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1. Introduction 

Increasingly we are aware that the iarge systems we 

attempt to manage show signs of disastrous breakdown. For 

purposes of this discussion, we define disaster as the passage 

of some important systemic variable beyond a threshold of 

acceptability. Thus in managing the ecosystem, we may find 

that pollutants have killed all the fish; in managing the 

city, we may find that it becomes too noisy, dirty or crime- 

ridden to live in; a social service, such as the postal 

system, may break down altogether; a firm may go bankrupt. 

Yet it is naive to imagine that one can draw up lists 1 
of possible disasters, and make investments that will avert 

them, although this is the standard managerial approach. 

Some cities, for example, have appointed officials to "do 

something about noise." But noise is a product of how the 

city is, just as inflation is a product of how the social 

economy is and the naivete lies in contemplating such 

abstractions as noise and inflation as dragons walking abroad, 

who can be cut down by sufficiently intrepid knights. We 

have to find an approach to the total system in which our 

potential disasters are embedded. 
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The second problem -is that we car1 never be sure tha.t 

we have selected the right items to examine, or that the 

investments we are making will impinge on the potential dis- 

aster we most fear. Many such investmel~ts turn out t-o be 

counter-productive; tl12.5 is because tile bel-laviour of the 

total system in which the disaster is embedded is itself 

counter-intuitive. 

In this paper an attempt is made to find a set of 

conceptual tools for handling this apparently intangible 

situation, and to set up hypotheses that may be falsified. 

2. Dynamics of Disaster 

We may approach the problem of modelling the dynamics of 

disaster by considering first an ecological situation in which 

there were two main components living in a symbiotic relation- 

ship. These components were a coral reef and a starfish 

population called Crown of Thorns. 

It is assumed that this population varied through time; 

and, since it fed off the coral, it is assumed that the coral 

flourished in inverse proportion, thus: 

population 
B - coral - crown of thorns 

B, t irne 

The whole point about this arrangement was its stability: 

nothing disturbed the homeostzsis between the two protagonists. 

Note that we do not knob why - this w2s, because the embedding 

within the ecosystem was too complicated, only that it was. 



At some moment, the homeostasis broke down, and disaster 

very rapidly supervened for the coral: many miles of reef 

vanished in a very short time. 

It seems inevitable, then, that the cyclic dynamics of 

the Crown of Thorns popuiation exploded: the amplitude of the 

cycle increased, until it passed a threshold that produced 

catastrophic collapse in the coral. Thus: 

population 

coral 

threshold 

I Crown of Thorns 
I 

1 I p time 

3. Generalization of the Disaster Model 

In the management of all large organizations, homeostatic 

relationships may be detected between many variable factors. 

Indeed, the cybernetic attitude is that whatever stability 

they display is the outcome of the operation of a large number 

of interlocked homeostats, rather than the result of active 

managerial intervention. Active management is concerned with 

the objectives laid down upon the organization, and with 

meeting goals set for the organization. In manipulatinq 

the system for these purposes it often provokes instability 

in the internal homeostats rather than the reverse. 

Then let us make the hypothesis that a factor in a 

large system that undergoes catastrophic collapse (called CF, 



the collapsing factor) at some specific time is homeo- 

statically related to other factors, one of which (called 

IF, the implicated factor) passed beyond its physiological 

threshold at some earlier point in time. Thus: 

collapsing 

factor 

implicated 

factor 

physiological 

limit (IF) 

physiological 

limit (CF) 

In many situations it is clear that this model holds. 

For example, the catastrophic collapse of a population of 

fish in a lake (CF) means that the fish actually die upon 

passing the threshold of their physiological limit. Analysis 

may then reveal that they died from poisioning by a parti- 

cular pollutant (IF). Then it is certainly possible to 

specify what is the physiological limit (IF), and to observe 

by how much it was exceeded. 

But there are complications in other cases. If the 

population of people living in a city is the collapsing 

factor, it may well be possible to specify the CF physio- 

logical limit: it is the lowest number of people that keep 

the city viable. The implicated factor, however, will not 

be a single variable, but is almost certainly a set. Then 

to specify the IF physiological limit we shall need a model 



of this set. In general, it is difficult to specify the 

physiological limits of homeostats, just because they are 

physiological. By this we mean that the limits are functi~ns 

of the organization and dynamics of the homeostat. We may 

not succeed in understanding these well enough to specify the 

limits; in any case they may well be changing continuously 

through time thanks to the successful operation of the 

homeostat itself. However, in this disaster model, we shall 

probably be able to specify the limit for the collapsing factor 

at least: if we know what CF is. 

The purpose of understanding disasters is not to plot 

their courses but to avert them. In large organizations, the 

catastrophic collapse of any one of many factors would count 

as a disaster. And although we may be aware that some are 

special risks (in a firm, bankruptcy, for example), there may 

be a disaster through another collapsing factor (in the firm, 

ownership, for example, where the CF physiological limit is 

takeover--(the loss of control) while we are busy staving 

off the first. 

4. Catastrophe Theory 

One of the principal difficulties associated with 

attempts at mathematically modelling social and economic 

phenomena has been the natural tendency of modelling too 

slavishly, in fact to almost religiously adhere to the 

modelling apparatus which has served so well in physics 

and engineering. Thus, very precise local interactions are 

postulated between identifiable components of the system 

and the global consequences of these postulates are then 

forced upon the system by the local dynamics. The 



critical feature of this procedure is that, i t  js locallv 

rigid but globally vague, requiring precise information about 

the local interactions. 

Unfortunately, in many social science situations no 

such local precision is available. Various global features 

of the process are observed but both lack of data and inadequate 

understanding of the underlying mechanisms make it impossible 

to specify any local dynamic. Thus, such situations, in 

contrast to the physical sciences, are globally rigid but 

locally vague. 

From the standpoint of modelling, the second situation 

has suffered not only from the psychological blocks instilled 

by the usual university scientific education, but also by a 

lack of mathematical machinery to deal with such situations. 

However, in recent years the picture has brightened considerably 

and significant conceptual and analytic advances have been 

made. It is of interest to note that, in contrast to classical 

mathematical physics which is based almost exclusively upon 

the gospel of analysis according to the "Old Testament," 

Whittaker-Watson [7] , or the "New Testament, Courant-Hilbert 

[l], the modern global point of view is strongly biased 

towards algebra and geometry (topology). This is not surprising, 

of course, since the tools of analysis are designed exclusively 

for detailed local exploration of mathematical properties. 

But what is surprising is that it has taken so many years for 

the "natural" global tools--algebra and topology--to make 

their appearance, a fact which one is tempted to ascribe to 



t h e  c u l t  o f  a n a l y s i s ,  f a n a t i c i s m ,  and /o r  i g n o r a n c e .  

I n  any  e v e n t ,  c u r r e n t  t r e n d s  seem more p r o m i s i n g  and  one  

o f  t h e  p r i m a r y  c o n t r i b u t i n g  f a c t o r s  t o  t h i s  s t a t e  o f  a f f a i r s  

i s  t h e  t h e o r y  o f  c a t a s t r o p h e s ,  d e v e l o p e d  by Thom and Zeeman. 

I n  t h i s  s e c t i o n ,  w e  p r e s e n t  a  v e r y  b r i e f  d i s c u s s i o n  of  

t h e  b a s i c  a s s u m p t i o n s  and  r e s u l t s  o f  c a t a s t r o p h e  t h e o r y  i n  a 

form most  u s e f u l  f o r  a p p l i c a t i o n s .  F o r  d e t a i l s  and  p r o o f s ,  

w e  r e f e r  t o  t h e  works [ 3 ; 4 ; 6 ; 8 ; 9 ] .  

k  
L e t  f : R x  Rn -+ R b e  a  smooth f u n c t i o n  r e p r e s e n t i n g  

a  dynamica l  sys t em C i n  t h e  s e n s e  t h a t  Rk i s  t h e  s p a c e  o f  

n  i n p u t  v a r i a b l e s  ( c o n t r o l s ,  p a r a m e t e r s )  w h i l e  R r e p r e s e n t s  

t h e  s p a c e  o f  o u t p u t  v a r i a b l e s  ( b e h a v i o u r ) .  W e  assume 

t h a t  k  5 5 ,  w h i l e  n  i s  u n r e s t r i c t e d .  The fundamen ta l  

a s s u m p t i o n  i s  t h a t  C a t t e m p t s  t o  l o c a l l y  min imize  f .  W e  

h a s t e n  t o  p o i n t  o u t  t h a t  i n  a p p l i c a t i o n s  o f  c a t a s t r o p h e  I 

t h e o r y ,  i t  i s  n o t  n e c e s s a r y  t o  know t h e  f u n c t i o n  f .  I n  f a c t ,  I 
! 

i n  most  c a s e s  f  w i l l  b e  a  v e r y  c o m p l i c a t e d  f u n c t i o n  whose I 
s t r u c t u r e  c o u l d  n e v e r  b e  d e t e r m i n e d .  A l l  w e  assume i s  t h a t  

t h e r e  e x i s t s  s u c h  a  f u n c t i o n  which C s e e k s  t o  l o c a l l y  minimize .  

k  Given any  s u c h  f u n c t i o n  f ,  i f  w e  f i x  t h e  p o i n t  c E R , 

w e  o b t a i n  a  l o c a l  p o t e n t i a l  f u n c t i o n  f c :  R"- R and  w e  may 

p o s t u l a t e  a  d i f f e r e n t i a l  e q u a t i o n  

A = -  g r a d x  f ,  

af  af 
where x  E R n ,  g r a d x  f  = g r a d  f  = (-, . . . , -1 . Thus,  t h e  c ax, axn  

phase  t r a j e c t o r y  of  C w i l l  f l o w  toward  a minimum of  f 
C' 

c a l l  it xc .  The s t a b l e  e q u i l i b r i a  a r e  g i v e n  by t h e  minima 

of  f c  and ,  s i n c e  t h e r e  a r e  u s u a l l y  s e v e r a l  minima, x  w i l l  b e  
C 



a multivalued function of c, i.e. x : Rk - Rn is not one-to-one. 
C - 

The point of catastrophe theory is to analyze this multi- 

valuedness by means of theory of singularities of smooth 

mappings. 

For completeness, and to round out the mathematical 

theory, we consider not only the minima, but also the maxima 

and other stationary values of f . Define the manifold 
C 

k 
Let xf : Mf + Rk be the map induced by the projection of Rk+"+ R . 

f 
is called the catastrophe map of f. Further, let J be the 

k+n space of ern -functions on R with the usual Whitney 

~ ~ - t o ~ o l o ~ ~ .  Then the basic theorem of catastrophe theory 

(due to Thom) is 

Theorem: There exists an open dense set J C J ,  called 
0- 

generic functions, such that if f E Jn 

i) M is a k-manifold; - f 
ii) any singularity of x is equivalent to one of 

f 

a finite number of elementary catastrophes; - 

iii) xf is stable under small perturbations of f. 

Remarks: 1) Here equivalence is understood in the 
- 

following sense: maps x : M + N  and : M + N are equivalent 

if there exist diffeomorphisms h,g such that the diagram 



- 
is commutative. If the maps X,X have singularities at x E M, 

x E fi, respectively, then the singularities are equivalent if 

the above definition holds locally with hx = x. 
2) Stable means that x is equivalent to x for all 

f 9 

g in a neighbourhood of f in J (in the Whitney topology). 

3) The number of elementary catastrophes depends only 

upon k and is given in the following table. 

Table 1. 

# elementary 
catastrophes 2 5 7 11 a 

A finite classification for k > 6 may be obtained under 

topological, rather than diffeomorphic, equivalence but the 

smooth classification is more important for applications. 

Discontinuity, Divergence, and the Cusp Catastrophe 

Our critical assumption is that C ,  the system under 

study, seeks to minimize the function f; i.e. C is dissapative. 

Thus, the system behaves in a manner quite different from the 

Hamiltonian systems of classical physics. In this section 

we shall mention two striking features displayed by catastrophe 

theory which are not present in Hamiltonian systems but which 

are observed in many physical phenomena. 

The first basic feature is discontinuity. If B is the 

k 
image in R of the set of singularities of xf, then f3 is 

called the bifurcation set and consists of surfaces bounding 

reg.ions of qualitatively different behaviour similar to surfaces 

of phase transition. Slowly crossing such a boundary may 



result in a sudden change of behaviour of C ,  giving rise to 

the term "catastrophe." Since the dimension of C does not 

enter into the classification theorem, all information about 

when and where such catastrophic changes in output will occur 

is carried in the bifurcation set B which, by conclusion 

i) of the Theorem, is a k-manifold. Hence, even though C 

may have an output space of inconceivably high dimension, the 

"action" is on a manifold of low dimension which may be 

analyzed by geometrical and analytical tools. 

The second basic feature exhibited by catastrophe 

theory is the phenomenon of divergence. In systems of 

classical physics a small change in the initial conditions 

results in only a small change in the future trajectory of 

the process, one of the classical concepts of stability. 

However, in catastrophe theory the notion of stability is 

with respect to perturbations of the system itself (the 

function f), rather than just the initial conditions and so 

the Hamiltonian result may not apply. For example, in an 

homogeneous embryo adjacent tissues will differentiate. 

Let us now illustrate the above ideas by consideration 

of the cusp catastrophe. 

Let k = 2, n = 1, and let the control and behaviour 

space have coordinates a, b, x, respectiveiy. 

2 Let f: R x R~ + R be given by 



The manifold Mf is given by the set of points (a,b,x) C R  3 

where 

gradx f(a,b,x) = 0 , 

The map xf: Mf -+ R~ has singularities when two stationary 

values of f coalesce, i.e. 

Thus, Eqs. (1) and (2) describe the singularity set S of X. 

It is not hard to see that S consists of two fold-curves 

given parametrically by 

and one cusp singularity at the origin. The bifurcation 

set B is given by 

2 
which is the cusp 4a3 + 27b = 0 .  Since Mf and S are smooth 

at the origin, the cusp occurs in B and not in S. Figure 1 

graphically depicts the situation. 



Figure 1. The cusp catastrophe. 

It is clear from the figure that if the control point 

(arb) is fixed outside the cusp, the function f has a unique 

minimum, while if (a,b) is inside the cusp, f has two minima 

separated by one maximum. Thus, over the inside of the cusp, 

Mf is triple-sheeted. 

The phenomenon of smooth changes in (arb) resulting in 

discontinuous behaviour in x is easily seen from Figure 1 by 



fixing the control parameter a at some negative value, then 

varying b. At entrance to the inside of the cusp nothing 

unusual is observed in x, but upon further change in b, 

resulting in an exit from the cusp, the system will make a 

catastrophic jump from the lower sheet of Mf to the upper, 

or vice-versa, depending upon whether b is increasing or 

decreasing. The cause of the jump is the bifurcation of the 

differential equation B = - gradx f, since the basic assump- 

tion is that C always moves so as to minimize f. As a result, 

no position on the middle sheet of maxima can be maintained 

and C must move from one sheet of minima to the other. 

An hysteresis effect is observed when moving b in the 

opposite direction from that which caused the original jump, 

i.e. the jump phenomenon will occur only when exiting the 

interior of the cusp from the side opposite to that where the 

cusp region was entered. 

To see the previously mentioned divergence effect, 

consider two control points (arb) with a > 0,: 0. Maintaining 

the b values fixed with decreasing a, the point with positive 

b follows a trajectory on the lower sheet of Mf, while the 

other point moves on the upper sheet. Thus, two points which 

may have been arbitrarily close to begin with, end up at 

radically different positions depending upon which side of the 

cusp point they pass. 

While the cusp is only one of several elementary 

catastrophes, it is perhaps the most important for applications 



In Table 2, we list several other types for k < 4, but refer - 
the reader to section 6 for geometrical details and applications. 

Table 2. The elementary catastrophes 
for k < 4. - 

Name potential function f control space behaviour space 
dimension dimension 

fold x3 + ux 1 1 

cusp x4 + ux2 + vx 2 1 

swallowtail x5 + ux3 + vx2 + wx 3 1 

4 
butterfly x6 + ux + vx3 + wx2 + tx 4 1 

3 hyperbolic x + y3 + uxy + vx + wy 
umbilic 

elliptic 
3 2 2 

x - xy2 + u(x + y )  + vx + wy 
umbilic 

2 
parabolic x y + y4 + ux2 + vy2 + wx + ty 4 
umbilic 

5. The Role of Investment 

In order to make use of catastrophe-theoretic notions 

in our earlier context, we must first consider some basic 

aspects of investment. 

By "investment" we mean the allocation of resources of 

any kind for any purpose that is relevant to the organization. 

An identifiable collapsing factor clearly attracts 

investment that is intended to stave off collapse. But we 

have argued that not all collapsing factors are identifiable. 

Moreover, the investment must be applied in such a way that 

the implicated factor is held within its physiological limit, 

and we have expressed reservations about the identification 

of both of these too. 



But it is interesting that all investment has an impact - 
on some organizational homeostats. Therefore, whatever invest- 

ment is going on may - impinge (positively or negatively) on an 

incipient disaster. If management is wholly alert to the 

situation, it can take decisions that apply investment directly 

to the implicated factor, and possibly avert the catastrophe 

threatening the collapsing factor. But this is a trivial case, 

as is the case where management is wholly unaware, since the 

catastrophe will then happen or not depending on the influence 

exerted fortuitously by investment. 

The middle section of the spectrum of awareness is where 

our interest lies, since we believe this to represent manage- 

rial reality in most cases, most of the time. In this area, 

management is aware of certain dangers (but not others), is 

more alert to such dangers at some times than at others, and 

is in consequence investing resources for all purposes in 

such a way as to impinge on incipient disasters to a varying 

degree as time unfolds. We may add a third dimension to our 

graph, thus: 

investment in the 

-------  
Y 

time 



In this picture, we see the investment that is relevant 

to the incipient disaster varying through time up to point X, 

depending on the management's awareness of the risk that IF 

will pass its physiological limit at the time of X. The time 

between X and Y is a perceptual lag: it is becoming increasingly 

clear that CF is apyoaching catastrophe, and the investment 

to bring IF under control is increased. At point Y, when the 

catastrophe is evident, the investment rises very sharply in 

an all-out effort to retrieve the situation. 

This form of the investment graph seems to be typical. 

And it is noteworthy that the massive investment (Y to Z )  

intended to retrieve the situation will only succeed to the 

extent that the IF set is now correctly identified. In practice, 

management is often hypnotized by the collapsing factor itself; 

it applies its investment (Y to Z )  to the CF instead of the IF, 

because it does not understand the organizational homeostasis 

that underlies the disaster. This is known as "pouring good 

money after bad." 

6. The Model Extended 

The phase space of the model is now three-dimensional, 

and we turn to geometry to describe it. The following picture 

shows a manifold that has a continuous, infinitely differenti- 

able surface, so folded that it has three sheets. It is possi- 

ble to move over this surface in an orderly progression, 

because it is smooth. But it is also possible to "slip over 

the edge" of one sheet, and find oneself on another. This is 

indeed the catastrophe. Mathematically, the ability of this 



model to define discontinuities on a smooth surface offers 

both the simplest and also the most complicated apparatus 

needed. In other words Figure 1 is the only possible pic- 

ture of a two factor catastrophe. 



When the manifold is projected onto the two-dimensional 

time-investment plane, a cusp region is defined. This is the 

danger region where disasters can occur. The formal property 

is this: to cross from zone A to zone B behind the cusp is 

orderly; to move into the cusp from either zone is dangerous; 

to move out of the cusp into the other zone is catastrophic. 

The precise location of the point of the cusp is central 

to the decision problems we are discussing. Consider, for 

example, two possible levels of investment, arbitrary but 

distinct, to be made at a steady rate through time. The levels 

are chosen so that they run on different sides of the cusp. 

Then we have Figure 2. 

Figure 2. 

A 
CF 

scale 

I1 I2 investment in the IF 
b 



Neither investment provokes a catastrophe (although, as 

we saw before, either may have averted one). But, as can be 

seen from the projection onto the manifold, the trajectory on 

the CF scale generates two totally different futures: the 

end points are on different sheets. 

Next, we should reconsider the vacillating mode of 

investment discussed in Section 4, since this is common in 

practice (remember that investment refers to resources at 

large, not simply to agreed budgets). 

CF 
scale 1 

relevant investment 

There are three catastrophes, marked with arrows, 

entailed by this diagram, and this may be a correct picture 

where the collapsing factor is morale. Reviewing several 

experiences of this situation, one of us (S.B.) notes that in 

each case the implicated factor was the availability of infor- 



mation; the management thought that the implicated factor was 

salary level; and after the catastrophes, at the time for making 

a massive investment, they made the further mistake of applying 

it directly to the collapsing factor--in terms of exhortation. 

Moreover, that statement also fits the facts of Revans' impres- 

sive studies of morale in hospitals [ 2 ] ,  made nine years 

ago, in which he found that the implicated factor for catas- 

trophes in nursing morale was the information needed to look 

after patients, and not the payment system whereby nurses 

earn less than shop assistants (as the management believed); 

again the X to Y investment was primarily exhortative. 

7. The Recognition of Incipient Disaster 

Aside from setting objectives, striving for goals, and 

sheer administration, management operates by changing the 

system of interlocking homeostats that define the organization. 

This is reflected in our model by the stretching or 

compressing of the manifold in any direction. Such distortions 

will of course affect the "cusp region." 

In principle it is possible to make organizational changes 

to the structure of the interlocking homeostats, so that the 

cusp region is widely broadened, or so that it is narrowed. 

If the narrowing brings the arms of the cusp region together, 

then we simply have one line to cross which is catastrophe. 

We discussed earlier the difficulties of identifying the 

two key factors CF and IF, and of specifying the physiological 

limits of their homeostasis. This is, in our model, the 

problem that management faces if it is to avert disasters. 

How do successful managers do it? 



Suppose that they so organize that the cusp region 

contracts to a single line. Then their lives are plain sailing 

in either zone A or zone B, and they are not bothered by any 

signals of incipient disaster. At first sight, this is an 

attractive managerial scenario. However, if the trajectory 

they are on crosses the cusp line, which counts as both 

entering and leaving the cusp region simultaneoulsy, catas- 

trophe hits them without warning. 

Suppose that they so organize that the cusp region is 

broadened as far as possible. Then the likelihood that the 

trajectory will enter the region is much higher. They are, 

in this scenario, apparently dicing with death. For the 

cusp region is unstable, and the trajectory may easily be 

thrown out into another zone--entailing a catastrophe. 

There are many, many instances of managerial failure 

where disaster strikes without either the CF or the IF 

having been recognized in advance. (The paper bv Walters 

" Foreclosing of Options" [5] gives six perfect examples.) 

This suggests that the cusp region is too narrow. Danger 

and instability have been minimized, but the "plain sailing" 

feeling is the managerial trap. Walters writes: "We were 

over a year along into a happy exercise ...." 
1 

Then the hypothesis is that successful managers 

BROADEN THE CUSP. This increases danger and instability; 

but according to the hypothesis it is exactly by operating 

in this zone that successful managers provide themselves 

with the sensitivity to the risk of disaster that enables 



them to adjust their investment to avert disasters in unidenti- 

fied collapsing factors. 

In other words, we are postulating a self-adapting 

feedback system for continuous policy adaptation in successful 

management, that depends on a broad cusp. 

8. The Monetary Investment 

In any work done to quantify this model and to make it 

l~seful, the measurement of investment in the full sense will 

be very difficult. However, the monetary component of invest- 

ment is extremely easy to measure for any programmed budget. 

Consider a program directed to some objective. Does 

this program identify a collapsing factor? If so, does it 

identify an implicated factor? How much money is allocated 

to the manipulation of the CF/IF homeostat? Are organizational 

changes in prospect in consequence of this program that will 

induce distortion of the manifold, and if so what effect will 

this have on the cusp region? These are the kinds of questions 

we should like to ask; and if there is a suitable program 

beginning somewhere we could perhaps model it continuously 

on the lines of this embryonic approach. 

Since investment against disaster has no payoff unless 

a disaster is averted that would otherwise have occurred, the 

degree of belief in potential disaster must govern what invest- 

ment is made against it. The catastrophe lies in the future; 

and maybe the investment is perceived not so much as averting 

disaster as holding up the collapsing factor, thereby pushing 

the incipient collapse indefinitely into the future. On this 



hypothesis, it becomes difficult to make any orthodox calcu- 

lations about the present worth of investments discounted 

up to a date of catastrophe that goes unrecognized because it 

does not occur. 
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