0.131 0.029 
NND(3) 0.102 0.016 
NND(4) 0.133 0.027 
NND(5) 0.100 0.016 
NND(6) 0.126 0.026 
NND(7) 0.101 0.018 
KNDP 0.126 0.027 
KNDW 0.166 0.059 
KNFP 0.137 0.029 
KNEW 0.136 0.019 
KEDP 0.182 0.030 
KEDW 0.186 0.040 
KEEP 0.277 0.039 
KEFW 0.221 0.042 
MIP 0.131 0.042 
MSD 0.125 0.030 
MIP 1 0.125 0.030 
OSD 0.128 0.032 

Logistic regression (12 percent) and the MP-based methods (about 13 percent) were superior to  

the parametric methods, but not as  good as the best nearest neighbor methods. We emphasize that  the 

current simulation study is merely intended to  illustrate the various methods, rather than providing an 

elaborate study evaluating classification performance. 

5. An Example 

Consider the example two-attribute training sample in Table 4, also displayed in Figure 1, 

consisting of 13 entities, 7 belonging to  group 1 and 6 to  group 2. The first 12 entities reveal a clear 

pattern: the entities belonging to  group 1 tend to have lower values on both attributes than those of 

group 2. Entity 13 is an outlier, in that it has the highest value on both attributes, although it belongs 

to  group 1. 
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Table 4: Example Problem Data Set 

Entity i True Group Membership 

' \ 1 ~ r o " ~  I \ \ Logistic Regression 

5 4- ' \ 4 

I \ f ' \  \ 

4 Fisher's LDF o' \  \\o 

- - - Fishets LDF ~ 
1 - - - Logistic Regression 1 

Figure 1: LDF and QDF Classification Rules, Example Problem 



Table 5: Estimated Classification Rules, Example Problem 

Method Description 

MSD-1 
MSD-2 
MSD-3 
MSD-4 
MSD-5 
EMSD 
MIP 
MSD/MIP 
OSD 
MMD 
MSID 
HYBRID 
LDF 
LGST-R 

Normalization bl 

c = + 1  
c =  -1 
standard 
coefficients 
Glover 
Epsilon 
Glover 
Glover 
Glover 
Glover 
Glover 
Glover 

- 

Accuracy Criterion 

Table 6: Values of the Deviational Variables, Example Problem 

Method 

Variable 

Entity 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 



Figure 1 clearly shows the influence of entity 13 on the LDF and logistic regression (LGST-R) 

classification rules, as both rules are shifted upward and rightward from the natural division between 

the groups based on the remaining 12 training sample entities, resulting in the misclassification of not 

only of entity 13, but also entities 7, 8 and 9, by the logistic rule. The linear classification rules 

estimated by the LDF, logistic and various MP methods are shown in Table 5. The accuracy criterion 

value for each MP-based method is included in the right-most column of Table 5. The individual d, 

values for each entity i are provided in Table 6. Obviously, for each misclassified entity i, d, > 0, and 

for each correctly classified entity, d, = 0. 

The first 6 MP methods listed in Table 5, MSD-1 through EMSD, are all based on the MSD 

accuracy criterion, but use different normalization schemes. In MSD-1 and MSD-2, the threshold value 

c is fixed to +1 and -1, respectively. From Table 5 we see that the classification rule estimated for 

MSD-1 assigns entity i into group 1 if flb, xi) = 0 . 1 6 7 ~ ~ ~  $ 0 . 1 6 7 ~ ~ ~  < 1, and into group 2 if flb, 

xi) > 1, correctly classifying entities 1 through 6 into group 1, and entities 10, 11 and 12 into group 2. 

Since for entities 7, 8 and 9 fib, xi) = 1, the predicted group assignment for for these entities is 

undetermined. Entity 13 is misclassified. The optimal accuracy criterion value for MSD-1 is Cid, = 1. 

In general, reversing the sign of c in the classification function may lead to entirely different results. In 

our example, the group assignment in MSD-1 and MSD-2 is reversed, MSD-2 yielding 9 misclassified 

entities and an accuracy criterion value of 2. In MSD-3 and MSD-4, c is treated as a variable and a 

normalization constraint is added to the problem, bl + b2 + c = 1 in MSD-3 and bl + b2 = 1 in MSD-4 

(see also Appendix A.2). From Table 5, we note that in our example the classification rules estimated 

by these methods are proportional to that of MSD-1, and therefore fully equivalent. However, in 

general the choice of normalization can affect the classification rule estimated. T o  ensure that the best 

classification is achieved, the problem needs to be solved twice, with the group labeling reversed. 

Reversing the groups is equivalent to  changing the sign of the right-hand side of the normalization 

constraint. 

MSD-5 uses the Glover normalization constraint (see Appendix A.2), yielding a separating 

surface flb, xi) = 0.0256zi1+0.0256xi2 = 0.1536. The corresponding rule to  classify entity i into group 

1 if flb, xi)  < 0.1536 and into group 2 if flb, xi) > 0.1536, is equivalent to MSD-1, MSD-3 and MSD-4. 

The EMSD accuracy criterion value equals 4.667, where df = max(0, flb, xi)-c) for entities in group 1, 

and df = max(0, -fib, xi) + c +  1) for entities in group 2. Any entity i with 0 < df < 1 is located in 

the classification gap. Using a threshold value c = 0.5, the classification rule is to classify entity i into 

group 1 if flb, xi)-c = 0 . 3 3 3 3 ~ ; ~  + 0.3333~;~-1.3333 < 0.5, and into group 2 if flb, xi)-c > 0.5. Thus, 

entities 4 through 9, which are located in the classification gap, are classified correctly 

(df = 0.333 < c = 0.5). 
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The  classification rules estimated by MSD-1 through EMSD are displayed in Figure 2. Except 

for MSD-2, all methods yield a natural division of the attribute space, with only one misclassified 

entity, entity 13. The inferior rule fitted by MSD-2 is due to suboptimal labeling of the groups. In 

each of these methods, entity 13 has less influence on the estimated classification rule than in the LDF 

and LGST-R, as the optimization is based on minimizing the absolute values di, rather than least 

squares. In MSD-1, MSD-3, MSD-4 and MSD-5, the surface separating the groups did move toward 

entity 13, but fell short of misclassifying entities 7, 8 and 9. Interestingly, in the EMSD the separating 

surface did not pass through any of the entities. 

Methods 7 through 12 in Table 5 are MP formulations based on accuracy criteria other than 

MSD (see Section 3.2 and Appendix A.1), in each case with the Glover normalization constraint. The 

classification rules estimated for the MIP, MSD/MIP (with crl = cr2 = 1)  and the OSD (with crl = 3, 

cr2 = 0.5) were equivalent to  that of the MSD-1. The MMD misclassified entities 9 through 13, with a 

Group I  \ \ 

4 ' 0 
\ \ 

0 

rn ' \ 'Q\ 
Group I**  

0 

4 

I rn Group 1 l 
o Group 2 

- - - EMSD 

- - - MSD-1 through MSD-5 ~ 
* for MSD 1,3,4,5 

**  for MSD 2 

Figure 2: Classification Rules for MP Methods 1 Through 6, Example Problem 



16 

maximum external deviation of d = 0.077. The rule fitted by the MSID (with crl = 1.5 x n = 19.5, 

crz = 0.5) was the same as  that for the MMD, with an accuracy criterion value of 1.155. HYBRID 

(with crl = 1.5 x n, cr2 = 1 x n = 13, cr3 = 3, cr4 = 0.5) correctly classified all entities 

except 13, with an accuracy criterion value of 0.293. 

Group I \ \ 

' 0 
\ \ 

0 , Group 2 

' \ 

\ \ '2, 
3 4 t  H 

'\\s 0 
Group I ' , , 

' \ 

\ \ 

' \ 

H \ , Group 2 

' \ A ?  

Group 1 

0 Group2 
- - HYBRID 

- - - MIP, MSDIMIP,OSD 

- - - - -  MMD,MSID 

Figure 3: Classification Rules for MP Methods 7 Through 12, Example Problem 

Figure 3 shows the classification rules fitted by Methods 7 through 12. Clearly, the MMD and 

MSID were influenced more by the presence of the outlier entity than the other methods, which is not 

surprising, as they are based - in full or in part - on the maximum external deviation, and thus are 

sensitive to outliers. In contrast to the remaining methods employing the same normalization scheme, 

the HYBRID and EMSD did not classify entities 9, 10 and 11 as undetermined (i.e., the surface 

separating the groups did not pass through these entities). 



6. Conclusions 

In this paper, we review the MP approach to classification in two-group DA, and - in 

Appendix B - introduce BestClass, a software package that facilitates the use of recently developed 

MP-based classification methods. We also use a simulation experiment and an example to  illustrate 

the approach and compare it with classical approaches. 

In contrast with several other recently developed stand-alone computer programs and software 

packages that implement MP-based classification methods (Banks and Abad 1991; Abad and Banks 

1993; Lam and Choo 1991; Soltysik and Yarnold 1993; Stam and Ungar 1995), BestClass implements 

the most important MP-based classification methods within the SAS mainframe and workstation 

environment, thus facilitating an MP-based classification analysis by any statistical analyst with access 

to the SAS system, without requiring extensive knowledge of MP techniques and solvers. The current 

version of BestClass requires the mainframe or UNIX versions of SAS and SAS/OR and is available 

under the VMS-TSO, CMS and UNIX operating systems. BestClass can be used either in batch mode 

or interactively. The interactive mode is menu-driven and user friendly. The batch mode facilitates 

the automation of repeated classification analysis which can be easily embedded within larger SAS 

programs. The source files and documentation of BestClass are available from the authors upon 

request. It is the authors' hope that the BestClass package will encourage statistical analysts to 

explore the MP approach to two-group classification. 
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APPENDIX A: SUMMARY OF ACCURACY CRITERIA, 
NORMALIZATIONS, CLASSIFICATION RULES, AND MODELS 

This appendix details the criteria, normalization options, weighted model formulations, 

quadratic model formulations and classification rules available through BestClass. The generic 

classification rule is to  classify an entity i into group 1 if f(b, xi) < c and into group 2 if f(b, xi) > c, 

whereas the classification is undetermined if f(b, xi) = c. The models available within BestClass are: 

MSD, HYBRID, HYBRID2, MMD, MIP, MSID, OSD, MSD/MIP, and "Epsilon" methods, such as the 

EMSD. 

For each basic model formulation in BestClass, f(b, x) can be linear, quadratic with cross- 

products, or quadratic without cross-products. Moreover, BestClass offers the option to  weigh 

misclassifications differently across entities. For most formulations it is possible to  include a secondary 

accuracy criterion. BestClass also facilitates several different normalization methods. We will present 

each model formulation for the case of a linear f(x) and equal weights for each entity (i.e., equal costs 

of misclassification) only, and will use one model, the MSD, to  exemplify the modified formulations 

that incorporate quadratic components and differential weights. 

Define the 0-1 binary variable 6, such that 6, = 1 if and only if di > 0. Depending on the type 

of formulation, the maximum external deviation and global external deviation across all entities in the 

training sample are defined by d and do, respectively. The external deviational variables in the EMSD 

are denoted by df. Similarly, e, is the global internal deviation across all entities. The  deviational 

variables (d,, df, dij, d, do, e,, e,) are restricted t o  nonnegative values. The bj and c (if i t  is a variable) 

are unrestricted in sign. 

A.1. Accuracy Criteria and Classification Equations for the BestClass Models 

1. Minimize the Sum of Absolute Deviations (MSD) Model 

Classification Criterion: Minimize C,d,, 

Classification Equations: Cjbjxij-d, < c, for training sample entities i in group 1; 

Cjbjxij + d, > c, for training sample entities i in group 2: 

2. HYBRID Model 

Classification Criterion: Minimize al do-cr,eo + a3Cidi-a4Ciei, 

Classification Equations: Cjbjxij + e, + eo-d,-do = c, for training sample entities i in group 1; 

Cjbjxij-ei-eo + di+ do = c, for training sample entities i in group 2. 



The al, ..., a4 are scalars. Not all combinations of a-values guarantee a meaningful (finite, 

non-trivial) solution. See Glover el al. (1988) and Glover (1990) for details on how to restrict the a-s. 

3. HYBRID2 Model 

Classification Criterion: Minimize a ldo  + a2Cidi-a3Ciei, 

Classification Equations: Cjbjzij+ e,-d,-do = c, for training sample entities i in group 1; 

Cjbjzij-e, + d, + do = c, for training sample entities i in group 2. 

The HYBRID2 model is a simplified version of HYBRID, where e, is excluded. Again, for 

meaningful solutions the weights of the different components of the HYBRID criterion, a l ,  ..., a3, are 

somewhat restricted (for details, see Glover et al. 1988; Glover 1990). 

4. Minimize the Maximum Deviation (MMD) Model 

Classification Criterion: Minimize d, 

Classification Equations: Cjbjzij-d 5 c, for training sample entities i in group 1; 

C.b.z. .+ d > c, for training sample entities i in group 2. 
I I ' I  

In Bestclass, the deviation d is restricted to be nonnegative. If for a particular data  set the 

optimal value of d is zero, then the groups are perfectly linearly separable. 

5. Minimize the Number of Misclassifications (MIP) Model 

Classification Criterion: Minimize C,6,, 

Classification Equations: Cjbjzij-M6, 5 c, for training sample entities i in group 1; 

Cjbjzij+ M6; > c, for training sample entities i in group 2. 

In this model, M ("Big M")  is a sufficiently large positive scalar which ensures that 6, = 1 if 

the corresponding deviation d, > 0, and 6 ,=  0 otherwise. Hence, 6, serves as a "counter" of 

misclassified entities. As the computational time required to solve this formulation depends heavily on 

the choice of M, it is important to select M large enough to ensure that 6; = 1 if and only if d, > 0, but 

small enough that an optimal solution is reached within a reasonable time. 

6. Maximize the Sum of Internal Deviations (MSID) Model 

Classification Criterion: Minimize crld,-a2Ciei, 

Classification Equations: Cjbjzij + ei-do = c, for training sample entities i in group 1; 

Cjbjzij-ei + do = c, for training sample entities i in group 2. 

The scalar parameters al and a2 reflect the relative importance of the two components of the 

MSID criterion. See Bajgier and Hill (1982) for some experimental classification results for different 

relative values of al and a2. 



7. Optimize the Sum of Deviations (OSD) Model 

Classification Criterion: Minimize alCidi-a2Ciei, 

Classification Equations: Cjbjxij + e,-di = c, for training sample entities i in group 1; 

Cjbjzij-e,+ d, = c, for training sample entities i in group 2. 

In the OSD model, the relative weight of external and internal deviations is reflected by the 

scalar values rrl and a2. 

8. Minimize the Sum of Deviations / Minimize the Number of Misclassifications (MSD/MIP) Model 

Classification Criterion: Minimize a1C,6, + a2C,d, 

Classification Equations: Cjbjzij-d, < c, for training sample entities i in group 1; 

Cjb1xij + d, > c, for training sample entities i in group 2. 

In this model, 6, equals 1 if di > 0, and 0 if d, = 0. The scalars al and a2 represent the relative 

weights assigned to the MIP and MSD components of the MSD/MIP criterion, respectively. 

9. YEpsilonn Minimize the Sum of Deviations (EMSD) Model (available as an extension of the MSD 

through the Normalization Option only, not as a separate model option) 

Classification Criterion: Minimize C,dr, 

Classification Equations: Cjbjxij-dr-c < 0, for training sample entities i in group 1; 

Cjbjxij + dr-c > 1, for training sample entities i in group 2. 

In the "Epsilon" MSD (EMSD) formulation, which is due to Hand (1981) and has been 

analyzed by Ragsdale and Stam (1991), c is a variable to be estimated by the model. The EMSD 

formulation can be viewed as an implicit normalization scheme (see the section on normalizations 

below), and hence is included in Bestclass as a normalization option, not as a separate formulation. 

While the EMSD option of 0-1 right-hand sides can also be applied to model formulations 

other than the MSD, its mathematical properties have been established only for the EMSD model 

(Hand 1981; Ragsdale and Stam 1991). Ragsdale and Stam (1991) have shown that the EMSD 

formulation avoids any of the normalization problems that have plagued other MP formulations, and is 

invariant with respect to linear transformations of the attribute vector. 

The classification function obtained by solving the above EMSD is likely to  yield some entities 

in the classification gap, with classification scores f(b, x)-c between 0 (the right-hand side of group 1) 

and 1 (the right-hand side of group 2). Thus, the EMSD requires a value E E [0, I.], such that entity i 

in the gap is classified into group 1 if flb, x)  < E,  into group 2 if Ab, x) > E,  and remains unclassified if 

Kb, x). 

Common choices for E are either E = 0.5 (recommended if the prior probabilities of group 
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membership and the misclassification costs are equal), or the value of E E [O, 11 for which the number of 

misclassified training sample entities (or the misclassification cost) is minimized. Both of these options 

are available in BestClass. The value of c can also be specified by the user. 

As discussed above, it is recommended to use a secondary criterion to resolve ties in the 

primary criterion. In BestClass, a secondary criterion can be included by selecting the appropriate 

combination of formulation and weights. For instance, selecting the MSD/MIP formulation, with cyl 

much larger than cr2, implies an MIP formulation, where a tie for the minimum number of 

misclassifications is resolved by the secondary criterion of mimimizing the sum of absolute external 

deviations. 

We also note that for optimal classification, it may be necessary to solve the problem twice, 

with the group assignment (1 us. 2) reversed. If a scalar value is used for c ,  this can be achieved by 

solving the problem twice - once with c > 0, and again with c < 0. If the "Standard" or "Coefficients" 

normalization scheme (see Appendix A.3) is used, this can be achieved by solving the problem twice, 

once with the right-hand side of the normalization constraint of 1, and again with a right-hand side of 

- 1. 

A.2. Normalization Functions 

Several models require a normalization of the classification function coefficients to ensure that a 

meaning (non-trivial) classification rule will result from the analysis. The default value in BestClass 

for formulations with a scalar-valued  intercept term c is c = 1, and in this case none of the 

normalizations below is applied. The following normalization options are available in BestClass, 

through the C h o o s e  N o r m a l i z a t i o n  option: 

(1) "Coefficientsn Normalization Constraint: Cjbj = r. 

In this normalization constraint, the sum of estimated attribute coefficients equals a non-zero 
scalar r. 

(2) "Standardn Normalization Constraint: Cjbj + c = r 

This normalization constraint scales the sum of estimated attribute coefficients plus c to a non- 
zero scalar r. 

(3) HYBRID Normalization Constraint: C,e, + e, = 1 

This normalization constraint, proposed by Glover, Keene and Duea (1988), applies exclusively 
to the HYBRID formulation. In a more recent paper, Glover (1990) shows that this normalization has 
some undesirable properties, and recommends using the Glover constraint introduced below in (5). 

(4) HYBRID2 Normalization Constraint: Ciei = 1 
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(5) Glover Normalization Constraint: (-n2Ci G 1 ~ :  + % P i t  G2xab = 1 

In this constraint, as before xi is the vector of attribute values of entity i, nl and n2 are the 
number of training sample entities in group 1 and 2, respectively, c in the problem constriants is a 
variable intercept term, and b = (bl, ..., bk)= is the vector of estimated attribute coefficients. The bj 
and c are unrestricted in sign. This normalization renders the MSD formulation invariant t o  group 
labeling and invariant with respect to  linear transformations of the attribute vector. 

(6) Epsilon-Constraint: 

See the "Epsilon" method formulation above (as exemplified by the EMSD) for a discussion of 
this normalization constraint. 

A.3. Weighted MSD Formulation 

Minimize the Weighted Sum of Absolute Deviations (WMSD) Model 

Classification Criterion: Minimize C , W , ~ ~ ; ~  + C,wi2di2, 

Classification Equations: Cjbjxij-dil 5 c, for training sample entities i in group 1; 

Cjbjxij+ di2 > C, for training sample entities i in group 2. 

In this weighted MSD formulation, the criterion weight of deviation dij associated with entity i 

from group j equals wij 2 0. The extension of including individual entity-wise criterion weights in other 

non-weighted formulations is similar to  the extension of the MSD t o  WMSD. 

A.4. Quadratic MSD Formulation (Without Cross-Products) 

Quadratic formulations have been shown to  lead to improved classification results for certain 

data conditions. The classification equations are nonlinear in the original attributes (xij), and imply a 

nonlinear separating surface. 

Minimize the Sum of Absolute Deviations (MSDQ1) Model 

Classification Criterion: Minimize C;d;, 

Classification Equations: Cjbfixij + ~ ~ b ~ ~ ( x ~ ~ ) ~ - d ;  5 c, for training sample entities i in group 1; 

C .b x.. + C . b .  (x..)' + dj > c, for training sample entities i in group 2. 
3 3L 13 3 3Q $3 

The generalization, for other formulations, from the linear to  the quadratic formulation 

without cross-products is analogous to  that for the MSD. 



A.5. Quadratic MSD Formulation (With Cross-Products) 
Minimize the Sum of Absolute Deviations (MSDQ2) Model 

Classification Criterion: Minimize Cidi, 

Classification Equations: 

CjbJLxii + ~ ~ b ~ ~ ( x ~ ~ ) ~  + c m b h m ~ i h r i m - r ~ ,  5 c, for training sample entities i in group 1; 
2 

h #  

CjbJLxi, + C,biQ(xii) + Ch # mbhm~ihz im + di > c, for training sample entities i in group 2: 

For other formulations, the generalization from the linear to the quadratic formulation with 

cross-products is analogous to that for the MSD. 

A.6. Classification Functions 

Bestclass Classification Functions for all Formulations, Except the "Epsilonn Formulation 

For each formulation except "Epsilon" formulations, the linear classification function is of the form Ab, 

x) = Cjbjxij, while the quadratic classification function with cross-products is Ab, x) = CjbJZxij + 
CjbjQ(xij)2 + Ch # ,bhmxihxim, and that without cross-products Ab, x) = CibILxij+ CjbjQ(xii)2. The 

classification rule is to  classify entity i into group 1 if Ab, x) < c, into group 2 if Ab, x) > c, while i is 

unclassified if Ab, x) = c. 

Bestclass Classification Function for the 'Epsilonn Formulation 

The classification rule for the "Epsilon" formulation is to  classify entity i into group 1 if 

Cjbjxij < c + E,  into group 2 if C,bjxii > c +  E, while the classification of i is undetermined if 

C.b.x. = C + E .  
3 3 '3 
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Appendix B: BestClass Description 

B.1. Overview 

BestClass is a software package that implements the most widely two-group classification 

methods based on the MP approach in the SAS System (SAS Institute 1989a, 1989b, 1989c, 1990). 

BestClass is almost entirely written in the SAS macro language (SAS 1990) and uses the SAS/OR 

System (1989a) to solve the relevant MP models. The few files not written in the SAS macro language 

are system-dependent, and provide the interface with several host operating system. At the time of 

this writing, interfaces are available for the VMS-TSO, CMS and UNIX operating systems. BestClass 

can also be extended to work with PC-SAS, but the interface between BestClass and operating systems 

for PC's (DOS, Windows and OS2) have not been developed yet. 

BestClass provides the following major features: 

BestClass can be used in two operating modes, interactive and batch. 

Best Class facilitates an analysis based on three types of classification function: linear, quadratic, 
and quadratic without cross-products. 

BestClass offers a choice between several nonparametric accuracy criteria. 

BestClass allows for assigning individual costs to each entities. 

BestClass can accept input and direct output through either text files or the SAS data set format. 

BestClass allows the retrieval of previously fitted classification functions, which can subsequently 
used to classify new data sets. 

BestClass offers an easy interface with other SAS programs, and can easily be embedded in larger 
SAS programs. 

BestClass is implemented as a series of SAS macros. The %control macro controls the flow of 

the program under interactive mode, and %bestc controls the flow under batch mode. BestClass 

requires at least one input data set, which is either the "training sample" used to estimate (fit) a new 

classification function, or a "current sample," for which the (either known or unknown) group 

membership of the entities can be predicted using a previously saved classification function. In 

Appendix B.2 we described the interactive mode, followed by a brief discussion of the batch mode in 

Appendix B.3. An extensive description of the batch mode features of BestClass is contained in Duarte 

Silva and Stam (1994b). 



B.2. Interactive Mode 

In interactive mode, BestClass is activated by calling an executable file ( i . e . ,  a CLIST under 

VMS-TSO, a REXX programming file under CMS, or a shell file under UNIX), which first allocates all 

necessary source files and then invokes the SAS System and the macro %control. BestClass prompts 

the user for the name and location of the input data set (either in text file or SAS data  set format), 

and for the number of attributes per entity. Once this information has been provided, the main menu 

of BestClass will be displayed. This menu offers the following options: 

D: Define data  sets. 

This option allows the user to define a SAS data  set of one of the following types: (1) the 
training sample data  set, which contains a sample of entities that will be used to  fit the classification 
function, (2) the current sample data  set, consisting of entities that are to  be classified according to  
some already existing classification function, and (3) the parameter data  set, which contains several 
parameter values that define the BestClass environment. 

E: Create new data sets from External files. 

Using this option, the user can convert text files to SAS data set format. 

F: Choose classification function Form. 

This option enables the user to choose between three types of classification function: linear, 
quadratic, and quadratic without cross-products. 

I: View the Individual classification results. 

This option presents the individual classification results for the most recently classified data  
set. 

L: List external file. 

This option allows the user to view text files without leaving BestClass. 

M: Choose Model 

This option allows the user to choose between a number of MP-based models, each 
implementing a different accuracy criterion. The models available through BestClass are presented in 
Appendix A. 1. 

N: Choose Normalization option. 

The estimated classification functions are unique up to a scaling constant. A unique function 
can be achieved by normalization. The Choose Normalization option allows the user to choose between 
several of the most important normalization schemes, as described in Appendix A.2. 

0 :  Switch to Operating system shell. 

This option enables the user to switch to the operating system shell without leaving BestClass. 
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P: Change BestClass Parameters. 

This option enables the user to change several of the parameters of BestClass that,  among 
others, control the number of attributes describing each entity, the precision level used for displaying 
the results of the analysis, the relative importance of each subcriteria in models that combine several 
criteria, the value of the threshold of c when c is a scalar. 

R: Run model. 

This option invokes the PROC lp of the SAS/OR System to solve the M P  formulation selected 
using the Choose Model option. 

S: Save output. 

This option saves the results of the BestClass analysis. 

AC: Apply Classification function to current data  set. 

MS: Managellist SAS data  sets and libraries. 

This option enables the user to  access basic SAS library management utilities, such as utility 
programs to create, allocate, delete, merge and list SAS libraries and data sets, without leaving 
BestClass. 

RF: Retrieve classification Function from SAS data  set. 

This option retrieves a classification function previously saved as a SAS data  set, and makes it 
available to classify the current data  set. 

X: Exi t  BestClass. 

This option terminates BestClass, and exits the user to the operating system. 

B.3. Batch Mode 

In batch mode, BestClass can be activated by calling the macro %bestc from a SAS program. 

When invoking %bestc, one can optionally specify parameters that,  among others, control the origin 

and form of the input, the amount and destination of the output, the accuracy measure to be used, and 

the form of the classification function. Except for those options that are relevant in interactive mode 

only (such as the listing of external files, switching to the operating system, and the interactive 

management of SAS libraries), all options available in the interactive mode of BestClass can also be 

accessed in batch mode, by selecting an appropriate combination of parameter values. 

External calls of BestClass to or from a non-SAS System environment are best accommodated 

through text files. However, SAS data  sets are more efficient if BestClass communicates with other 

programs within the SAS System environment. 

A complete list of %bestc options, their use and default values is given in the documentation of 

BestClass (Duarte Silva and Stam, 1994b) and will be made available together with the source files of 

BestClass upon request to the authors. 
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