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ABSTRACT 

Two s p e c i a l  c l a s s e s  o f  cova r i ance  m a t r i c e s  a r e  cons ide r ed  

which g i v e  s i m p l i f i e d  computa t ions  f o r  l i n e a r  f o r e c a s t s  w i thou t  

con t i nued  r e i n v e r s i o n  o f  t h e  m a t r i x .  I n  t h e  f i r s t  c l a s s ,  t h e  

op t ima l  c o e f f i c i e n t s  i n  t h e  f o r e c a s t  can  be  computed i n  advance 

f o r  e v e r y  t i m e  p e r i o d  by s imple  c l o s e d  fo rmulas .  I n  t h e  second 

c l a s s ,  which i s  a g e n e r a l i z a t i o n  o f  t h e  f i r s t ,  t h e  op t ima l  

c o e f f i c i e n t s  a r e  o b t a i n e d  th rough  a s imple  f i r s t - o r d e r  l i n e a r  

r e c u r s i v e  r e l a t i o n  between f o r e c a s t s  o f  s u c c e s s i v e  t i m e  p e r i o d s .  

C o l l e c t i v e  r i s k  f o r e c a s t i n g  models which g i v e  r i se  t o  t h e s e  

c l a s s e s  o f  c o v a r i a n c e s  a r e  p r e s e n t e d .  



TWO CLASSES OF COVARIANCE MATRICES 

GIVING SIMPLE LINEAR FORECASTS 

William S. Jewell* 

INTRODUCTION 

I 

Suppose we have a random vector, - 5 = [51,52,...,5n] from 

whose values - x = [x1,x2. ..., xn] we are trying to predict a 

random variable rl through a forecast function, f(5). Assuming that 

the joint distribution of (rl,C) - is known, then the integrable 

2 
function which minimizes the mean-squared error, E{(n - f(l)) 1 ,  

is just the conditional mean, f"(x) - = ~{rlli = x), sometimes 

called the regression of rl on - 5. 

If this function is difficult to calculate, then a linear 

regression, 

may be sought which makes the approximation error, 

2 
E{ (f"(l) - f (5)) - 1 ,  as small as possible by adjusting the 

coefficients ao,al,...,an. 

It is well known that the optimal values of these coeffi- 

cients are given by a single equation which adjusts a to make 
0 

the forecast unbiased, 
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together with an n x n system of linear equations for the 

remaining coefficients, 

- -  

I Cov {ti;tj} a = Cov {ti;~} , (i = 1,2, ..., n). 
j=1 j 

Thus, the basic computational labor is in inverting the n x n 

covariance matrix, 

'ij = cov {ti;t-} , 
3 

and then premultiplying it into the RHS of (3). 

In particular, if u = tn+l, we are interested in Zinear  

f o r e c a s t s  for n = 0,1,2, ..., and the continued reinversion 
of matrices C = [c..] of expanding order represents a formi- 

11 
dable computational task in the general case. The fact that 

covariance matrices are positive (semi-)definite can lead to 

efficient iterative methods (see, e.g., [I]), but one would 

also like to have explicit or algorithmic exact solutions if 

at all possible. 

The purpose of this paper is to present two special 

classes of covariance matrices which lead to simplified compu- 

tation of (3) in the following sense: 

(i) either an explicit solution for the {a.), and hence 
1 

for f(x), - can be given for all i and all n; 

(ii) or a recursive solution can be found for 

'n+l (x1,x2, ... ,x ) in terms of lXn-1 n 

fn(~1,X210-.,Xn-1 ) and the new data, xn. 



These classes of covariance matrices were suggested by recent 

results on collective risk models [dl, 5 , [6], [ll] . 
Many of these results are not new, apparently being 

continually rediscovered in different fields of application. 

However, we feel that it is desirable to collect in one place 

all known results which may be useful in linear regression 

problems, and to show how these matrices arise naturally in 

various prediction problems in collective risk theory. 

Without loss of generality, we decompose the covariance 

matrix as follows: 

and note that in forecasting problems, Cov {Si;q} = Di,n+l. 

Our basic system ( 3 )  now reads: 

where it is important to note that all coefficients 

a l ~ a 2 1 - -  . an are now included in the sum. In the problems of 

practical interest, no Eii is zero, so that (6) can be written 

in an obvious matrix notation: 



where the n x n matrix A and the n-vector A 
(n+l) 

have coefficients 

and In is the unit matrix of order n. From this, it is clear 

that simplified computation depends on a special form for the off- 

diagonal elements of D ij 

MODEL I: EXPLICIT SOLUTION 

Basic Result 

The first model assumes that Dij may be factored into 

(9 - 
Dij - CLi ' Bj 

Substituting into (6) gives an explicit solution for air 

in terms of an unknown sum which is the same for all i. But 

this sum B can be found explicitly by performing the indicated 

sum, 



Substituting back in (lo), we have finally the explicit 

solution: 

for i = 1,2, ..., n, with a given by (2). 
0 

Related Results 

The above result is related to the following: 

Theorem. If a and B are n x k matrices, then 

whenever either of the indicated inverses exists. 

Bodewig ([:L], pp. 39, 218) attributes this result for 

k = 1 to Bartlett, and the generalization to Hemes. The 

general result is also given by Tocher [17], and two later 

attributions may be found in [15], pp. 6,  34. The fact that 

the determinant of the two terms in parenthesis in (12) are 

equal ([19], p. 231) shows that the existence of one inverse 

implies the existence of the other. 

(11) now follows directly from the fact that A is a simple 

product (k = 1). The general result is used in (17) below. 

Note that (12) does not require A to be symmetric. If we 

add the fact that Dij - - Djit then ai and Bi can only differ by a 

constant multiplier D 00 so that Dij = ai DOOaj, or if the 

constant is absorbed equally, (9) may be replaced by Dij = a.a . 
1 j 



Matrix Generalization 

The same idea can be used to reduce computational labor 

in problems of higher dimension. For example, suppose that 

the li are themselves row vectors li = [~ilISi21...IS. 1. SO 
1P 

that n samples generate a data matrix X = {xik; i = 1,2, ..., n, 

k = 1,2, ...,p 1 .  Then the coefficients in the linear estimator 

of, say, the sth component of 5 -n+l ' 

will be given by (n+p) equations of the form: 

n P 
(14 1 1 cov {Sik;S 1 ajes = COV {Sik;Sn+lIs 1 t 

j j=1 k=1 

for i = 1,2, ..., n and k = 1,2, ...,p, together with a single 

equation similar to (2) to make the forecast unbiased. 

Again, without loss of generality, we write 

as being convenient for collective risk models, and imagine 

that both of these coefficient sets are grouped into n x n 

arrays of square submatrices, E(i,i) and D(i,j), each of 

which is of size p x p. Thus, [~(i.j)]~,~ - - DikI j a  



The coefficients a as and the RHS of (14) can also be 

partitioned into n vector blocks of p coefficients each, 

since s and n+l are fixed for this forecast. However, it is 

notationally more convenient if we imagine the RHS of (14) 

being augmented by a22 the columns s = 1,2, ...,p; then the 

coefficients a j as 
can be represented by n blocks of square 

p x p submatrices, call them A(i), and the RHS becomes 

blocks of matrices D(i,n+l). In effect, the solution to this 

expanded system will give a22 the coefficients for any 

possible component prediction at the same time. ((13) could 

also be written in matrix format; see [lo] ) . 
In this block matrix notation then, (14) becomes: 

The simplification corresponding to (9) assumes that each of 

the p x p submatrices D(i,j) factors into a matrix product of 

two similar matrices, a(i), B(j): 

The solution procedure is similar to the scalar case, with the 

final result: 

n 
(18) A = E i i  a(i) + 1 B(j) E-'(j,j) a(j) I -' B (n+l) P j=l 

for i = 1,2, ..., n, which should be compared with (ll), (12). 
We see that the computational labor has been reduced from 



inverting the (n+p) x (n+p) covariance matrix to that of 

inverting n submatrices E(i,i) of order p x p, performing 

some multiplications and summations, followed by one more 

inversion of order p x p to find the factor common to all A(i). 

It is difficult to get (18) into a form similar to the 

second equation of (ll), as can be seen from the rearrangements: 

(19) 
n 

,j) D(j,j) D-'(i,j) A )  = ( )  + 1 D(i,j) E (1 D(i,n+l) 
P j=l 

Unless the matrices have special forms, the first and last terms 

in.the sums do not cancel out, as in the scalar case. 

Perhaps the easiest computational sequence is to work 

directly with a reduced p x p matrix, e(i,i), calculated for 

each i by: 

and then obtain a matrix of reduced coefficients 

This can be re-inflated for direct use, or one may rearrange 

the vector form of (13) in terms of the reduced coefficients 

and reduced data [ll]. 



The above result does not use the known symmetry of the 

covariance matrix, which implies that D (i, j) = D' ( j  , i) .   hen a (i) 

and @'(j) can only differ by a constant symmetric matrix D 00 ' 
so that D(i, j) = a(i) DO0 a' ( j ) ,  or if DOO has a square root, 

it may be absorbed into the definition of a(i), giving 

D(i,j) = a(i) a'(]). 

A~~lications in Collective Risk Forecastina 

In the model of collective risk forecasting used exten- 

sively in casualty insurance, we imagine that each random 

variable ~ 1 1 ~ 2 1 ~ ~ - l ~ n l ~ n + l  depends upon a fixed, but unknown, 

r i s k  parame te r  8. Furthermore, given 8, the samples 

X11X2t • xn are independent. The problem is then to predict 

the mean value of the next sample, 'n+1 
given the data, or, 

in insurance terminology, to find the f a i r  premium for period 

n+l, given the e x p e r i e n c e  d a t a  on a single risk, and c o Z Z e c t i v e  

s t a t i s t i c s  for other risks with differing risk parameters [3] .  

If we imagine that these statistics are available as a 

p r i o r  d e n s i t y  on 8, p(8), and a l i k e l i h o o d  (conditional density) 

pi(xi18) for each Si i = 1 ...n1n+1), then the forecast 

problem can be seen to be equivalent to a B a y e s i a n  f o r e c a s t  of 

the conditional mean [8], [14]. If we further require that 

the forecast be linear in the data, then we have a linearized 

Bayesian forecast, which is called a c r e d i b i l i t y  f o r e c a s t  in 

actuarial literature. This is nothing more than a linear 

regression (I), (2), ( 3 ) ,  with a special form for the covariance 

matrix reflecting the prior collective mixture of different 

risk parameters. 



Using the prior and the likelihood, we see that the 

required first and second moments are: 

However, because of the independence of the samples, given 0, 

the first term of (23) is nonzero only for i = j, and the 

definitions: 

(25) Dij =Cove {mi(0);m. 3 (0) 1 = /(mi(0) -mi) (m. 3 (0) -mj) p(0) d0 , 

are consistent with (5). The first group is called the mean 

variances, and the second group the covariance of the means. 

In classical credibility theory (see, e.g., [3]) the Si 

are identically distributed over the samples, so that the 

only collective statistics needed are the common values, m, 

E, D. Then the solution of (6) is easily: 

giving the forecast: 

with credibility factor: 

(28) Z = n/(n + (E/D)) . 



There are many interesting aspects to this result, one of 

which is that as n + the credibility attached to the sample 

mean approaches unity. There are vector forms of this result 

[lo], [ll], and for certain families of priors and likelihoods, 

it can be shown to give an exact forecast of the conditional 

mean [8] , [9] , [lo] . 
Turning to time-varying models, ~iihlmann and Straub [4],  

[5] have investigated a class of models in which the total 

losses on an insurance contract in period i are normalized by 

dividing by Vi, the volume, or exposure, of business in the 

same period. ci is then the loss on a per-unit basis, which 
leads to: 

where DOO and EO0 are the estimated unit exposure values for 

variance of the mean, and mean variance over the collective. 

In terms of simplification (9), this model has ai = 1, 

- - DOO for all i,j, giving, finally, 

with credibility factor 



This can be seen to be similar to (27), (28), except that 

the "operational time" is now measured in volume units. 

Buhlmann and Straub also consider many other related models 

in which the separability of Dij leads to closed forms. 

In [ll], the author considers a one-dimensional, time- 

varying model with separable mean, in which it is assumed 

that the known dependency of the mean risk over time can be 

factored out, as: 

giving 

for all ( i ) .  The mean variances, Eii, remain arbitrary; 

thus the correspondence with our previous notation is 

irnme.diate, and we obtain either (ll), or, in more revealing 

format: 

where mo = E m (e), and the per-observation credibility 8 0 

factors, z are: i ' 

for i = 1,2, ..., n. In other words, each observation is 

normalized by the factor air weighted by zi which depends 



only on the ratios DOO/Eii, and then "re-inflated" to period 

n+l by the factor an+l. The use of reciprocal variances as 

weights is well known in statistics for observations with 

normal distributions of error. 

In a later section of [ll], the author also treats the 

multidimensional separable mean, in which it is assumed (in 

current notation) that 

so that 

In the matrix notation of the previous section, this makes 

and a(i) = Diag The 

solution has coefficients similar to (21), but will not be 

reproduced here. 

MODEL 11: RECURSIVE SOLUTION 

General Remarks 

In the event that the optimal coefficients ai cannot be 

found explicitly, a computational simplification still results 

if they can be found recursively for n = 1,2,3, ...; this is 
especially desirable in forecasting problems, where previous 

predictions are available for use with the current value of n. 

Henceforth, let ai(n) refer to the coefficients used to predict 

'n+1 
in the forecast function fn+l = f ( ~ ~ ~ x ~ ~ . . . , x ~ ) ;  the 

covariance matrix at this stage of the computation will be 

called C(n), and is of order n x n. 



For general C(n), there are explicit matrix formulas 

available for updating, based upon a relation due to 

Frobenius-Schur. First, partition C(n) as follows: 

where the (n-1)-vector - u = [ c ~ ~ , C ~ ~ , . . .  tCn,n-1 I' , and we use 

the fact that all C's are symmetric. The Frobenius-Schur 

inverse of C (n) is then [l] : 

where - 0 is an (n-1)-vector of zeroes, 

and 

Thus, successive inverses of C can be found in an efficient 

way from the previous inverses, starting with C-l (1) = [cll-'] . 
At each step, the optimal forecast coefficients are then 

obtained by multiplying C-I (n) into the - u for the (n+l) st 

problem. This useful relation is continually being rediscovered 

in a variety of applications of the least-squares method. 



However, f o r  o u r  purposes ,  it i s  s t i l l  t o o  complex, s i n c e  

an i n v e r s e  o f  i n c r e a s i n g  s i z e  must be s t o r e d ,  and m a t r i x  

o p e r a t i o n s  c o n t i n u e  t o  be r e q u i r e d  when on ly  a  s i n g l e  answer 

i s  sought .  

By examining s u c c e s s i v e  r a t i o s  of  t h e  c o e f f i c i e n t s  (11) 

f o r  problems of  d i f f e r e n t  s i z e s ,  w e  see t h a t  a  s imp le  r e c u r s i v e  

s o l u t i o n  f o r  Model I i s  g iven  by: 

f o r  e v e r y  i = 1 , 2 ,  ..., n-1, and n  = 2 , 3 ,  .... The boundary 

v a l u e  c o e f f i c i e n t s  a r e :  

s i n c e  a .  ( n )  : 0 ,  ( i  = n + l , n + 2 , .  . . ) .  ( a o ( n )  i s  g i v e n  by ( 2 ) ) .  
1 

Even t h i s  computa t ion  can  be  f u r t h e r  s i m p l i f i e d  by 

d e f i n i n g  a  secondary  r e c u r s i v e  sequence { b n ) ,  a s  f o l l ows :  

and n o t i n g  t h a t  t h e  f o r e c a s t  f u n c t i o n s  f l , f 2 ,  ... can  be  

w r i t t e n  r e c u r s i v e l y  a s :  

(45)  fn+l  - - -  - ("iil) ti,') f n  + t1~1.1) xn + [mn+l - (F) rnn] t 



This clearly simplifies storage and computation for Model I, 

since only the most recent values of b(n) and f need to be n 

retained. 

We shall now examine what more general forms for D i j 

lead to first-order linear recursion relationships similar 

to (45). This work was motivated by a paper of Gerber and 

Jones [6]. 

First-Order Linear Recursion 

Temporarily, let us simplify the algebra by assuming 

that the means of all observations have been normalized to 

the same value, ml. Data of this type is said to be in 

"as-if" form. 

Assume that there are known sequences (IT~,IT~,...) , 

(p1,p2,...) such that the forecast functions fl,f 2,... 

follow a first-order linear recursive relationship: 

Note that in this form the forecast is unbiased. Now, what 

form of the Dij could lead to this result? 

First, (46) implies: 



Then, if two versions of (6) are written for ai (n) and ai (n-1) , 

for i < n, the use of (47), (48) leads to: 

which must hold for n = 2,3, ..., so that 

Now, using the fact that Dij is symmetric, we see that the 

general form for all i,j must be expressable as: 

with, as one possible choice: 

and I 

The diagonal elements, {Dii,Eii} are related to inn,pn} 

through a recursion relation which is gotten from the (n-1) 
st 

and nth equations of (6) for ai(n-1) and ai(n), respectively. 

We get: 



which can  be  manipu la ted  i n  a  v a r i e t y  of  ways, depending upon 

what d a t a  a r e  g i v e n .  For example, i f  t h e  w e i g h t i n g s  { n n I p n }  

a r e  g i v e n  f o r  a l l  n ,  t h e n  t h e  d i a g o n a l  c o v a r i a n c e  e l e m e n t s  

a r e  r e l a t e d  th rough :  

A l t e r n a t i v e l y ,  i f  t h e  D i j  a r e  g i v e n ,  and obse rved  t o  be  

i n  form ( 5 1 ) ,  t h e n  from t h e  f a c t o r s  Dii,Eii and p i  , w e  can  

c a l c u l a t e  t h e  f a c t o r s  nn and p n  a s  f o l l o w s :  

- The f a c t o r  Dnn - D n - 1  In-l i s ,  of  c o u r s e ,  A n ( "  n n - l ) .  

Fol lowing Gerber  and J o n e s  161, w e  n o t e  t h a t  ( 5 6 )  c a n  b e  

s i m p l i f i e d  t h r o u g h  a  new r e c u r s i v e  sequence  {ui I  such t h a t :  

( 5 7 )  



giving 

( 5 8 )  

The factors nn are then simply: 

for all n, remembering that p = 1. 1 

Once the inn , pn ) are calculated, the optimal weighting 

coefficients at the nth step follow directly from the 

definition (46) : 

Now let us reconsider what happens if the means, 

mltm2, tmntmn+lt are in fact different from one another. 

* 
By normalizing the variables to unity mean, ti = ci/mi, 

we see that the above theory is applicable to the covariance 

components D* = D. ./m.m and Eii = Eii/m:. After some i j 11 1 j 

algebra, we find from (54) that, instead of the forecast (461, 

we obtain the result: 



where {a:, p;} are the coefficients that would be obtained from 

the previous theory (47)-(60) by using the same Eii and Dij, 

but n e g l e c t i n g  the difference in the {mi}. Note particularly 

that the changing mean is compensated for in the new nn and 

- 0 the constant term, but that the new-data multiplier, pn - pn, 

remains the same. 

Related Results 

In [6], Gerber and Jones investigated the "credibility" 

forecast form: 

for constant mean, and thus obtained matrices of the form 

- - 
Di j '~in(i, j) . Since their development was followed in 

the generalization (47)-(60), their results can be gotten 

by setting p = 1 and n = 1 - 
j j 

pj for all j. 



The matrix (51) is essentially the same as one analyzed 

by Roy and Sarhan [16] (see also [l], p. 222) : 

where the {ci,d.) are given constants easily related to 
1 

A i l p i .  They show that Dij has the triangular decomposition: 

with, in our notation: 

and 

From this, it follows that D - ~ ,  and thus A - ~ ,  are tridiagonal 

in form, so that efficient methods of computing the inverse (7) 

are possible. 

In its continuous integral-operator form, (51) is the 

covariance of the so-called Gauss-Markov processes, which 

are used extensively in modelling communication detection and 

estimation problems, as well as control and regulation problems 

[12], [13]. The typical optimal prediction problem leads to 



a continuous operator version of ( 7 ) ,  a Fredholm integral 

equation of the second kind. The recognized importance of 

the form (51) is that a factorization similar to (64) is 

possible, and this leads to simplified computations via a 

nonlinear Ricatti differential equation, whose properties 

have been extensively investigated. (I would like to thank 

J. Casti for these references.) 

Generalizations 

A natural generalization of (46) is to permit f n+l 
to 

be predicted by a  ord order recursion relationship, using 
fntfn-ll --• ffn-K+~I and xn. This leads to a generalized 

version of (49), which links together K+l successive Dij in 

the same row, and to more complicated versions of (541, 

linking together the otherwise arbitrary E and Dij, for ii 

(j 5 i+K-1). Although these results are easy to obtain, 

they are not particularly instructive in the absence of a 

model which might generate these forms. Electrical engineers, 

however, would he interested in such "realizable filters" as 

approximations to theoretically exact predictors. More 

complicated, but usually stationary, predictive models are 

used in the ARIMA forms of time series analysis [ 2 ] .  

In another direction, one can develop a matrix general- 

ization of (46) similar to that of Model I. This would be 

natural for multidimensional problems which might have a 

simple covariance of means as between time periods, but not 

between different dimensions in the same time period. Further 

details are left to the reader. 



Application in Collective Risk Forecasting 

To illustrate how a collective risk model can lead to the 

form (51) and a forecast (61), we generalize an evolutionary 

model [ll] due to Gerber and Jones [6]. (See also [18] . )  

In contrast to the previous assumption of a fixed risk 

parameter 0, we now assume that the parameter for a given 

sample is allowed to change over time according to a known 

law, giving 01102t...10n10n+11...; the likelihood, given 0, 

may or may not change. Specifically, we suppose that the 

evolutionary mechanism provides a sequence of mutually 

independent scale and location shifts {K ,oi} to the location i 

parameters, {mi(Oi)}t of the {5i}, so that: 

and Oi-l and { K ~ ~ ~ ~ ; K ~ + ~  loi+l;...} are mutually independent. 

Further, assume that the first two moments of the shifts 

are given: 

Var 

for i = 1,2, .... It follows easily from the definitions that: 



and 

(71) 

where the last product in both formulas is to be interpreted 

as unity when j = 2. More importantly, the general term for 

the covariance of the means is: 

so that the problem is of form (51). 

Note specifically that it was not assumed that 

- ci - ~ ~ c ~ - ~  + ai, given Bit SO that the mean variances E ii 

may vary in any desired manner. 

In the Gerber and Jones model [6], si = Hi = 0, Gi = G 

and ki = 1 for all i, which leads to the simpler matrix form 

described earlier. 

Gerber and Jones are also interested in special models 

which lead to geometric weights, instead of the usual credi- 

n- j bility form (26). From (60) we see that ai (n) = PIT , 

Successive Eii and Dii must satisfy a relation similar to (55). 

If, in addition, we require that Eii = E for all i, it follows 

i- 1 
that Dii = (IT + p )  Dll in order to obtain geometric weights 

for all n. Finally, many families of (Airpi) are asymptoti- 

cally geometric, when (56) and (59) have stable fixed-point 

solutions [6]. 



A surprising result is obtained if we take 

- - 
Dij -D~in(i,j) ,Min(i,j) and Eii-Ei-l,i-l - (i-1) (Dii - Di-l,i-l 1 

for all it j. Then we find pn = 1 - r = n-l, and obtain the 
n 

forecasts: 

In insurance terminology, this forecast is "fully credible", 

because once the sample data become available, only it is 

used, and nothing about the collective need be known. 



CONCLUSION 

To summarize, the first class of covariance matrices, 

whose off-diagonal elements are Dij = aiD 00 'j is included 

in the second class, whose elements are Dij = hnin(i,j)"axx(i,j). 

However, the first class has the advantage that the optimal 

forecast coefficients can be computed once and for all, for 

all n; furthermore, the essential simplification is a 

property only of the covariance matrix, and thus will apply 

also to more general regression problems. The second class 

of covariance matrices uses explicitly the symmetry property, 

and the fact that the forecast RHS is a portion of the new 

column for the covariance matrix of higher order; this leads 

to a simple recursion relationship between forecasts in 

successive time periods. 

Perhaps in this era of rapid digital computation, there 

is little need to stress computational simplicity of certain 

models. However, one is always interested in comparing model 

elaborations with simpler results, which requires a closed 

form, or in deducing asymptotic behavior, which requires at 

least some simple underlying structure. One interesting 

direction, not considered here, is to what extent the second 

class of matrices could "adequately" represent a more 

complicated covariance structure in providing forecasts. It 

will also be interesting to see whether more general matrix 

structures arise in practice, and are easily solved by methods 

not considered here. 
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