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Abstract

This paper establishes a linear convergence rate for a class of epsilon-subgradient descent

methods for minimizing certain convex functions on Rn. Currently prominent methods

belonging to this class include the resolvent (proximal point) method and the bundle

method in proximal form (considered as a sequence of serious steps). Other methods,

such as the recently proposed descent proximal level method, may also �t this framework

depending on implementation. The convex functions covered by the analysis are those

whose conjugates have subdi�erentials that are locally upper Lipschitzian at the origin, a

class introduced by Zhang and Treiman. We argue that this class is a natural candidate

for study in connection with minimization algorithms.
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1 Introduction

This paper deals with �-subgradient-descent methods for minimizing a convex function

f on Rn. The class of methods we consider consists of those treated by Correa and

Lemar�echal in [3], with the additional restrictions that the minimizing set be nonempty,
the stepsize parameters be bounded, and a condition for su�cient descent be enforced at
each step. We give a precise description of this class in Section 2.

Currently prominent methods belonging to this class include the resolvent (proximal
point) method and the bundle method in proximal form (considered as a sequence of
serious steps). The resolvent method was treated by Rockafellar [12, 13] and has since

been the subject of much attention. Implementations of the proximal bundle method
have been given recently by Zowe [16], Kiwiel [7], and Schramm and Zowe [14], building
on a considerable amount of earlier work; see [6] for references. Certain other methods,
such as the recently proposed descent proximal level method of Br�annlund, Kiwiel, and
Lindberg [1], may �t into the class we consider depending on how they are implemented.

We show that the methods we consider will converge with (at least) an R-linear rate
in in the sense of Ortega and Rheinboldt [8], in the case when they are used to minimize
closed proper convex functions f on Rn that are of a special type: namely, those whose
conjugates f� have subdi�erentials that are locally upper Lipschitzian at the origin. This
means that there exist a neighborhood U of the origin in Rn and a constant � such that

for each x� 2 U ,

@f�(x�) � @f�(0) + �kx�kB;

where B is the (Euclidean) unit ball. The local upper Lipschitzian property was intro-
ducedin [9]; the class of functions whose conjugates have subdi�erentials obeying this
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property at the origin has been studied by Zhang and Treiman [15], and we shall call

them ZT-regular with modulus �. For the problem of unconstrained minimization of a

C2 function, the standard second-order su�cient condition (that is, positive de�niteness

of the Hessian at a minimizer) implies that the function is convex if restricted to a suit-

able neighborhood of the minimizer, that the conjugate this restricted function is �nite

near the origin, and that ZT-regularity holds. The ZT-regularity condition is therefore a

natural candidate for study in connection with minimization algorithms.

The rest of this paper is organized in two sections. Section 2 describes precisely the

class of minimization methods we consider, and provides some useful information about

their behavior, including convergence. Section 3 then shows that their rate of convergence

is at least R-linear if the function being minimized is ZT-regular.

2 Subgradient-descent methods

In this section we describe the class of minimizationmethods with which we are concerned,

and we review some results about their behavior.

Let f be a closed proper convex function on Rn, which we wish to minimize. The
authors of [3] investigated a class of �-subgradient descent methods for such minimization.
These methods proceed by �xing a starting point x0 2 R

n and then generating succeeding
points by the formula

xn+1 = xn � tnd
�

n; (1)

where tn is a positive stepsize parameter and for some nonnegative �n, d
�

n belongs to the

�n-subdi�erential @�nf(xn) of f at xn, de�ned by

@�nf(xn) = fx� j for each z 2 Rn; f(z) � f(xn) + hx�; z � xni � �n g:

Thus, for �n = 0 we have the ordinary subdi�erential, whereas for positive �n we have a
larger set. For more information about the �-subdi�erential, see [10].

In addition to requiring the function f to satisfy certain properties, we shall impose
two requirements on the implementation of (1). They are stricter than those imposed in
[3], but they will permit us to obtain the convergence rate results that we are after. One

of these is that the sequence of stepsize parameters be bounded away from 0 and from
1: namely, there are t� and t� such that for each n,

0 < t� � tn � t�: (2)

The other requirement is that at each step a su�cient descent is obtained: speci�cally,

there is a constant m 2 (0; 1] such that for each n,

f(xn+1) � f(xn) +m(hd�n; xn+1 � xni � �n): (3)

Note that because d�n = �t�1n (xn+1 � xn), the quantity in parentheses in (3) is nonposi-
tive, and in fact negative if xn+1 6= xn or if �n > 0, so that we are working with a descent

method: that is, one that forces the function value at each successive step to be \su�-

ciently" smaller than its predecessor. Indeed, if �n = 0 and if the subgradient is actually
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a gradient, this is a descent condition very familiar from the literature (for example, see

([4], p. 101). However, the �-descent condition in the general form given here may seem

somewhat strange. For that reason, we next show that this condition is satis�ed by the

two known methods mentioned earlier.

The �rst of these methods is the resolvent, or proximal point, method in the form

appropriate for minimization of f . This algorithm is speci�ed by

xn+1 = (I + tn@f)
�1(xn);

that is, we obtain xn+1 by applying to xn the resolvent Jtn of the maximal monotone

operator @f . To see that this is in the form (1), note that the algorithm speci�cation

implies that there is d�n 2 @f(xn+1) such that

xn = xn+1 + tnd
�

n;

which is a rearrangement of (1). Further, for each z we have

f(z) � f(xn+1) + hd�n; z � xn+1i = f(xn) + hd�n; z � xni � �n;

where

�n = f(xn)� f(xn+1)� hd�n; xn � xn+1i;

which is nonnegative because d�n 2 @f(xn+1). Therefore d�n 2 @�nf(xn). Moreover, we

have
f(xn+1) = f(xn) + hd�n; xn+1 � xni � �n;

so that (3) holds with m = 1.
The resolvent method is unfortunately not implementable except in special cases. For

practical minimization of nonsmooth convex functions a very e�ective tool is the well
known bundle method, which as is pointed out in [3] can be regarded as a systematic way
of approximating the iterations of the resolvent method. The method uses two kinds of
steps: \serious steps," which as we shall see correspond to (1), and \null steps," which

are used to prepare for the serious steps. Speci�cally, by means of a sequence of null steps
the method builds up a piecewise a�ne minorant f̂ of f . Then a resolvent step is taken,
using f̂ instead of f :

xn+1 = (I + tn@f̂)
�1(xn); (4)

and it is accepted if
f(xn)� f(xn+1) � m[f(xn)� f̂(xn+1)]: (5)

Now from (4) we see that

xn+1 = xn � tnd
�

n;

with d�n 2 @f̂(xn+1). Then for each z 2 Rn we have

f(z) � f̂ (z) � f̂(xn+1) + hd�n; z � xn+1i = f(xn) + hd�n; z � xni � �n;

where we can write �n as

�n = [f(xn)� f̂(xn)] + [f̂(xn)� f̂(xn+1)� hd�n; xn � xn+1i]; (6)
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which must be nonnegative since f̂ minorizes f and d�n 2 @f̂(xn+1). In fact, f̂ is typically

constructed in such a way that f̂(xn) = f(xn), so the �rst term in square brackets is

actually zero (this will be the case as long as a subgradient of f at xn belongs to the

bundle). In that case we have from the minorization property and (6)

f(xn)� f̂(xn+1) � f̂(xn)� f̂ (xn+1) = hd�n; xn � xn+1i+ �n;

so that (5) yields

f(xn)� f(xn+1) � m[hd�n; xn � xn+1i+ �n];

that is, (3) holds. Therefore the bundle method, if implemented with bounded tn, �ts

within our class of methods.

Although our proof of R-linear convergence in Section 3 therefore applies to the bundle

method, it must be noted that this analysis takes into account only the serious steps,

whereas for each serious step a possibly large number of null steps may be required to

build up an adequate approximation f̂ . Therefore our analysis does not provide a bound

on the total work required to implement the bundle method.

We have therefore seen that two well known methods �t into the class we shall analyze.
In the analysis we shall need the following theorem, which summarizes the convergence
properties of this class.

Theorem 1 Let f be a lower semicontinuous proper convex function on Rn, having a

nonempty minimizing set X�. Let x0 be given and suppose the algorithm (1) is imple-

mented in such a way that (2) and (3) hold. Then the sequence fxng generated by (1)

converges to a point x� 2 X�, ff(xn)g converges to minf , and

1X

n=0

(kd�nk
2 + �n) <1: (7)

In particular, the sequences f�ng and fkd�nkg converge to zero.

Proof. Note that for each n we have hd�n; xn+1 � xni = �tnkd
�

nk
2. From (2) and (3)

we obtain
m(t�kd

�

nk
2 + �n) � m(tnkd

�

nk
2 + �n) � f(xn)� f(xn+1);

so for each k � 1 we have

m
k�1X

n=0

(t�kd
�

nk
2 + �n) � f(x0)� f(xk) � f(x0)�minf;

and consequently

m
1X

n=0

(t
�
kd�nk

2 + �n) � f(x0)�minf;

which establishes (7). The condition (2) shows that the sum of the tn is in�nite, so that
Conditions (1.4) and (1.5) of [3] hold. Moreover, (3) shows that for each n

f(xn+1) � f(xn) +m(hd�n; xn+1 � xni � �n) � f(xn)�mtnkd
�

nk
2;
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so that Condition (2.7) of [3] also holds. Then Proposition 2.2 of [3] shows that ff(xn)g

converges to minf and that fxng converges to some element x� of X�. 2

In this section we have speci�ed the class of methods we are considering, and we have

given two examples of concrete methods that belong to this class. Moreover, we have

adapted from [3] a general convergence result applicable to this class. In the next section

we present the main result of the paper, a proof that the convergence guaranteed by

Theorem 1 will under additional conditions actually be at least R-linear.

3 Convergence-rate analysis

In order to prove the main result we need to use a tailored form of the well known

Br�ndsted-Rockafellar Theorem [2]. We give this next, along with a very simple proof.

The technique of this proof is very similar to that given in Theorem 4.2.1 of [5], but this

version gives slightly more information and it holds in any real Hilbert space.

Theorem 2 Let H be a real Hilbert space and let f be a lower semicontinuous proper

convex function on H. Suppose that � � 0 and that (x�; x
�

�) 2 @�f . For each positive �

there is a unique y� with

(x� + �y�; x
�

� � ��1y�) 2 @f: (8)

Further, ky�k � �1=2.

Proof. De�ne a function g on H by

g(y) = (1=2)ky � �x��k
2 + f(x� + �y):

Then g is lower semicontinuous, proper, and strongly convex; its unique minimizer y�
then satis�es 0 2 @g(y�), which upon rearrangement becomes (8); justi�cation for the
subdi�erential computation can be found in, e.g., Theorem 20, p. 56, of [11]. In turn, (8)
implies

f(x�) � f(x� + �y�) + hx�� � ��1y�; x� � (x� + �y�)i:

But the �-subgradient inequality yields

f(x� + �y�) � f(x�) + hx�� ; (x� + �y�)� x�i � �;

and by combining these we obtain

0 � hx�� � ��1y�;��y�i + hx�� ; �y�i � � = ky�k
2
� �;

which proves the assertion about ky�k. 2
Here is the main theorem, which says that under ZT-regularity and some implemen-

tation conditions the �-subgradient descent method is at least R-linearly convergent.

Theorem 3 Let f be a lower semicontinuous, proper convex function on Rn that is ZT-

regular with modulus � > 0. Assume that f has a nonempty minimizing set X�, and that

starting from some x0 the �-subgradient descent method (1) is implemented with (2) and

(3) satis�ed at each step.

Then the sequence fxng produced by (1) converges at least R-linearly to a limit x� 2 X�.
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Proof. Consider the step from xn to xn+1. From (3) we �nd that d�n 2 @�nf(xn), and

by applying Theorem 2 we conclude that there is a unique y with kyk � �1=2n and with

(xn + �1=2y; d�n � ��1=2y) 2 @f:

For any k let uk be the projection of xk on the optimal set X�. We have shown in Theorem

1 that kd�nk and �n converge to zero. Therefore there is some N such that for n � N

the point d�n � ��1=2y will lie in the neighborhood U associated with the ZT-regularity

condition and, as a consequence, we shall have the inequality

k(xn + �1=2y)� unk � �kd�n � ��1=2yk: (9)

Therefore
kxn � unk � k(xn + �1=2y)� unk+ �1=2kyk

� �kd�n � ��1=2yk+ �1=2�1=2n

� �kd�nk+ 2�1=2�1=2n :

(10)

Next, let f� = minf ; write �n for f(xn)� f� = f(xn)� f(un), and �n for �t�1n . Note that

for any real numbers �, �, and 
 we have, by applying the Schwarz inequality to (1; �)
and (�; 
),

j�+ �
j � (1 + �2)1=2(�2 + 
2)1=2: (11)

Using (9), (10), and the fact that d�n 2 @�nf(xn) we obtain

�n � �hd�n; un � xni+ �n
� �kd�nk

2 + 2�1=2kd�nk�
1=2
n + �n

= (�1=2kd�nk+ �1=2n )2

= (�1=2n t1=2n kd�nk+ �1=2n )2

� [(1 + �n)
1=2(tnkd

�

nk
2 + �n)

1=2]2

= (1 + �n)(tnkd
�

nk
2 + �n);

(12)

where we used in succession the subgradient condition, the Schwarz inequality, and (11).
But from (3) we have

tnkd
�

nk
2 + �n � m�1[f(xn)� f(xn+1)];

and we also have f(xn)� f(xn+1) = �n � �n+1. Therefore (12) yields

�n � (1 + �n)m
�1(�n � �n+1);

which, since tn � t� > 0, implies

�n+1 � �2�n;

with
� = [1�m=(1 + �t�1

�
)]1=2:

Therefore for �xed N and n � N we have

�n � ��2n; (13)
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with

� = ��2N�N :

Now from Theorem 4.3 of [15] we �nd that for some 
 � 0 and all z with d(z;X�)

su�ciently small the inequality

f(z) � f� + 
d(z;X�)
2 (14)

holds. We know that d(xn;X�) converges to zero, so for all n at least as large as some

N 0

� N we have from (14)

�n := d(xn;X�) � 
�1=2�1=2n � ��n; (15)

with

� = 
�1=2��N�
1=2
N :

Now let en := kxn � x�k, where x� is the unique limit of the sequence fxng, as

established in Theorem 1. From Equation (1.3) of [3] we have, for any y 2 Rn,

kxn+1 � yk2 � kxn � yk2 + t2nkd
�

nk
2 + 2tn[f(y)� f(xn) + �n]:

If we restrict our attention to points y 2 X� we may simplify this to

kxn+1 � yk2 � kxn � yk2 + 2tn[tnkd
�

nk
2 + �n � �n]:

For j > n � N 0 we then use the fact that tk � t� for all k to obtain the upper bound

kxj � yk2 � kxn � yk2 + 2t�(
j�1X

k=n

[tkkd
�

kk
2 + �k]� �n):

The condition (3) gives

f(xk+1) � f(xk) +m(hd�k; xk+1 � xki � �k) = f(xk)�m[tkkd
�

kk
2 + �k];

from which we conclude that
j�1X

k=n

[tkkdkk
2 + �k] � m�1[f(xn)� f(xj)] � m�1�n:

Therefore
kxj � yk2 � kxn � yk2 + 2t�(m�1

� 1)�n;

and by taking the limit as j !1 we �nd that

kx� � yk2 � kxn � yk2 + 2t�(m�1
� 1)�n:

Now set y = un to obtain

kx
�
� unk

2
� �2n + 2t�(m�1

� 1)�n:

The bounds (13) and (15) now yield, for n � N 0,

kx� � unk � ��n;

with

� = (�2 + 2t�(m�1
� 1)�)1=2:

Then we have
kxn � x�k � �n + kx� � unk � (�+ � )�n;

so that fxng converges at least R-linearly to the limit x�, as claimed. 2
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