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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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We present a formal framework for modeling evolutionary dynamics with special emphasis on the
generation of diversity through branching of the evolutionary tree. Fitness is defined as the long
term growth rate which is influenced by the biotic environment leading to an ever-changing adaptive
landscape. Evolution can be described as a dynamics in a space with variable number of dimensions
corresponding to the number of different types present. The dynamics within a subspace is governed
by the local fitness gradient. Entering a higher dimensional subspace is possible only at a particular
type of attractors where the population undergoes evolutionary branching.

PACS numbers: 87.10+e, 89.60+x

Evolution by natural selection is the Grand Unifying
Theory of biology. In the simplest selection models each
phenotype has a fixed fitness value, and the fittest type
eventually outcompetes all others. This constant fitness
picture, however, is unable to explain the enormous di-
versity of life on Earth: how could any type but the
fittest survive? For instance, in the spin-glass models
[1,2] as well as in the prebiotic model of Eigen [3] either
a single, localized (quasi)species is present or the high
mutation rate destroys any organization in the genotype
space. Speciation has been explained by stochastic mod-
els ignoring selection processes altogether [4,5]. In these
models, however, the concept of adaptation has no mean-
ing. We suggests that speciation can be understood on
the basis of natural selection if one takes into account the
fact that the fitness function itself is modified by the evo-
lutionary process. We suppose a clear separation of the
(slow) evolutionary and the (fast) population dynamical
time scales, that is, mutations occur only infrequently
and have only small phenotypic effect. (This is a very re-
alistic assumption for almost all evolutionary situations.)

We confine ourselves to asexual populations, and as-
sume that different types can be characterized by a single,
one-dimensional quantity, referred to as strategy. Fitness
is a smooth function of the strategy parameter. This de-
scription, which has some similarity to the ”fitness space”
approach [6], is much easier to handle than the ”genotype
space” models.

Fitness can be generally defined as the long term pop-
ulation growth rate of a given type [7]. The growth
rate can NOT be fixed, because exponential population
growth cannot be sustained indefinitely. Consider a pop-
ulation with a single strategy x. The growth of the pop-
ulation can be described by

d

dt
N = M(x,E) ·N , (1)

where N is the state vector of the population (i.e. the
number of individuals in different age groups, state, loca-
tion, etc.). The projection matrix M(x,E) contains the
demographic parameters for birth, death and migration,
and depends on strategy x as well as on the environment
E. For any given, fixed condition of the environment the
population would increase exponentially with growth rate
%(x,E), which is the (real) leading eigenvalue of the ma-
trixM(x,E). We suppose, that % is a smooth function of
the strategy as well as the environmental parameters. As
the population increases, the environment deteriorates.
Consequently, the growth rate decreases and eventually
becomes zero when the population reaches an equilib-
rium. The condition of the environment at the equilib-
rium is denoted byEx, which is a solution of %(x,E) = 0,
and which we assume to be unique.

Next, consider a new mutant with strategy y emerging
in an equilibrium population of x-strategists. As long as
the mutant is rare, its effect on the environment as set by
the x-strategy is negligible, so that the mutant’s growth
rate is given by

sx(y) = %(y,Ex). (2)

If sx(y) < 0 the mutant dies out, but if sx(y) > 0 it will
spread. If mutations are small, then the sign of the local
fitness gradient

D(x) =

[
∂sx(y)

∂y

]
y=x

(3)

determines what mutants can invade. If D(x) > 0, mu-
tants with y > x can invade x, whereas if D(x) < 0,
this is only possible for mutants with y < x. If y is
near enough to x sx(y) > 0 implies sy(x) < 0, because
the local fitness gradient doesn’t change sign during the
transition x→ y. That is, the x-strategy cannot recover
once the mutant has become common and the x-strategy
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itself has become rare. We shall assume that the mutant
eventually takes over the whole population in this case.

The population thus evolves in the direction of the lo-
cal fitness gradient until it reaches the neighborhood of
a ’singular strategy’, x∗, where the local fitness gradient
is zero. Close to a singular strategy it may happen that
sx(y) > 0 and sy(x) > 0, so that both x and y are pro-
tected against extinction, and the population necessarily
becomes dimorphic.

FIG. 1. Example of pairwise invasibility plot.

As a convenient graphical means to see what mu-
tants can spread in a given population we use a ’pair-
wise invasibility plot’ (PIP) to indicate the sign of sx(y)
for all possible values of x and y (Fig. 1). On the
main diagonal sx(y) is always zero, because by defini-
tion sx(x) = %(x,Ex) = 0. A ’+’ just above the diagonal
and a ’-’ just below indicates a positive fitness gradient,
whereas the opposite indicates a negative fitness gradi-
ent. The intersection of the diagonal with another curve
on which sx(y) is zero corresponds to a singular strategy.

Close to a singular strategy x∗ there are only eight
possible (generic) local configurations of the PIP (Fig.
2). For their algebraic characterisation we will use that
at the singular strategy

∂2sx(y)

∂x2
+ 2

∂2sx(y)

∂x∂y
+
∂2sx(y)

∂y2
= 0, (4)

which follows from sx(x) = 0 for all x. Each configu-
ration represents a different evolutionary scenario that
can be interpreted in terms of the four properties of the
singular strategy discussed below.

1. A singular strategy x∗ is evolutionarily stable (ESS)
if no initially rare mutant can invade, in other words, if
sx∗(y) < 0 for all y 6= x∗. In the PIP the vertical line
through x∗ lies entirely within a region marked ’-’ (Fig.
2c-f). Since sx∗(y) as a function of y has a maximum for
y = x∗, at the singular strategy we have

∂2sx(y)

∂y2
< 0. (5)

An ESS is an evolutionary trap in the sense that once es-
tablished in a population, no further evolutionary change
is possible [8].

FIG. 2. Classification of the singular strategies according
to the second partials of sx(y). The small plots are the local
PIPs near to the singular point characterized by this partials.

2. A singular strategy is convergence stable [9] if a
population of nearby phenotypes can be invaded by mu-
tants that are even closer to x∗, that is, if sx(y) > 0 for
x < y < x∗ and x∗ < y < x. In the PIP there is a ’+’
above the diagonal on the left, and below the diagonal on
the right of x∗ (Fig. 2b-e). Since at x∗ the local fitness
gradient is a decreasing function of x, it follows that at
the singular strategy we have

dD(x)

dx
=
∂2sx(y)

∂x∂y
+
∂2sx(y)

∂y2
< 0. (6)

or, using eq. (4):

∂2sx(y)

∂x2
>
∂2sx(y)

∂y2
. (7)

A convergence stable singular strategy is an evolutionary
attractor in the sense that a monomorphic population
will remain within its neighborhood. A singular strategy
that is not convergence stable is a repeller from which
populations tend evolve away. A singular strategy can be
ESS but not convergence stable (Fig. 2f), or convergence
stable but not ESS (Fig. 2b) [10].

3. A singular strategy can spread in other populations
when itself is initially rare if sx(x∗) > 0 for all x 6= x∗,
in other words, if in the PIP the horizontal line through
x∗ on the y-axis lies entirely in a region marked ’+’ (Fig.
2a-d). Since sx(x∗) as a function of x has a minimum for
x = x∗, it follows that at the singular strategy we have

∂2sx(y)

∂x2
> 0. (8)

A singular strategy that is ESS and convergence stable
may nevertheless be incapable of invading other popu-
lations if initially rare itself (Fig. 2e). Such a singu-
lar strategy can be reached only asymptotically through
a series of ever decreasing evolutionary steps (Fig. 2e)
[11,12].

4. Two strategies x and y can mutually invade, and
hence give rise to a dimorphic population, if sx(y) > 0
and sy(x) > 0. The set of pairs of mutually invasible
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strategies near x∗ is given by the overlapping parts of the
’+’ regions in the PIP and its mirror image taken along
the main diagonal. The set is non-empty if and only if
the secondary diagonal lies entirely in a ’+’ region (Fig.
2a-c,h). Since along the secondary diagonal sx(y) has a
local minimum for y = x = x∗, at the singular strategy
we have

∂2sx(y)

∂x2
− 2

∂2sx(y)

∂x∂y
+
∂2sx(y)

∂y2
> 0. (9)

or, equivalently,

∂2sx(y)

∂x2
> −∂

2sx(y)

∂y2
. (10)

The evolutionary significance of mutual invasibility de-
pends on the combination with the other properties of the
singular strategy. If x∗ is convergence stable and ESS,
then mutually invasible strategies are necessarily on op-
posite sides of x∗ (Fig. 2c). A mutant with strategy y
can invade a population with x1 and x2 (with x1 < x2)
only if x1 < y < x2 (Fig. 3a). The mutant may re-
place both x1 and x2, or only the one that is on the same
side of x∗ but further away. In the long run the dimor-
phism effectively disappears as the population gradually
evolves towards x∗ through a series of monomorphic and
(converging) dimorphic population states.

FIG. 3. Mutant’s fitness in a population with x1 and x2 as
a perturbation from the fitness in a population with a strategy
x∗ that is (a) ESS or (b) not ESS. (Horizontal axis: strategy,
vertical: fitness.)

However, if x∗ is convergence stable but not ESS (Fig.
2b), then a strategy y can invade only if y < x1 or y > x2

(Fig. 3b). Since it is always the middle strategy that
is ousted, the two remaining strategies become progres-
sively more distinct with each successive invasion. This
process of divergence of strategies we call ’evolutionary
branching’, and the singular strategy in the associated
PIP we call a ’branching point’.

Fig. 4 shows numerical simulation of evolutionary
branching in a population inhabiting two patches with
different optimal strategies and migration between them
[13]. (A similar model was analyzed by [14] using the
genotype space approach.)

After branching the two coexisting strategies soon
evolve too far apart for the local approximation of the
mutant’s fitness used in Fig. 3 above to be valid. To

generalize the formalism to populations with an arbitrary
number of strategies, let Ex1,...,xn denote the condition
of the environment in an equilibrium population with
strategies x1,...,xn, i.e.,

%(xi,Ex1,...,xn) = 0 (11)

for all i. Generically, Ex1,...,xn can satisfy eq. (11) only
if the environment can be represented as a vector with at
least n independently adjustable components [15]. The
dimensionality of the environment thus sets an upper
limit to the number of different types that can coexist,
and hence to the maximum diversity that can be reached
by branching of the evolutionary tree.

FIG. 4. Evolutionary branching in a specific model [13].
(a) PIP with two branching points and a repeller, and (b)
simulated evolutionary tree.

The growth rate of an initially rare mutant with
strategy y in an equilibrium population with strategies
x1,...,xn is given by

sx1,...,xn(y) = %(y,Ex1,...xn) (12)

(cf. eq. 2). The direction of a possible evolutionary
change in the xi-strategy is indicated by the local fitness
gradient

Di(x1, ..., xn) =

[
∂sx1,...,xn(y)

∂y

]
y=xi

(13)

(cf. eq. 3). We call x∗1,..,x∗n an ’evolutionarily singular
coalition’ if for each strategy the fitness gradient is zero.
The classification above can be used for each member
population of this coalition. A singular coalition that is
an evolutionary attractor but some of it’s members are
not in an ESS point will lead to further branching of the
evolutionary tree.

The picture of evolution that arises is that of a ran-
dom walk in a state space of a dimension that is given
by the number of the different strategies present. The
direction of the steps is given by the local fitness gra-
dient. (This random walk can be approximated by a
deterministic dynamics of the strategy parameters in the
appropriate limit [16].) At each branching event the di-
mension of the state space increases. In some cases there
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is no attractor in the n-dimensional space, and the pop-
ulation leaves the volume containing the strategy com-
binations that can coexist as an n-morphism. In this
case one or several strategies may go extinct, so that the
population falls back to a lower dimensional state space
again. (See [17,18] for further discussion and general-
izations.) According to the numerical experiments, like
the one presented on Fig. 4, this behaviour is not very
sensitive for the time-scale separation. If the random
component of the directional evolution is not negligible,
but still small enough, the picture of an evolving and,
sometimes, branching quasi-species emerges.

Although evolutionary branching is reminiscent of spe-
ciation, in the present context of asexual populations the
species-concept is not well defined. Applied to sexual
populations, the framework could describe evolution in
allele space rather than in strategy space. Branching in
allele space can be interpreted as speciation only if the
separate branches do not interbreed. Matings between
different branches produce intermediate offspring (het-
erozygotes). As during the process of branching interme-
diate types are selected against (cf. Fig. 3b), types that
mate more within branches than between branches are
at a selective advantage, so that reproductive isolation
might evolve indeed [19].

Many models of adaptive evolution assume a one-
dimensional environment, usually represented by the
equilibrium population density [20]. In these models
coexistence of different types, and hence evolutionary
branching are not possible, and convergence stability al-
ways implies ESS stability as well. Fixed, though mul-
tipeaked fitness landscapes like in spin-glass models do
not allow for coexistence and branching either. As the
separate fitness peaks generically are of unequal height,
the type at the highest peak will in the long run out-
compete all others. In the present framework, however,
fitnesses of the coexisting populations are self-organized
to be zero (cf. eq. 11), that is, to be exactly equal to
each other.

This self-organization has a clear biological message: if
two (or more) species have been living together for mil-
lions of years, it is meaningless to ask, which of them is
the fittest or the least fit. This is in contradiction with
the assumptions of Bak and Sneppen [21]. Their model
is similar to our one in one respect: the fitness landscape
of each species is affected by the other species. However,
the number of species is fixed, and within species diver-
sification is prohibited in the Bak and Sneppen model.
Their model is an interesting candidate for an effective
model explaining the long-term statistics of the evolu-
tionary process. Our approach is intended to be a pre-
cursor of an underlying theory unifying diversification
and adaptation into a single framework.
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