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IIASA STUDIES IN ADAPTIVE DYNAMICS No. 9 

IIASA has initiated a new research 
activity to foster the development of 
new mathematical and conceptual 
techniques for understanding the 
evolution of complex adaptive systems. 
Focusing on the long-term implications 
of adaptive processes for systems of 
limited growth, the Adaptive Dynamics 
Network brings together international 
scientists and institutions with IIASA 
acting as the central node. 
Scientific progress within the network 
will be reported i.a. in a preprintlreprint 
series published as IIASA Working 
Papers or Research Reports. 

The pivotal role of evolutionary theory in the life-sciences derives from its capability to 
provide causal explanations for phenomena that are highly improbable in the physico- 
chemical sense. Yet, till recently many facts in biology could not be accounted for in 
the light of evolution. Just as physicists for a long time ignored the presence of chaos, 
these biological phenomena were basically not perceived by biologists. 
Two examples may illustrate this assertion. Although Danvin's publication, sparking of 
the whole evolutionary revolution, was called "The Origin of Species", ironically, the 
population genetical framework underlying the Modern Synthesis holds no clues to 
speciation events. A second, more recently appreciated issue are the jump increases in 
biological complexity that result from the aggregation of individuals into mutualistic 
wholes. 
These and many more problems possess a common source: the interactions between 
individuals are bound to change the environments these individuals have to live in. By 
closing the feedback-loop within the evolutionary explanation, a new mathematical 
theory for the evolution of complex adaptive systems arises. 
Adaptive dynamics are a novel class of stochastic dynamical systems specially 
designed to describe processes of innovation akin to biological evolution, with 
particular emphasis on the effects of the environmental feedback loop. 
A commitment to interfacing the theory to empirical applications arises both from the 
necessity of validation and from its relevance to management problems. For instance, 
empirical evidence indicates that for the control of pests and diseases or the sustainable 
harvesting of renewable resources evolutionary deliberation becomes crucial already on 
the timescale of two decades. 
The Adaptive Dynamics Network has as its primary objective the development of 
mathematical tools for the analysis of adaptive systems inside and outside the 
biological realm. 
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ABSTRACT 

One of the most difficult problems of sociobiology is to understand the emergence of 

cooperation in a nonsocial world. For this purpose, the iterated Prisoner's Dilemma (IPD) 

game has proved to be a hitfbl  tool of investigation. The outcome of this game is 

basically determined by the probability w of repeated interactions between players. 

Traditional models of the IPD game neglect factors that are likely to influence y, including 

spatial mobility of players and their rate of mortality. More sophisticated models that 

involve changing partners because of movement and death conclude that population 

mixing due to individual mobility limits cooperation. However these models represent 

space only implicitly, without keeping track of the exact positions of organisms. Here we 

develop a dynarnical model of the IPD where temporal and spatial variations in the 

population are explicitly considered. This model accounts for the stochastic motion of 

individuals and the non-randomness of local interactions; it makes the probability of 

repeated interactions dependent upon the player's behavior and life cycle; and it allows 

investigation on the outcome of the game of basic traits of the life-cycle (death rate, 

interaction time) and environment (carrying capacity). The model is first used to derive a 

spatial version of the Hamilton's rule for the increase of cooperation, represented by 

individuals playing tit-for-tat (m) and initially organized in a small cluster, against 

unconditional defection (always-defect strategy, AD). We find that a threshold level of 

mobility in AD players is required to beget invasion by m. Furthermore, the level of 

mobility in successfbl newcomers must be approximately equal or somewhat higher 

than that of resident defectors. Substantial mobility promotes the assortment of 

pioneers on the fiont of invasion, and of intruders in the core of a cooperative cluster. 

It also maximizes the likelihood of TFT retaliation. If players are able to adjust their 

mobility rate, TFT individuals arriving in a cluster will benefit fiom increasing their own as 

the cluster spreads out. Once this first step whereby takes over is completed, 
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more generous and perhaps more suspicious strategies may outperform and displace m. 
We derive the conditions under which this continued evolution of more robust cooperative 

strategies occurs. For a second cooperative strategy to invade and replace in spatially 

homogeneous populations, a third strategy-with characteristics specific to those of the 

potential invader-must be present or else invasion will not occur. However, in spatially 

heterogeneous populations this strategic heterogeneity is not required to pass through 

JFJ on the way to more robust forms of cooperation. 
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INTRODUCTION 

One of the most difficult problems of sociobiology is to understand the emergence of 

cooperation in a nonsocial world. For this purpose, the iterated Prisoner's Dilemma (PD) 

game has proved to be a fruithl tool of investigation. In a well-known computer 

tournament that simulated an IPD, the simple strategy "tit-for-tat" (m) did 

outstandingly well (Axelrod 1980). m ,  which initiates a partnership by cooperating and 

next imitates its partner's behavior, has become a leading paradigm for cooperative 

behavior based on reciprocation between unrelated individuals. Further analytical work 

(Boyd and Lorberbaum 1987) and new computer tournaments (Nowak and Sigmund 

1992, 1993), have shown that TFT plays a pivotal role in an evolution of cooperation. In a 

scenario where the unconditionally defective strategy "always-defect" (m) is initially 

common, the emergence of TFT must be the first step towards sociality. Once established, 

m paves the way for more robust forms of reciprocal altruism, represented by strategies 

like "generous tit-for-tat" (GTFT) prone, with a certain probability, to forgive a defective 

act. In order to explain the emergence of any form of cooperative behavior, it is therefore 

crucial to understand how TFT can gain a foothold in a world of egoists, and how it can 

effectively serve as a stepping stone for the establishment of more generous strategies. 

The first problem is that a world of u s  can always resist invasion by any cooperative 

strategy if the newcomers (mutants, immigrants) arrive one at a time. Axelrod and 

Hamilton (198 1) argued that newcomers must arrive in small clusters to have a chance of 

spreading. By comparing the fitness of a TFT player within a cluster, to the average fitness 

of defectors over the whole population, Axelrod (198 1) even suggested that invasion of 

AD by clusters of TFT should be very easy. There is one basic problem with this 

approach, however, when cast in an explicit spatial framework. Because the payoff to 

defectors is averaged over the whole population, it does not reflect the local payoff to AD 

in the vicinity of the TFT cluster. Even if is initially rare in the population, the 



Ferriere & Michod 

proportion of interactions between and jFJ cannot be seen as a negligible second- 

order term in the payoff balance of the game when it is computed locally, in the vicinity of 

the cluster-and one can expect this local balance to be of critical importance to 

determining whether the cluster will grow and spread out, or collapse. 

There is a second more basic problem with the IPD paradigm as typically 

implemented in studies of cooperation and that is that the basic biological issues are 

treated as a priori constants. For example, a central issue in determining the outcome of 

the game is the probability of continuing the game with the same partner, w. Basic 

individual features like survival and mobility influence w, but are commonly ignored 

(Houston 1993). In our work w emerges from these more basic individual features and the 

dynamics of interactions in time and space. 

Attempts to remedy these problems have been recently initiated. Under the 

assumptions of random interactions, Dugatkin and Wilson (1991) and Enquist and Leimar 

(1993) have considered a version of the IPD between sedentary m s  and mobile a s .  

They have shown that when a selfish organism is free to terminate an interaction by 

moving to a new location, one may expect the evolution of "roving" or "free-rider" 

defectors, very efficient at exploiting and devastating clusters of naive cooperators. 

In a preliminary study, we introduced a model involving non-random interactions, 

mortality and potential mobility in both TFT and (Femere and Michod 1995). Our 

goal in the present paper is to further develop a general model of the IPD game which, 

while being as simple as possible, accounts for both spatial and temporal effects that arise 

from the local, non-random, nature of interactions, the mobility of players, and basic 

aspects of their life cycle (rate of mortality, rate of interaction). We apply this model to the 

evolution of TFT and AD to address whether a small, finite cluster of mobile m s  can 

spread from rarity in an infinite population of mobile D s .  Then we consider the stability 

of m, once established, against re-invasion by AD, as well as against a wide class of 
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strategies (the so-called "stochastic strategies", including GTFT) whose probability to 

cooperate depends on the opponent's previous move (Nowak 1990). 

THE SPATIAL ITERATED PRISONER'S DILEMMA 

In this section we develop a dynamical model of the IPD between two types of 

players (labeled as 1 and 2), which combines both temporal and spatial effects on the 

game. The main assumption is that the total population density of contestants is large and 

does not fluctuate dramatically in time and space. We are primarily concerned with 

strategies that are specified by the outcome of the previous round, but the model can be 

easily extended. 

Basic features of the IPD. -- In the IPD game, players have two options, cooperate or 

defect. If both players cooperate, both obtain R fitness units (the "reward payoff'); if both 

defect, each receives P_ (the "punishment payoff'); if one player cooperates and the other 

defects, the cooperator gets S (the "sucker's payoff') while the defector gets 1 (the 

"temptation payoff'). The payoff values are ranked T > R > P > S , and 2R > T + S . An 

additive cost-benefit parameterization of these payoffs will be usefil (Brown et al. 1982). 

Assume that a cooperator exhibits some behavior which benefits the fitness of his partner, 

the recipient, by b > 0 .  The benefit is independent of the recipient's behavior. By 

providing its partner with the benefit b, the cooperator incurs a cost, -c (c > 0). Again, 

this cost is independent of the recipient's behavior. An act of defection is assumed to 

bestow no benefit to the partner and to incur no cost to the actor. The total effect on 

fitness of a given interaction is assumed to be the sum of the appropriate terms; the 

increments to fitness are added to a baseline fitness taken to be one. With this 

parameterization, the payoff 1 results from receiving b from the cooperator but incuning 

nocost: T = l + b .  Similarly, onegets: R = l + b - c ,  P = 1 ,  S = l - c .  
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The population. -- Each individual occupies a position in space which is a function of - 
time. For simplicity, we consider a one-dimensional spatial axis, 5, so the population lies 

on a line, or at least any spatial variation is in one direction only. Let n,(x, t) and n,(x, t) 

(in short, n, and n,) denote the densities of types 1 and 2 at location x_ and time 1. As is 

commonly assumed in the theory of spatial population dynamics (Fife 1979), we assume 

that these densities are smooth functions of 5. The vector n has components n, and n, . - - 

The total population density at 5 and 1 is N = n, + n, . We assume that the carrying 

capacity IS has been attained, for any 5 and 1 (but, of course, the strategy-mix may 

change). As one strategy spreads through the population, there may be a small, temporary 

change in population density, without significant consequences on the conclusions of our 

model (Hutson and Vickers 1992, Femere and Michod 1995). 

-- Individuals move along the axis in a stochastic manner. We 

consider random motion in space as represented by a standard diffUsion approximation 

(e.g. Crank 1975). Individual mobility is quantified by a single parameter y, the so-called 

mobility rate. The probability that a certain distance is moved in the time & by an 

individual with mobility y :has the Gaussian distribution with mean 0 and variance a. 
In the most general situation, we assume that a moving individual incurs a cost of 

mobility, denoted by y and this cost may be a function of y, and thus it may vary across 

strategies. 

The life cycle. -- The life cycle is characterized by the instantaneous death rate ci, and 
7 

by the rate of interaction 1. The death rate is the same for all strategists, and is not affected 

by the game. Its main effect is on w, the probability of repeated interactions. Every 3 time 

units, two neighboring players engage in a new round of the game, and their fitness is 

increased or decreased in terms of reproductive success, according to the outcome of the 

round. Thus, 3 determines the timing of reproduction of an individual along its lifespan. 
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Local interactions. -- In the IPD where strategies are specified by the outcome of the 

previous round, a critical parameter is the probability y that a player interacts twice 

consecutively with the same partner (Axelrod & Hamilton 198 1, Brown et al. 1982). To 

model local interactions between players we regard space as subdivided into discrete 

contiguous cells, defined in such a way that each cell contains two players at any given time. 

Every z units of time, the two players in each cell interact. They play the game again on the - 

next interaction if they both survive and both end up in the same cell on the next interaction. 

This happens with probability w-an emergent variable which is a complicated nonlinear 

function of the mobility rates, death rate, interaction time and environment carrying capacity 

(see Appendix). This w is analogous to w in the standard IPD, the probability of continuing 

the game (Axelrod & Hamilton 1981). But the critical difference is that the original is an 

exogenous parameter imposed on the players (whatever their behavior or life cycle), in 

contrast to the derived, endogeneous w_ in our model. 

Temporal -- Temporal and spatial changes 

in strategy densities are modeled by a reaction-diffusion system which stems from the idea 

that the growth rate of a strategy depends upon how well individuals perform relative to 

the local average payoff (a view rooted in Fisher (1930) and elaborated by Vickers 

(1989)). Thus the equations involve a term representing population growth as determined 

by the outcome of the game, and a diffusion term which accounts for mobility: 

where 0, s 0, (x ,  t) and 0, = 0,(x, t) are the local payoff per unit time to type-1 and 

type-2, and - stands for 5 (x ,  t) , the average payoff per unit time of the population 

at g and 1, 
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For linear games (such as IPD) there is a matrix A = [aij],si,js2 , the so-called payoff 

matrix, such that the fitness terms in equations (2) become 

The aij 's are the payoffs per unit time to a type-i player against a type-j opponent (i, j = 1, 
- 

2). The notation ( ~ n ) ,  refers to the first component of the vector An (respectively the 
&-' v 

second component for ( ~ n ) , ) .  ( , ) denotes the scalar product of two vectors. The 
m- 

matrix A is entirely determined when the strategies 1 and 2 are specified. It will depend 
w 

upon the basic payoff of a single round of the IPD, as well as the other parameters of the 

game (probability of repeated interactions w, death rate d, interaction time $ carrying 

capacity ICY and any other variable involved in the definition of the strategies). A priori, A 
rn 

may vary in time and space. However, we will see that in games opposing TFT to AD or 

to stochastic strategies, A is actually constant. 
m 

- Providing a rigorous mathematical definition of 

invasion in spatial population models can be difficult. The usual ESS concept of 

evolutionary stability applies to spatially homogeneous populations, if newcomers (mutants, 

immigrants ...) arrive in small frequency and are uniformly distributed across space. Invasion 

in more realistic situations-such as a spatially heterogeneous population in which a finite 

number of potential invaders are initially localized in a small cluster-is more complicated. 

Vickers (1 989) showed that if the payoff matrix A is independent of space and time and 
rn 

there is exactly one ESS, this ESS is still stable when spatial heterogeneity is considered. 

However, if A defines a two-strategy game in which each pure strategy is an ESS, "spatial 
m 

dominance" of one ESS by the other may occur (Hutson & Vickers 1992; see also Vicker et 
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al. 1993). Spatial dominance means that a traveling wave propagates in the population 

which in effect replaces one ESS by the other. From a biological viewpoint, spatial 

dominance means that an initially small cluster of invaders will grow and eventually take 

over the resident strategy. 

In practice, the exploration of spatial dominance begins with the study of the spatially 

homogeneous system (the standard replicator equation, see Taylor and Jonker 1978), 

obtained by setting a2nl/dx2 = 8n2/dx2 = 0 in (1). The equilibrium solutions to this 

system are (o,I) and (1,0). Whenever a,, > a,, and a,, > a,, , both equilibria are 

asymptotically stable, which entails that both strategies would be ESSs in the spatially 

homogeneous game. In a spatially heterogeneous population, these equilibria may be 

connected by a traveling wave: spatial dominance then occurs. Hutson and Vickers (1992) 

provide the mathematical conditions for the existence of a traveling wave replacing type-2 

by type- 1. If 

(a11 - a21)/(a22 - a,,) > ~ ( P I I V ~ )  (4) 

where 8(p1 /v,), a complicated integral function, is well approximated by (p, /p'2)0'61 , 

then type-1 dominates type-2. Reversing inequality (4) provides the condition for type-2 

to dominate type-1. Thus, spatial dominance makes the two types exclusive (except in the 

degenerated case of equality in (4)). In addition, when type-1 is dominant, if it is less 

mobile than type-2 , the density of type-2, n,(x, t), is a monotonic function of 3 at any 

time 1 large enough ("monotone dominance"). In contrast, if type-1 is more mobile than 

type-2, n,(x, t) becomes a unimodal function of x for any large ("unimodal dominance"), 

displaying a unique maximum in the region of overlap between strategies 1 and 2 (a region 

that we call the "fringe" of the traveling wave). See figure 1. 
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INITIAL INCREASE OF TFT VS. AD IN THE SPATIAL IPD 

An individual playing TFT invariably cooperates when its partner is perceived as a 

stranger; when interacting with an individual recognized from a previous interaction, a JTJ 

behaves as did its partner on their previous encounter. The payoff matrix A for a spatial IPD 
rvYn 

opposing TFT and AD is calculated in the Appendix. There type-1 is (abbreviated in 

"T") and type-2 is AD ("Dm). Using the cost-benefit parameterization of the payoffs 1, k P, 
S introduced above, the conditions a,, > a,, and a,, > a,, reduce to - 

Under condition (5)' spatially dominates when (cf equation (4)) 

where w is given in the Appendix. 

Equation (6) provides a Hamilton's rule (Hamilton 1964, Michod and Hamilton 1980) 

for the increase of cooperation in a non-social, spatial environment. The left-hand side 

(hereafter denoted by HJ generalizes the coefficient of reciprocation defined for the standard 

IPD (Brown et al. 1982), which gives the probability that an individual's cooperative act is 

returned via reciprocation from other m s .  The right-hand side of (6) is the cost-benefit 

ratio of cooperation. The spatial Hamilton's rule (6) can hrther be extended to encompass 

the case of a cost to mobility dependent on mobility rates (see the Appendix). 

Combinations of & and iD that permit the spatial dominance by m of a resident 

AD population can be calculated from (6). For a given carrying capacity K and interaction - 

time - i7 and assuming that the death rate d is zero (which corresponds to a situation where 

an individual is engaged in infinitely many interactions during its lifetime), if values of pT 
- 

and pD are contained in the isocline of the coefficient of reciprocation (HJ at the level of the 

cost-benefit ratio c/b , then can invade AD (fig. 2). 
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An unexpected result is that mobility must exceed a minimum threshold, for to 

get a chance of invading the population (fig. 28). In other words, a background of 

sufficiently mobile defectors is needed for the emergence of cooperation. Under this 

condition, there exists a range of mobility rates for which can invade (fig. 2l3). Except 

if the c/b ratio nearly reaches the maximum value permitting invasion, the mobility of m ,  

pT , can be slightly smaller, equal or a lot larger than that of resident defectors p', (e.g., 
- - 

c/b = 0.21, the bold isocline in fig. 28). If c/b is very close to the maximum value - 

permitting invasion, then pT must be larger than p, (e.g. along the isocline inside the bold - - 
one in fig. 2A; note that the dotted line p, = p, lies out of this isocline). In this case, the 

invading range shifts to the right of the resident p, value. 

The effect of total population density, assessed by the carrying capacity K, can be 

discussed analytically. If K is increased by a factor K > 1 , a straightforward change of 

variable shows that w computed with this new carrying capacity is equal to w computed for 

K and new mobility rates ~ ~ p ,  and KIP,. Thus a higher density (larger K) results in a - 

isotropic squeeze towards the origin (with rate 1/K2 ) of the surface whose contours are 

pictured in figure 2_A. We therefore expect the biological facts to be left unchanged, since 

with higher density less mobility is required to achieve a certain number of encounters over a 

given period of time. Furthermore, the peak of the surface in question is unaltered. Thus the 

maximum cost-benefit ratio tolerated by the species for mobility rates begetting TFT 

invasion to exist, does not depend upon the total population density. 

We now examine how changes in d and ? affect the range of mobility rates p, 
7 - 

allowing invasion by J7?J (defined by equation 6). This can be done analytically by making 

use of an approximate expression of w derived in the Appendix which is valid for large K 

and mobilities that are not too small: 
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with 

By reporting equation (7a) into (6), we obtain an approximate but tractable condition for 

TFT to dominate in terms of yl and the mobility rates. Figure 3A shows how the - - 

critical values of c/b varies as a fbnction of yl . Increasing yl results in a wider range of 
- - - 

TFT mobility rates causing invasion; indeed the minimum mobility for invasion decreases, - 

and the maximum mobility increases. This pattern is generic and unaffected by changes in 

the value of $, . From equation (7b), it is apparent that an increase in yr occurs when 
L - 

either d or - :is decreased (fig. 33). Thus, decreased mortality or interaction time will 

increase the range of mobility rates allowing TFT to spatially dominate AD. Furthermore, a 

decrease -Ad in mortality along with an increase +AT in the interaction time can benefit 

TFT_, allowing for invasion for both lower and larger mobility rates, provided that 

with E = 1 + ll(2d-r) .' 

Finally, when the cost of mobility y depends on the mobility rate (but remains lower - 
than the cost of a cooperative act), the maximum rate of mobility i, begetting invasion - 
(for given i, ) decreases. Yet unexpectedly the minimum mobility rate required for - 
successfbl invasion by may be raised, and this happens when the cost-benefit ratio c/b 

of cooperation is high. These statements are mathematically substantiated in the Appendix. 
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WHY DOES MOBILITY HELP 'TFT INVADE AD? 

For the TFT strategy to prosper, there needs to be a high proportion of TFT-TFT 

pairings. Various mechanisms have been envisioned which increase the frequency of m- 
TFT pairings (Eshel and Cavalli-Sforza 1982; Feldman and Thomas 1987). A common 

expectation is that high mobility leads to random mixing, which should act against 

assortative encounters among TFTs, and therefore make it more difficult for to 

invade. Our results, however, run counter to this expectation. We argue that mobility helps 

the invasion process in spatially heterogeneous populations, because it increases 

(i) the likelihood of assortative encounters between moving TFTs that travel into the front 

of invasion, and moving ADS that intrude the core of the cluster; and (ii) the chance of 

retaliation by a against a moving AD. 

The successfbl invasion of a finite cluster of in an infinite population of 

requires pioneering moves towards the inhospitable surrounding area occupied only by 

at the front of invasion. This is the very essence of an effective spatial expansion. 

Therefore, of primary importance are pairings in this region, between individuals that 

come from the core of the cluster, and mobility appears to increase the likelihood of such 

assortments of m s  which are on a pioneering move. High (but not extreme) mobility 

maximizes the probability that two individuals move out of the core of the cluster and end 

up paired together on the front of invasion. 

In order to spread, TFT must primarily avoid being suckered. It may succeed in doing 

so, not only by playing itself, but also by retaliating. When retaliating, a will not 

perform worse than an AD playing itself. Therefore, even if retaliation does not entail an 

increase in TFT relative fitness, it prevents AD from doing better. Furthermore, retaliation 

does help the invasion process. Firstly, because as an AD undergoes retaliation, this 

individual is no longer available to interact with and sucker a naive m. This is especially 

valuable for the well-being of when it applies to &s that intrude the core of the 
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cluster: as they remain tied up with known m s ,  such ADS end up neutralized and 

incapable of exploiting naive m s .  Second, retaliation coupled with a move towards the 

front of invasion replays the Trojan horse metaphor: a is taken onto the fiont of 

invasion where u s  are still thriving, without facing the threat of getting paired there with 

a stranger AD. Again, we claim that significant, yet not extremely high, mobility increases 

the likelihood of retaliation against a moving defector. 

The explanations are based on a very simple auxiliary model of stochastic motion. This 

is designed to capture the key features of the players' difision process, while ignoring the 

effects of the game on the growth of the two strategies. Indeed our goal in setting up this 

model was to enable us to examine the sole effects of mobility on the invasion process on a 

microscopic scale (that of pairwise interactions), without resorting to numerical-and 

unavoidably parameter-dependent-simulations of the full model dynamics. 

The line occupied by the population is subdivided into discrete, contiguous cells. An 

individual may move from one cell to another, with a certain probability. If g denotes the 

probability of staying in place, let us assume that the probability of moving cells to the left 

or to the right is obtained by discounting g by a factor q" . For the series 
- 

{ p, pq, pq2, pq3, . .. } to be a probability distribution, it must sum up to 1, which 

imposes p = 1 - q . As shown in figure 4A for q = 0.1 and q = 0.6, this probability 

distribution is a space-discrete analog to the Gaussian distribution of distances moved that 

is involved in our full model. The variance of the latter was merely proportional to the 

diffusion rate y; here, the variance is still an increasing function of q, thus the parameter q 

can also be regarded as a measure of individual mobility." 

Let us consider a localized cluster of TFT individuals with motion probability q, 

spread over C contiguous cells. In agreement with our full model, each cell contains two 

+a 

li Here the variance of the d i m e  moved is qwl to 2 x  k2 pq , which, .An some algebp reduces to zq(l + q)/(l - q) . 
k = l  
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individuals. We first consider the cumulative probability Q that a TFT located in the 

cluster moves out and end up paired on the front of invasion with another also 

coming from the cluster. Q, computed in the Appendix, is shown on figure B (lower 

curve) as a fbnction of the motion probability q. This is a unimodal function, maximized at 

large values of q, which reaches higher values as C is increased. For example, with 

C = 20, the maximum (= 0.20) is obtained with q = 0.92. 

We wish to compare this probability Q of moving outward the cluster and getting 

paired with another individual from the cluster, with that, denoted by Q' of moving 

outward and not getting assorted. The ratio Q/Qt will tell us how more likely an 

individual is to make a successfbl pioneering move, instead of being suckered when 

settling down on the fiont of invasion. IfQII stands for the probability that a TFT picked 

at random in the cluster stays therein, Q, Q1 and 0"' are straightforwardly related: 

Q' = 1 - Q - Q" . Figure 4B portrays Q' and QII as fbnctions of q, for C = 5 . Like Q, the 

ratio Q/Q' , displayed in figure 4C, attains its maximum value for a high motion 

probability q. This maximum also increases as the size of cluster, C, increases. In 

conclusion, given a cluster size, an individual sees its chance of making a successfbl 

pioneering move maximized by moving at a substantial rate. Even more mobility will be 

helpful as the invasion progresses (increasing cluster size). 

We now turn to the effect of mobility on the likelihood of retaliation between moving 

players. Consider two individuals (a TFT and an a) initially located in the same cell, but 

characterized by different motion probabilities q, and q, . In the Appendix, we calculate the 
- - 

probability Q,,,, that they move away, making a jump of at least M cells, say, to the right, 

but remain paired together (fig. 5A). Figure 5B displays contours of the surface defined by 

Q,, as a fbnction of q, and q,, when M = 1 . It shows that Q,, is maximized at high 
- 

values of q, and q, (also, the larger M, the more peaked the surface). Thus, a has a 
- - 
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better chance of keeping track of and retaliating against a moving AD if both the AD'S and 

its own motion probabilities are high. 

Coming back to our full model, a final remark concerns the influence of mobility on the 

specific pattern of dominance (monotonous or unimodal). For given &J mobility, a low 

mobility in JFJ creates unimodal dominance by AD: the TFT distribution is humped over 

the fringe of the traveling wave, which creates a rich, easy-to-access diet of naive 

cooperators that &s entering the cluster can feed on. As mobility increases, TFT 
becomes dominant and, as long as pT remains lower than p, , dominance is monotonous. 

- - 

When pT exceeds p,, , dominance becomes unimodal again, with an accumulation of ADS - - 
over the fringe. This aggregation is dramatized as pT keeps on increasing, and that 

produces a "wall" of defectors in the fringe much harder to beat for JFJ. 

STABILITY OF TFT 

It has been suggested (Boyd and Lorberbaum 1987; Nowak and Sigmund 1992, 1993) 

that understanding how can gain a foothold in a population of AD is crucial to 

explaining the orinin of cooperation in the IPD game. A different issue is the maintenance of 

cooperation: once established, will be able to persist when facing the threat of new 

strategies entering the population? Re-invasion by &J is a particular aspect of this problem. 

More generally, Nowak (1 990) proposed to consider a restricted, yet widely scattered array 

of strategies for the IPD, the so-called "stochastic strategies," as test-opponents to probe 

the stability of TFT when common. 

In stochastic strategies, the decision to cooperate or defect in each round depends 

stochastically on the outcome of the previous round. This is meant to apply to biological 

situations where decisions are uncertain and subject to errors of judgment (or imperfect 

memory). A stochastic strategy is characterized by a pair of parameters (s,g) where s is 

the probability of cooperating on the first round, and, on subsequent rounds, of cooperating 
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if the partner cooperated on the previous round; g is the probability of cooperating if the 

partner defected on the previous round. The parameter g has been termed a measure of 

"generosity7' (Nowak 1990). For instance, TFT is (1,0) and is (0,0) . Running computer 

simulations of the standard non-spatial IPD, Nowak and Sigmund (1992) showed that TFT 
was invariably superseded by GTFT (s = 1, g > 0) , provided that other specific stochastic 

strategies were present in the population at low frequency. This is because a new strategy 

like GTFT is typically neutral when playing TFT and requires a third strategy with specific 

properties to gain an advantage over JFJ. Our point here is that spatial heterogeneity can 

also drive the evolutionary process from TFT towards more robust forms of cooperation, 

but without requiring such additional, rare strategies. 

So as to substantiate our statement, we shall first derive the analytical condition f?o 

TFT to dominate a stochastic strategy in the spatial IPD. Because the more general 

problem of a struggle between any two stochastic strategies is not harder, we will offer a 

solution to this general case. Let us consider two stochastic strategies (P,, q,) and 

(p2, q2 ) ,  with mobility rates p, and p2 respectively. We want to compute the expected - - 
payoff per interaction, eij , to strategy i when interacting with strategy j (i, j = 1, 2 ). We 

denote by E = (R,s,T,P)' the vector of payoffs for a single round of the PJl, and by w,, * - 
the probability that a i-player meets twice consecutively with the same j-partner. We also 
need introduce the Markovian matrix (see the Appendix) 3 given by 

- 
PiPj 4iPj Piqj qiqj 

f = 1 p i ( - )  ( P )  ~ i ( l - q , )  qi('-qj) 

(1- ~ i ) ~ j  (1-qi)pj ('-pi)qj (1-qi)qj 
I. (9) 

(l-pi)(1-pj) (1-qi)(l-pj) ( l - ~ i ) ( l - q j )  ('-qi)('-qj) 

Then the expected payoff eij is 
.d 

(where 3 stands for the identity matrix), and the condition for spatial dominance of 

strategy i by strategy i is similar to equation (4): 
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Numerical computations using (10) and (1 1) show the following results. First, in 

spatially homogeneous populations, there exist values of the mobility rates that make TFT 

stable against any stochastic strategy, all other parameters being kept fixed (if TFT is type- 1 

and the stochastic strategy is type-2, this reads e,, > e,, ). However, spatial heterogeneity 

makes it possible for generous, but somewhat "suspicious", strategies to dominate ??;T. 

This is demonstrated in figure 6. The set of stochastic strategies is covered by the whole 

square, with being located in the lower right comer. Values of mobility rates for 

and any alternative strategy were selected so that TFT could resist invasion by any 

stochastic strategy in a homogeneous population, that is, if newcomer stochastic players 

were uniformly spread over the whole population. Yet if the stochastic players amve in a 

small cluster, thereby creating spatial heterogeneity, any stochastic strategy picked in the 

shaded area will be able to invade m. Thus, spatial heterogeneity by itself can allow a 

suspicious-generous cooperative strategy to displace TFT, without requiring that other 

stochastic strategies be present in the population. In a forthcoming paper (Femere and 

Michod, manuscript in preparation), we will report on a more detailed study that makes use 

of the criterion of spatial invasion derived above to investigate the evolutionary dynamics 

through the entire space of stochastic strategies. 

The particular case of re-invasion by can be discussed more straightforwardly. 

Simply by reversing inequality (6) one obtains the condition for invasion by rare & of a 

TFT population. Indeed the concept of spatial dominance entails that any potential invader is - 

either successfbl and completely replaces the resident type, or is completely unearthed from 

the population-stable coexistence of the two strategies is excluded (Hutson and Vickers 

1992). Figure 2 8  shows that TFT is jeopardized by endowed with either high, or very 

low mobility, but not by defectors with mobility near its own. Also, JFJ is immune to 

invasion for a much wider range of AD mobility rates as m ' s  rate of mobility is raised. 



Feniere & Michod 

Thus, by moving at the highest possible rate, cooperators will find the most efficient 

protection against re-invasion by AD. 

DISCUSSION 

General comments 

In the IPD game studied here, the assumption of random interactions is relaxed, and 

spatial and temporal effects resulting fiom individual mobility (possibly entailing a cost) 

and mortality are explicitly incorporated. This is in contrast with previous studies of non- 

spatial P D  games which assume that a player repeatedly meets with a single opponent or 

a set of opponents drawn at random fiom the population. When the spatial dimension of a 

population is taken into account, which means that we keep track of the exact locations of 

organisms, meetings must be non-random and it is natural to regard interactions as taking 

place between near neighbors. Individual mobility and mortality affect the outcome of the 

game by influencing the likelihood that interactants meet again. 

By considering unconditional strategies, far simpler than m, previous work (Nowak 

and May 1992, 1993; Wilson et al. 1992) had already illustrated the importance of non- 

random, local interactions to the outcome of evolutionary conflicts. Nowak and May 

(1 992) studied an iterated two-strategy game between players who either always 

cooperate or always defect when interacting in a two-dimensional spatial array. While 

standard ESS theory, ignoring the spatial dimension, would predict that defectors should 

win the game, cellular automata simulations uncover the effect of local interactions with 

near neighbors by showing that "cooperate" and "defect" may both persist indefinitely 

(along chaotically changing spatial patterns). Wilson et al. (1992) also considered local 

interactions between altruistic and non-altruistic phenotypes in a two-dimensional array. 

Although Wilson et al.'s approach is not based on game theory, the altruistic and non- 

altruistic types they considered resemble TFT and more than they resemble 
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unconditional strategies. Like TFT and AD under condition ( 5 ) ,  each of the phenotypes 

considered in Wilson et al. (1992) has the highest fitness when it is in the majority, but 

populations composed entirely of altruists are more fit than populations composed entirely 

of non-altruists. Like in the standard IPD, in a single panmictic population such altruists 

could not take over unless they surmounted a substantial frequency threshold. However, 

Wilson et al.'s simulations showed that a small, localised cluster of altruists could invade. 

In fact, the cluster was not vulnerable to invasion by non-altruists while it could spread 

outward from the edges. Our results confirm Wilson et al.'s numerical experiments. 

In their approach to spatial effects in evolutionary games, Nowak and May (1992) 

and Wilson et al. (1992) focused on local interactions in which mobility was very 

restricted in nature. Diffusion was limited to offspring, and an offspring could take only 

one step from its birth site. Furthermore, generations were discrete. Thus, the possibility 

of successive rounds was ignored. In the theory of Vickers (1989), Hutson and Vickers 

(1992) and Vickers et al. (1993), on the other hand, multiple interactions were allowed 

for, and diffusion was described in a quantitative, more flexible fashion, but, unlike Nowak 

and May's (1992) and Wilson et al.'s (1992) models, the payoffs of the game were not 

made dependent upon the structure of local interactions. Our primary goal here was to 

develop a mathematical approach to the IPD that combined the effects of players' mobility 

with those of complex local interactions in spatial two-strategy games. 

Our model makes four key assumptions: (i) the game affects individual reproductive 

success, not the individual survivorship (hence we assume a constant intrinsic death rate d), 
(ii) a small interaction time - T, (iii) a large carrying capacity IC, and (iv) a total population 

density staying near K. Under these assumptions, we found a range of TFT mobility rates 

begetting spatial invasion in a resident population of m s ,  so long as is sufficiently 

mobile. Changing the environment carrying capacity K has no effect on this range. 

Increasing either the death rate or the interaction time (while keeping the other parameter 
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constant) makes matters more difficult for m ,  as it shrinks the range of TFT mobility rates 

that allow invasion. A higher instantaneous death rate not compensated by a shorter delay 

between encounters has a negative effect on the likelihood of repeated encounters in the 

game, thus on the chance that JFJ retaliates against a known &. However, we also found 

that a decrease in mortality along with an increase in the interaction time can benefit TFT, 

permitting invasion for both lower and larger mobility rates (see Eq. (8)). The consequence 

is the same if the mortality rate increases and the interactions time decreases. Both of these 

results make sense, in light of our auxiliary model of stochastic motion. Less mortality and 

more time between interactions may allow for more numerous and longer JFJ pioneering 

moves toward the front of invasion. Successfbl assortments between these "long-distance" 

pioneers is enhanced by more mobility. Indeed the probability that two players get assorted 

is maximized at a larger rate of mobility as the number of cells moved prior to assortment 

increases (i.e. increases in equation (A18)). On the other hand, reducing mortality may 

give suckered m s  a better chance to retaliate. Raising the interaction time, however, can 

be detrimental to this respect, because this amounts to leave more time to a defector for 

moving away from its TFT victim. Yet this effect is buffered when mobility rates are 

reduced (Q,, defined in the Appendix increases with mobilities) and this may explain why 

less mobility also allows JFJ to invade as d is decreased and ; is raised. - 
Although our model is limited to two-strategy games, the two strategies involved 

result in a variety of effects, depending upon the local spatial setting in which they occur. 

For example, in the TFT-AD spatial struggle, consider a suckered JFJ which gets a 

chance of retaliating against an AD. If the AD is moving to the core of the cluster, the 

retaliating TFT ties up the intruder and prevents him from exploiting a naive TFT in the 

cluster-in so doing, the m has neutralized a defector on a move that puts the cluster at 

risk. Retaliation against an that moves to the fiont of invasion is also valuable for the 

progress of the whole invasion wave, for it allows the retaliating TFT to make a safe move 
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to the front, protected by its partnership with a known AD. Thus a variety of effects 

emerge, whereby individuals playing a given strategy serve the invasion progress in 

different manners, depending on their location in space and their motion. This 

heterogeneity primarily results from the stochastic nature of mobility, which allows players 

to make moves of different lengths. Two individuals playing the same strategy but starting 

from different locations, can nonetheless get assorted in critical regions of the traveling 

wave. Spatial heterogeneity of behaviors in two-strategy games fbrther allows for the 

evolution of more robust cooperative strategies. Without mobility, additional strategies 

that are maintain (e.g. by mutation) as rare variants may operate to "catalyze" the 

evolution of such strategies once TFT has taken over (Boyd and Lorberbaum 1987, 

Nowak and Sigmund 1992, 1993). When mobility is explicitly represented, it turns out 

that the spatial heterogeneity of behaviors can make up for the lack of multiple strategies: 

among mobile players in a two-strategy game, no extra strategy may be required for the 

replacement of by stochastic strategies like GTFT. 
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The fact that players' mobility and life cycle may have a dramatic impact on the 

outcome of a game between Jl?J (or a variant thereof) and AD was suggested by Dugatkin 

and Wilson (1991) and Enquist and Leimar (1993). Yet those models have severe 

limitations: only AD players are mobile; mobility is represented implicitly through some 

traveling cost, and not explicitly in terms of a diffusion process; finally, only the question of 

the stability of JFJ against AD is addressed, not that of the initial increase of m. 
Dugatkin and Wilson's model (termed below the "DW model") assumes a population 

made up with an infinite number of patches, each of given constant size. JFJ is the resident 

strategy in that population. individuals are assumed to be sessile, whereas defectors can 

move fiom one individual to another within a patch, as well as fiom one patch to another. 

There is an inter-patch travel time during which no payoff can be achieved resulting in a cost 

to mobility. The DW model can make the classical assumption of ESS theory that 

encounters are random, because it assumes (i) that there are infinitely many patches, (ii) that 

patches are small enough for individuals within a patch to meet each other many times and 

(iii) that the patches visited by a defector are randomly sampled from the global population. 

Dugatkin and Wilson's conclusions indicate that if the travel time between patches is not 

prohibitive, ADS should take advantage of moving fiom patch to patch in search of naive 

m s .  Thus, one can expect the evolution of "roving" defectors, characterized by an optimal 

stay time within a patch. 

The DW model considers the moves of defectors between many possible clusters 

(patches), but it does not represent those occurring within a patch, where a defector may flip 

fiom one JFJ to another. Our model is findamentally different from the DW model, 

because we primarily deal with a single cluster or patch ( m - p u r e ,  or possibly mixing TFTs 

and a s )  settled in a uniform ocean of defectors. Thus inter-cluster mobility is irrelevant to 

our case. Instead, our model emphasis is on intra-cluster mobility. This difference between 
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the models is critical, because intra-cluster mobility sets up the dynamics of encounters 

within and around the fringe of the traveling wave, and this appears to determine the 

outcome of the invasion process. 

Enquist and Leimar (1993) have also studied the stability of cooperation once 

established. The cooperative strategy they consider consists in cooperating on the first 

round; if the partner reply is defection, the cooperator interrupts the interaction and the 

defector must move away in search of another cooperating individual to exploit. Once two 

players start interacting, Enquist and Leimar say that a "coalition" has been formed. The 

average duration of a coalition between two cooperators is referred to as the "coalition 
, 

time". In our framework, the coalition time of is determined by the interaction time r , - 
mortality rate d and mobility rate &. Increasing J, would decrease the coalition time. - - 

Also, Enquist and Leimar define the "search time", as the mean time taken for a defector to 

find a cooperator to interact with. The search time of Enquist and Leimar has no 

straightforward equivalent in our model, but we can interpret our model in this way. For an 

AD the search time would be equal to the time spent being paired consecutively with other - 

Bplaye r s  and unable to sucker m s .  In a population in which &J is rare (this being 

Enquist and Leimar's assumption), this search time is approximately equal to the time spent 

remaining paired with the same& Using notations from our auxiliary model, the search 

time for a defector would thus be Qpay r + QiUr+. . . = r QPU / ( I  - QPay) , where Q, 
- 

denotes the probability that two individuals with motion probabilities q, moving or not, meet 

again on the next interaction: Q, = (1 - q)' { l  + (1/2)[q2/(l- q2 ) ] } .  This search time 

decreases as the motion probability increases. Enquist and Leimar conclude that a longer 

search time for defectors and a longer coalition time for cooperators favor cooperation. In 

our model, maximum search time and maximum coalition time are achieved for zero 

mobility in both and m. In this respect, our results are at odds with Enquist and 

Leimar's. However, in our approach, mobilities not only influence cooperators' coalition 
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time and defectors' search time, but also affect the likelihood of TFT pairings on the front of 

invasion, that of assortments in the core of the cluster and that of JFJs keeping track of 

ADS. The bottom line is that maximizing those three quantities, which require mobilities to - 

exceed critical minima, is more important at determining the success of a spatial invasion of 

than minimizing the coalition time and the search time. 

Most recently, Hutson and Vickers (1995) have investigated a spatial version of the 

similar to ours. While we aimed at developing a model tractable by purely analytical 

means, Hutson and Vicker's approach is mainly numerical. Our spatial version of Hamilton's 

rule (Eq. (6))  was grounded on the assumption that the population has reached, or stays 

near the environment's carrying capacity K. The model designed by Hutson and Vicker does 

not resort to this assumption, but, in return, writes as a more complicated set of differential 

equations which no longer belongs to the class of "replicator-difision" systems. Computer 

simulations confirm the possibility of invasion by m, and hrther uncover that of the long- 

term stable coexistence of and AD. 
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APPENDIX 

For the purpose of defining local interactions between players, it is convenient to 

regard space as subdivided into discrete contiguous cells of size L such that, 

approximately, each cell contains two individuals at any time (hence L = 2/K ). This 

representation is possible through the assumption that the total population has attained the 

environment carrying capacity 5( (constant and uniform over space) and may fluctuate 

only mildly around it. Two interacting individuals will play each other again on the next 

round if, after time ; has elapsed, they end up in a same cell again. - 
Given that a type-1 player located at xt at time interacts with a type-2 located at y, - - 

at time 1, we are looking for the probability that the type-1 meets with the same type-2 on 

its next interaction (at time t + t ) .  This probability is equal to the probability that the type- 

2 survives over the time interval [t, t + r] , times the probability that, assuming it does 

survive, it stands in the cell occupied by type-1 at t + t .  The former is e-dT. The latter can 

be written as the conditional probability 

where [z] denotes the integer part of and X = x/L . (Here we have assumed, without - 

loss of generality, that the origin of the spatial axis coincides with a boundary point of one 

of the cells.) We first re-condition - % (for handling conditional probabilities, see Chung 

1979) with respect to x,+, . By introducing the Gaussian distribution of the difision - 

process, we get 
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The possible initial positions y, are equally likely over [ [x,]L , ([x,] + 1)L ] , thus - 

as we make use, once again, of the Gaussian distribution which defines the mobility rates. 

The approximation [x, + </L] a [x,] + E,/L has minor effects as long as GI and A are - - 
not too close to zero and/or K is large enough, so that the Gaussian functions involved in 

the above integral are not too peaked and/or the intervals of integration are short enough. 

This approximation together with the changes of variable u: = u - [x,]L and 

v: = v - [x,]L - E, finally yield 

1 
(V+<-u)2 €,l -- -- 

G = e 4 T 2  e 4w1 dE, du dv, 
~ ~ L J X  3 .  (, 

(U.V)E[O.L]~ 

from which we get 

I ( C - U ) ~  ( t - v ) =  
~ e - ~ '  -+- 

W = III - [  ' 'b2 1 du dv d< 
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Let us set E = 1/K. We seek an asymptotic development of 

e-dr 111 W = (A6) 
8 r n 8 d L Z  ,, -- 3 . (u.v)4-...I1 . . 

for small g. Let us set o, = ,/%, a, = and f= . Then we have 

e-& 28 , CGR dc [ &GI rL"du][ u=-s 
rL%fdv]. (A7 w =  - 

0 
.=-. 

We will denote the terms between parentheses by F,(E) and ~ ~ ( 5 )  respectively. Thus we 

have 

A straightforward change of variables gives 

We now expand the integrand in E around E = 0,  and integrate. The leading-order term is 

the width of the interval (that is, 28/oi ) times the hnction value at the mid-point, 

exp(-c2/20') . Higher order terms in g also have the same exponential prefactor, so they 

can be safely integrated over 5 and the result will still be higher order in g. Then we find 

Substituting into (A8) gives 

\ which yields 
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Equation (7) ensues. Notice that the requirement w S 1 does impose a restriction on the 

domain of validity of this approximation, namely that JL, and JL; be not too small -- an - - 

assumption we already had to put forward when we calculated the exact expression (A5) 

In order to calculate 0, in equation (I), let us consider a TFT player located at g at - 

time 1. To this location corresponds a discrete cell in which only two individuals are 

standing. The TFT individual interacts with the other player who is present in the same cell 

and who is located at y at this moment. With probability nT(y, t ) / ~ ( ~ ,  t) , the other 

partner plays TFT too; with probability nD(y, t ) / ~ ( ~ ,  t) , it plays . Under the 

assumptions that the densities n, and n, vary smoothly over space, and that the length - - 

of a cell L_ is small enough (large K), we have the first-order approximations 

n,(y, t)/N(y, t) = n,(x, t)/N(x, t) and n,(y, t)/N(y, t) = n,(x, t)/N(x, t) . If, in effect, the 

partner is a the first player will receive a payoff of B over the time period ,;, 
7 

Yet this payoff has to be discounted by the cost of mobility, y, defined per interaction. 

Should the partner be an AD, the payoff earned by the will be P - y if the 

interactant is recognized from the previous encounter (TFT retaliates). This happens with 

probability w. With probability 1 - w , the TFT interacts with a stranger and gets the 

sucker's payoff S - y . A payoff is earned if the player survives over the interaction time, 

which happens with probability c. Overall, the payoff per unit time obtained by the TFT 

player is given by 

where p = e - d ~ / i .  Likewise, we have 

Deriving 9 is then straightforward. Payoff matrix entries follow readily: 
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a,, = PR (A 14a) 

a12 = P [ ~ ( P  - Y) + (1 - w)(s - y )] (A14b) 

a,, = P[W(P-y)+(l-w)(T-Y)] 
< 

Our nominal case assumes a cost of mobility independent of the mobility rate. Let us 

consider a fixed value of defectors mobility p,. Then the range of p, begetting invasion is - - 
an interval, denoted by [p)", y"], which corresponds to the portion of the curve defined 

by the left-hand side of equation (6),  that lies above the constant level c/b (fig. Al). Now - 

let us assume that the cost of mobility does depend on the mobility rate. Using the cost- 

benefit parametrization of the payoffs 1, % P_, s introduced above, the conditions a,, > a?, 

and a?, > a,, read 

When ( A t 9  is met, can dominate according to equation (4). This happens 

when re2 C +let. r - - ,  q u 
w c AY 1 + i ( p T / p D )  

flat& > - + -  (A 16) 
y~~ . .- . .- - 1 + ( 1 )  / b b 1 + (1-W) ~ ( P T / v D )  

? --- 
Ay stands for the difference of the costs paid for moving at rates y, and pD : - - - 

We keep on considering a given value of pD . It must be noticed that Ay: is an 
- - 

increasing hnction of p, , null at p, = pD.  We first show that condition (A1 5) is matched 
- 

for any value of p, belonging to [p~;", p;-], provided that the cost of mobility y(p) does 
- 

not increase too rapidly with p . Let us first address the case of values of p, smaller than - - 



p, . Then the left-hand side of (AZO) is satisfied if A ~ '  remains small enough; precisely we - - 
request that A$ takes on a value larger than - -c at p, = 0 ,  i.e., y(pD) < c . The right-hand 

- 

side will hold true for any & such that w > c/b . As we increase if such that we just pass 
- - 

'c 

the resident defectors mobility Ci, , Af/b becomes positive and the left-hand inequality -- 
9 .  involved in (A1 5) is automatically matched. If at p, = &, , y is still 2 c/b , and if y(p,) 

increases slowly enough as & increases, then the right-hand inequality will be satisfied as - 
well. Finally, we have w > c/b for any p, in [p;", iya] ,  because the denominator of the 

7 

left-hand side of (A16) is greater than 1 

Next we discuss the effect of a mobility-dependent cost of mobility on inequality (A16). 

The right hand-side of (A16) is an increasing function of the mobility rate i, that is - 

represented by the thin curve in fig. Al. Here, the inequality (A16) is satisfied when the 
thick curve is above the thin one. Geometrically, [e, i i f~"] is shifted to the left when p; 

- 

lies in [p;", p ~ ~ ]  (fig. Al, panel A), whereas [ji,"", j i ~ ~ ]  is narrower when pD is smaller 
- 

than p,"" (fig. Al, panel B). In the latter case, if the cost of mobility increases rapidly, there 

may be no mobility rate satis@ng condition (A16); then the thin line would be above the 

thick curve in fig. Al, panel B. 
Derivation of Q, Q7, QII, Q,,, -- 
We take the right edge of the cluster as the origin along the axis. From this origin, the 

cells on the left that define the cluster are numbered 1, 2, ..., C. C defines the size of the 

cluster, in number of cells. The cells on the right (right part of the fiont of invasion) are 

generically indexed by m (a = 1, 2, ...). The probability that a located in cell i within 

the cluster, gets paired in cell on the right front with a partner from the cluster is 

1 -(I - q)qm+i-' [(1 - q)qm+...+-(1 1 - q)qm+i-l+...+(l - q)q m+C-l 

2 2 

1 
I 

(A181 

'-I I 
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The probability that an individual located in cell i within the cluster, gets paired in cell 

on the right front with a player from the cluster too, is obtained by summing these terms for 

m = 1, 2, ... Then the cumulative probability Q follows by taking the average over varying - 

from 1 to (2- and using the symmetry of the front of invasion (which extends on the left and 

on the right of the cluster). We obtain 

To get the expression of Q', we notice that the probability that an individual located 

in cell within the cluster remains inside, is 

By averaging these terms over i running fiom 1 to C, we get 

Finally, by definition of Q,,, we have: 

which recasts into 

In a game involving two stochastic strategies, the behavior of each player on a given 

round is determined by the whole history of past encounters between these two players. 

We keep on assuming that player's memory is limited to the last round of the game. Let us 

recall the notations introduced in the main text: E = (R, S, T, P)' is the vector of payoffs 
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for a single round of the IPD. and wij is the probability that a i-player meets twice 

consecutively with the same 1-partner. If the two players have not met on the previous 

interaction (which happens with probability 1 - wij), the payoff to i is: B if both i and i 

cooperate (a situation we call the "CC state"); if i cooperates while i defects (CD state); 

T if 1 defects whereas 1 cooperates (DC state); P if both individuals defect @D state). - 
Furthermore, the probability of the CC state is pipj ; that of CD is p i ( l  - p j )  ; DC, 

- 
(1 - pi)pj  ; DD, (1 - pi)(l - p j ) .  Now, if the two players have met on the previous 

interaction, but not on the other one before (probability (1 - wij)wij), the probabilities of 

the states CC, CD, DC and DD can be obtained by regarding the successive interactions of 

the two players as a Markov chain on the state space CC, CD, DC, DD (see Nowak 

1990). On the previous interaction, the probabilities of each state were exactly the simple 

ones explicated above; we denote them by n:, n:, x;, x i .  Thus, the probabilities that we 
.a 

are now looking for are merely given by the components of #,xi,, where xi is the vector 
f w * 

(x: , +;, 4, xi)' and 3'. designates the transition matrix of the Markov process (Nowak 
&A 

1990), given by equation (9). More generally, the probability that the two players met 
exactly k times consecutively prior to the current round is (1 - wij)w;, and the 

probabilities of the state CC, CD, DC, DD on the current play are given by the 
I ' 

components of the vector qkx i j  . Finally, the expected payoff eij is - - 

which yields equation (10). 



Femere & Michod 

LITERATURE CITED 

Axelrod, R 1980. Effective choices in the Prisoner's Dilemma. Journal of Conflict 

Resolution 243-25. 

Axelrod, R. 198 1 .  The emergence of cooperation among egoists. The American Political 

Science Review 75 : 3 06-3 18. 

Axelrod, R. 1984. The evolution of Cooperation. Basic Books, New York. 

Axelrod, R., and W. D. Hamilton. 198 1 .  The evolution of cooperation. Science 

(Washington, D. C.) 21 1 : 1290-1296. 

Boyd, R., and J. Lorberbaum. 1987. No pure strategy is evolutionarily stable in the 

repeated Prisoner's Dilemma game. Nature (London) 327:58-59. 

Brown, J. S., M. J. Sanderson, and R. E. Michod. 1982. Evolution of social behavior by 

reciprocation. Journal of Theoretical Biology 99: 3 19-3 39. 

Chung, K. L. 1979. Elementary Probability Theory with Stochastic Processes. Springer- 

Verlag, New York. 

Crank, J. 1975. The Mathematics of Di&sion. Clarendon Press, Oxford. 

Dugatkin, L. A., and D. S. Wilson. 1991. ROVER: A strategy for exploiting cooperators 

in a patchy environment. The American Naturalist 138:687-70 1 .  

Enquist, M., and 0 .  Leimar. 1993. The evolution of cooperation in mobile organisms. 

Animal Behavior 45:747-757. 

Eshel, I., and L. L. Cavalli-Sforza. 1982. Assortment of encounters and the evolution of 

cooperativeness. Proceedings of the National Academy of Sciences of the USA 

791133 1-1335. 

Feldman, M. W., and E. A. C. Thomas. 1987. Behavior-dependent contexts for repeated 

plays of the Prisoner's Dilemma 11: Dynamical aspects of the evolution of 

cooperation. Journal of Theoretical Biology 128:297-3 15. 



Ferriere & Michod 3 7 

Femere, R., and R. E. Michod. 1995. Invading wave of cooperation in a spatial iterated 

prisoner's dilemma. Proceedings of the Royal Society of London B 259:77-83. 

Fife, P. C. 1979. Mathematical Aspects of Reacting and Difising Systems. Lecture Notes 

in Biomathematics, vol. 28. Springer-Verlag, Berlin. 

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford. 

Hamilton, W. D. 1964. The genetical evolution of social behaviour. Journal of Theoretical 

Biology 7: 1-52. 

Houston, A. I. 1993. Mobility limits cooperation. Trends in Ecology and Evolution 8: 194- 

196. 

Hutson, V. C. L., and Vickers, G. T. 1992. Travelling waves and the dominance of ESS's. 

Journal of Mathematical Biology 30:457-47 1. 

Hutson, V. C. L., and Vickers, G. T. 1995. The spatial struggle of Tit-for-Tat and Defect. 

Philosophical Transactions of the Royal Society of London B 348:393-404 

Michod, R. E., and W. D. Hamilton. 1980. Coefficient of relatedness in sociobiology. 

Nature (London) 288:694-697. 

Nowak, M. A. 1990. Stochastic strategies in the Prisoner's Dilemma. Theoretical 

Population Biology 38:93- 1 12. 

Nowak, M. A., and R. M. May. 1992. Evolutionary games and spatial chaos. Nature 

(London) 359:826-829. 

Nowak, M. A., and R. M. May. 1993. The spatial dilemmas of evolution. International 

Journal of Bifurcations and Chaos, 3:35-78. 

Nowak, M. A., and K. Sigmund. 1992. Tit for tat in heterogeneous populations. Nature 

(London) 355:250-253. 

Nowak, M. A., and K. Sigmund. 1993. A strategy of win-stay, lose-shift that outperforms 

tit-for-tat in the Prisoner's Dilemma game. Nature (London) 364:56-58. 



Femere & Michod 38 

Taylor, P. D., and L. B. Jonker. 1978. Evolutionarily stable strategies and game dynamics. 

Mathematical Biosciences 40: 145- 156. 

Vickers, G. T. 1989. Spatial patterns and ESS's. Journal of Theoretical Biology 140: 129- 

135. 

Vickers, G. T., Hutson, V. C. L., and C. J. Budd. 1993. Spatial patterns in population 

conflicts. Journal of Mathematical Biology 3 1 :4 1 1-430. 

Wilson, D. S., Pollock, G. B., and L. A. Dugatkin. 1992. Can altruism evolve in purely 

viscous populations? Evolutionary Ecology 6:33 1-34 1 .  



Ferriere & Michod 

FIGURE LEGENDS 

Figure 1.- Travelling waves of invasion by tit-for-tat m) of a population of 

always-defect ( m ) .  A a invading wave develops when condition (4) (see text) is 

satisfied. The figures schematically portray snapshots of the distributions (density) of JFJ 

and along the spatial axis 5. Horizontal arrows indicate the way of progression of the 

TFT population. "Core" = region of pure m. "Fringe" = region of overlap between TFT 
and AD. "Front" = region of pure m. & the mobility rate iT of m is lower than that, - 

7 
p, , of 0: the travelling wave is monotone; El, pT > pD : the travelling wave is 
- 

unimodal, the density reaches a maximum value in the fiinge. 

Figure 2 . -  The combinations ( p, and i ,  ) of and m mobilities for spatial 

invasion by TFT of a resident AD population. The cost of mobility is constant. A 

Equidistant contours of the surface defined by the coefficient of reciprocation @ in 
;" 

equation (6)) for K = 0.25, f =  1 and d = 0 .  Ca. 0.0065 apart. For example, with 

c/b = 0.21 , mobility combinations within the bold contour allow T X  to invade AD, and 

arrows point to the range [p;", *"I of invading TFT mobilities when i, = 1 . B, Slice 

at p, = 1 . The range [p;", p;"] of mobility rates for which can invade corresponds 

to the portion of the curve located above the level fixed by the cost-benefit ratio (straight 

horizontal line.) 
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Figure 3.- A Coefficient of reciprocation as approximated by equation (7a), graphed 
4 

as a function of iT , for p, = 1 and different values of $ . For a given cost-benefit ratio - - 
(here exemplified by the horizontal line at c/b = 0.1), the range of mobility rates 

. R 

begetting invasion is defined like in figure 2E3; it appears to be widened as $' is - 

increased. E3, Contour plot of $, (equation (7b) with K = 4/fi), as a function of the - 
mortality rate d and the interaction time t - 

Figure 4.-- A Probability distribution of moves amplitude in the auxiliary model of 

stochastic motion, for q (motion probability) equal to 0.1 and 0.6. l3, Cumulative 

probabilities Q, a and as functions of q, for C = 5 (Eqq. (A19) and (A21)). Q = 

probability that a TFT picked at random in the cluster will move out and get assorted with 

another &om the cluster. a = probability that a TFT picked at random in the cluster 

will move out but will not get assorted with another TFT !?om the cluster. = 

probability that a TFT picked at random in the cluster will not move out of the cluster. C, 
Ratio Q/Q1 for different cluster sizes: C = 5, 10, 20, 50. 

Figure 5.-- A Tracking: two individuals characterized by different motion 

probabilities and initially located in the same cell, make a move of at least M cells and end 

up paired together again. B, Contours of the surface defined by Qreral(q, ,q2) for 

M = 1 (equation (A23)). 
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Figure 6.-- TFT versus stochastic strategies. A stochastic strategy is represented by a 

point in the (s, g) plane, where 1 - s measures the degree of suspiciousness of the 

strategy, and g, its degree of generosity. TFT is at (1,0), in the lower right comer of the 

panel. Shaded area shows the set of stochastic strategies able to dominate TFT in a 

spatially heterogeneous population. Simulations were run using the approximate value of 

w (equation (7a)) with y r =  3.0, and mobilities equal to 0.5 for all strategies; basic payoffs - 

T, & P, S were assigned traditional values 5, 3, 1, 0, respectively. 

Figure A1.-- Effect of making the cost of mobility dependent upon the mobility rate. 

Thick curve (3): schematic graph of the cost of reciprocation H given by the left-hand side 

of equation (A1 6). Thin curve (12): schematic graph of the generalized cost-benefit ratio 

given by the right-hand side of equation (A21). Horizontal line: &-level. The interval 

[by", GP] contains $T values that permit invasion by cooperators when the cost of 
- 

.? 1" 

mobility is independent of the mobility rate ( Ay = 0). The interval [ J;" , J,""] is the 

range of $, for which condition (A21) is satisfied, when the cost of mobility does depend - 
on the mobility rate. A iD lies in [P;", &"I. B, iD is smaller than p;" . 

- - - 
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