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Abstract

Approximate solutions for discrete stochastic optimization problems are often obtained

via simulation. It is reasonable to complement these solutions by con�dence regions for

the argmin-set. We address the question, how a certain total number of random draws

should be distributed among the set of alternatives. We propose a one-step allocation rule

which turns out to be asymptotically optimal in the case of normal errors for two goals:

To minimize the costs caused by using only an approximate solution and to minimize the

expected size of the con�dence sets.

Key words: Discrete Stochastic Optimization, Simulation, Sampling Strategy, Large De-

viations.
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Asymptotically optimal allocation

of simulation experiments

in discrete stochastic optimization

Andreas Futschik�

Georg Ch. P
ug

1 Introduction

Suppose we have to �nd the optimal decision i� out of a �nite set S := f1; : : : ; kg of

possible alternatives for a decision problem under uncertainty. Let �i be the random

variable modeling the uncertainty. The probability law of �i may depend on the decision
i. If f(i; �i) measures the result of decision i and the random outcome �i, the discrete
stochastic optimization problem is given as




 Minimize Fi = E(f(i; �i))

for i 2 S:
(1)

Subsequently we will write F for the vector (Fi)
k
i=1, F

� instead of mini2S Fi and i� for the
argmin of F (assuming that it is unique).

If F can be evaluated easily, problem (1) is a discrete optimization problem and tech-
niques like Branch{and{Bound or Simulated Annealing can be applied. If on the other

hand the exact evaluation of F is impossible, one has to use Monte Carlo sampling. We
observe mi i.i.d. replicates �i;k of the random variables �i and approximate the problem
(1) by the empirical problem




 Minimize F̂

(n)
i = 1

mi

Pmi

j=1 f(i; �i;j)

for i 2 S
(2)

where n is the total sample size, n =
P

i2S mi.

When all mi are su�ciently large the solutions of (2) will provide reasonable (approx-
imate) solutions for (1). Indeed, by the law of large numbers, the solutions X̂(n) of (2)
satisfy

P [X̂(n) = i�]! 1;

provided that mi !1.
However, the above fact does not tell anything about the quality of the solutions X̂(n)

for small sample sizes and a restricted time budget. As pointed out by Ho, Sreenivas and

�Department of Statistics, University of Vienna
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Vakili (1992) there are also many situations where the set S is very large and we cannot

expect the solutions X̂(n) to be optimal for (1).

Therefore it seems important to carry out the simulations cleverly: Observations should

be allocated in a way that provides as much information as possible for the identi�cation of

the minimal point. This goal (which will be made more precise later) is quite di�erent from

the objective pursued in multi{armed bandit problems, namely to minimize the expected

number of observations taken from non-optimal points. The objective of multi{armed ban-

dit problems makes sense in biostatistical applications, where each alternative corresponds

to a drug and an observation to an application of this drug to a patient. The same goal

occurs when choosing among gambling machines the one with the highest expected out-

come. Lai and Robbins (1985) construct asymptotically e�cient strategies for this type of

problem. Further information concerning optimal allocation rules based on index policies

may be found e.g. in Gittins (1989). In our situation, however, observations correspond

to computer simulations and will typically cause the same costs for all alternatives. So

there is no model-inherent reason why sampling from non-optimal populations should be

avoided.

Ho's work on ordinal optimization (Ho, Sreenivas and Vakili (1992)) is more in the spirit

of our approach. There mainly heuristic rules for huge discrete problems are proposed in
the case when one has almost no chance of truly identifying the optimal solution.

To formulate our objective in a precise way, we introduce nonnegative real functions
c(x) with c(0) = 0 to measure the costs incurred by selecting a non-optimal X̂(n) as
solution for (1). The costs associated with X̂(n) are given as c(F (X̂(n)) � F �). Typical
cost functions c(x) are monotonous. In particular c(x) = x is appropriate, if the values of
F have already an interpretation as costs.

A clever sample allocation rule should choose the decision variables mi as to minimize
the above costs in some sense. Let again X̂(n) be a solution of (2). Then a possible goal
would be 




 Minimize (in (mi)i2S) u

(n)
1 := E[c(F (X̂(n))� F �)];

such that
P

i2S mi = n; mi � 0:
(3)

It is often desirable to obtain not only an approximate solution for (1), but also to
construct a con�dence set that contains exact solutions of (1) with a certain prescribed
probability. To be informative, the constructed con�dence set should also contain as few
points of S as possible. More formally, we will call a (random) subset Ŝ(n) of S a level

1� � con�dence set, if

Pfi� 2 Ŝ(n)g � 1 � �: (4)

In statistical literature (see e.g. Gupta (1965)) such con�dence sets are called subset se-

lection rules.

An (obviously bad) level 1 � � con�dence set is always given by choosing Ŝ(n) = S.
Assume that including non-optimal i in Ŝ(n) causes costs c(Fi�F �). Then the quality of a
con�dence set Ŝ(n) can be measured by the expected costs and an optimal sampling plan
should minimize these costs, i.e. solve




 Minimize (in (mi)i2S) u

(n)
2 := E[

P
i2S c(Fi � F �)1l

[i2Ŝ(n)]];

such that
P

i2S mi = n; mi � 0:
(5)
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If c(x) = 1(0;1)(x) then (5) is just the expected number of points in the con�dence set not

counting i�.

Remark 1 Rules that de�ne con�dence sets for normally distributed estimates F̂
(n)

are

usually of the form

i 2 Ŝ(n) , F̂
(n)
i � min

j
(F̂

(n)
j + di

q
�2
i + �2

j ):

In literature one can �nd di�erent proposals how to choose di. All of them satisfy (4)

for arbitrary functions F . With �(�) denoting the normal distribution function, possible

choices of di are

1. Bonferroni rule: di = d = ��1(1 � �
k�1

)

2. Gupta{Huang rule (see Gupta and Huang (1976)): Independently of i, di is the

solution of Z Y
j 6=i�

�

0@d
q
�2
i� + �2

j � y

�j

1A d�

�
y

�i�

�
= 1� �;

where �2
i� = minj �

2
j .

3. Gupta rule: Choose di as solution (in d) of

Z Y
j 6=i

�

0@d
q
�2
i + �2

j � y

�j

1A d�

�
y

�i

�
= 1 � �:

The rules obtained by the above three choices for di will be denoted by S
(n)
1 , S

(n)
2 , and S

(n)
3

respectively. The order S
(n)
3 � S

(n)
2 � S

(n)
1 with respect to size is easy to verify. Notice

however, that the smaller con�dence sets are more tedious to implement.

Given one of the above rules we might ask how to carry out the sampling as to minimize
the expected costs (5).

2 Asymptotically optimal sampling

Since the exact objective function occurring in our sample size allocation problems (3)

and (5) is complicated, an asymptotic approximation is of interest. To obtain such an

approximation we consider the following model:

Assume that for each i 2 S a normally N(Fi; �
2
i =mi) distributed estimate F̂

(n)
i is

available. The estimate might be thought as the arithmetic mean of independent samples.

We call a sample allocation asymptotically optimal for problem (3) or (5), if the rate

of convergence of the expected costs i.e. limn!1
�1
n
log u

(n)
t (for t = 1 or t = 2) is maximal.

We will now address the question how to maximize the above rate. To this end de�ne

S to be the standard simplex, i.e. the set of points � = (�i)1�i�k with �i � 0 and
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P
1�i�k �i = 1. Let �Ai

denote the projection w.r.t. the norm k � k�(�) onto the closed

convex cone Ai, where kxk�(�) = [xt�(�)x]1=2 with

�(�) =

0BBBBB@
�1=�

2
1 0 � � � 0

0
. . .

. . .
...

...
. . .

. . . 0

0 � � � 0 �k=�
2
k

1CCCCCA ;

and

Ai = fx 2 Rk : xi � xj; 1 � j � kg:
We need a weak regularity condition: There is a sequence an ! 0 such that

i 2 S(n) =) F̂
(n)
i � min

j
F̂

(n)
j + an: (6)

Notice that all rules given in Remark 1 satisfy condition (6) provided that for all i 2 S we

have lim infimi=n > 0.

Lemma 1 Suppose that mi

n
! �i as n!1. Let


(�) = min
i6=i�


i(�)

with


i(�) = kF � �Ai
F k2�(�):

Then for any cost function c satisfying c(x) > 0 on (0;1) and c(0) = 0,

lim
n!1

�2
n

log u
(n)
1 = 
(�):

If additionally either condition (6) holds or at least one �i = 0, then also

lim
n!1

�2
n

log u
(n)
2 = 
(�):

Proof. Assume �rst �i > 0 for 1 � i � k. We may write

u
(n)
1 =

X
i6=i�

c(Fi � F �)PfX̂(n) = ig (7)

and

u
(n)
2 =

X
i6=i�

c(Fi � F �)Pfi 2 Ŝ(n)g: (8)

To derive approximations for the probabilities in the above expressions, notice that

PfX̂(n) = ig = PfF̂ (n)
i = min

j 6=i
F̂

(n)
j g � Pfi 2 Ŝ(n)g � PfF̂ (n)

i � min
j 6=i

F̂
(n)
j + ang; (9)
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where an ! 0. De�ning Ŷ
(n)

as vector with components

Ŷ
(n)
j = F̂

(n)
j + an for j 6= i;

Ŷ
(n)
i = F̂

(n)
i ;

we will derive a large deviation approximation for

PfF̂ (n)
i � min

j 6=i
F̂

(n)
j + ang = PfŶ (n) 2 Aig:

For this we introduce

'n(t) =
1

n
logE(exp[t(nŶ

(n)
)])

=
1

n

24nFiti +
n�2

i t
2
i

2�i

+
X
j 6=i

[n(Fj + an)tj +
n�2

j t
2
j

2�j

]

35 :
Now

'(t) := lim
n!1

'n(t) =
kX

j=1

"
Fjtj +

n�2
j t

2
j

2�j

#

leads to the rate function (i.e. the dual function)

J(x) = sup
t
[ht;xi � '(t)]

=
kX

j=1

�j(xj � Fj)
2

2�2
j

Now, according to Ellises Theorem (see Bucklew (1990), p. 21)

lim sup
1

n
logPfŶ (n) 2 Aig � � inf

x2Ai

J(x);

and

lim inf
1

n
logPfŶ (n) 2 A�ig � � inf

x2A�i

J(x):

Noting that infx2Ai
J(x) = infx2A�

i
J(x) = 
i(�)=2 we obtain

PfŶ (n) 2 Aig = exp(�n[
i(�)=2 + o(1)]) (10)

which is an upper bound for Pfi 2 Ŝ(n)g. The special choice an = 0 in the above arguments
leads to the same bound (10) also for PfX̂(n) = ig.

To shorten the notation we write ci instead of c(Fi � F �). Then we obtain using (7)
and (9)

u
(n)
1 = exp(�n[
(�)=2 + o(1)])

0@X
i6=i�

ci exp[�n=2(
i(�)� 
(�) + o(1))]

1A : (11)
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Notice that the above sum is equal to
P

i:
i(�)=
(�) ci + o(1). Therefore, for t = 1

� 2

n
log(u

(n)
t ) = �
(�) + o(1): (12)

Starting from (8) the identical arguments as above yield (12) also for t = 2.

We now consider the case �i = 0 for at least one i. In this situation Lemma 2 (ii)

states that 
(�) = 0. Therefore, and since u
(n)
t is bounded from above, it su�ces to show

that for t 2 f1; 2g
lim sup
n!1

[� log u
(n)
t =n] � 0: (13)

Introduce the random quantities û
(n)
1 =

Pk
i=1 ci1[X̂(n)=i] and

û
(n)
2 =

Pk
i=1 ci1[i2Ŝ(n)]. Let furthermore c� = mini6=i� ci > 0. Since for t 2 f1; 2g

u
(n)
t � c�Pfû(n)t � c�g; (14)

we may obtain (13) by establishing an adequate lower bound for (14). Assume �rst that

�i� > 0, and choose a j such that �j = 0. Then

Pfû(n)t � c�) � P(F̂
(n)
i� > F̂

(n)
j g:

By using the normal tail approximation 1��(x) = '(x)=x(1 + o(1)), (see e.g. Barndor�{
Nielsen and Cox (1989), p.56) the r.h.s. is equal to

1� �

0BB@ Fj � F �r
�2
i�

mi�
+

�2
j

mj

1CCA =
e�mj�

p
mj�0

(1 + o(1));

for suitable constants � and �0. Thus

lim
n!1

1

n
logPfF̂ (n)

i� > F̂
(n)
j g = 0;

which establishes (13) for the case �i� > 0. In the case �i� = 0, (13) may be proved in
the same way as above by choosing a j such that �j > 0. (Such an index j always exists.) 2

Since asymptotically the optimal sample allocation may be formulated in terms of

allocated proportions �i, we consider in the sequel the approximate problem:




 Maximize 
(�)
such that

P
i2S �i = 1; �i � 0

(15)

3 The approximate problem

To solve (15) we have to �nd the maximum of a concave (but nondi�erentiable) function

over the (k�1){dimensional standard simplex. This could be done in principle by a convex

6



optimization procedure like the bundle method. However in our applications F is unknown

and is replaced by estimates F̂ n. Furthermore F̂ n (and thus our optimization problem)

has to be updated after each new observation. Since solving an optimization problem in

each step of the simulation would be quite tedious in most applications, it seems crucial

to have a simple one-step rule which decides where to invest the next observation. Ideally

each new observation should bring us closer to the optimal sampling plan.

The rule we will propose is of the Frank-Wolfe type in the sense that the direction

of move is the solution of the linearized problem. In our case, the move will always be

towards a corner of the simplex.

Unfortunately rules of the Frank-Wolfe type are not generally converging for nondi�er-

entiable objective functions like that occurring in (15). A possible solution is to smooth

the objective function by introducing a regularization. (Details as well as other approaches

may be found in the paper by Ruszczynski (1987) and the references therein.) As regular-

ization we propose to replace 
(�) = mini6=i� [
i(�)] by 
�(�) = �-mini6=i� [
i(�)], where

�-min(x1; : : : ; x`) := �� log
 X̀
i=1

e�xi=�)

!
(16)

and solve the regularized problem




 Maximize 
�(�)
such that

P
i2S �i = 1; �i � 0:

(17)

This is a smooth concave optimization problem, since by Lemma 5 (iii) the function �-min

is concave, monotone and smooth.

Remark 2 Another reasonable approximation could be obtained by choosing


�(�) = �� log
0@X
i6=i�

c(Fi � F �)e�
i(�)=�

1A :

According to (11) the above expression can be viewed as an approximation of u
(n)
1 and u

(n)
2 .

If all parameters Fi and �i are known, the function 
� can be optimized by a Frank-
Wolfe type algorithm. We state here a general convergence result:

Theorem 1 Let 
(�) be a convex di�erentiable function de�ned on the simplex S. Let

the gradient r
(�) be Lipschitz. For every � 2 S, let e(�) be the i� th unit vector, where

i is the smallest index such that

@
(�)

@�i

= max
j

@
(�)

@�j

:

Let �(s) be the sequence generated by the following Frank-Wolfe type algorithm

�(s+1) = (1 � 1

s
)�(s) +

1

s
e(�(s)): (18)

Then

lim
s!1


(�(s)) = max
�2S


(�):

7



Proof. Let

'(�) = max
i

@
(�)

@�i

� hr
(�); �i: (19)

Notice that '(�) � 0 and that ' is Lipschitz. Moreover the necessary and su�cient

optimality condition

r
(�)� 1

k
hr
(�); 1li1l = 0

is equivalent to '(�) = 0. Here 1l denotes the vector with all components equal 1. Let


� = max
�2S


(�):

By the mean value theorem


(�(s+1))� 
(�(s)) = hr
[(1� t)�(s)) + t�(s+1)];
1

s
[e(�(s))� �(s)]i

= hr
(�(s));
1

s
[e(�(s))� �(s)]i+Rs

=
1

s
'(�(s)) +Rs:

The remainder terms Rs are of order O(s�2). Fix an � > 0. By continuity, there is an
� > 0 such that '(�) � � implies 
(�) � 
�� �. Hence the following inequality holds true


(�(s+1)) � min[
(�(s)) +
�

s
+Rs; 


� � �]: (20)

Since
P

sRs <1, the relation (20) implies that

lim inf
s


(�(s)) � 
� � �

and because � was arbitrary,
lim inf

s

(�(s)) = 
�:

2

4 Practical implementation and simulation

Since F and (�2
i )i2S will be unknown in practice, it is natural to replace them by estimates

obtained during sampling. We propose the following algorithm for practical application.

Algorithm:

1. Choose N as the total number of observations to be taken.

2. Choose some � > 0 and some n0 � 1.

3. Take an initial sample of size n0 from each i 2 S. and set the total number of already

taken observations s = k � n0.

8



4. If s > N stop.

5. Suppose that F̂
(s)
i , �̂

(s)
i are the actual estimates of Fi, �i after taking m

(s)
i observations

at alternative i. Let �(s) be the actual vector of relative frequencies, i.e. �i(s) =
m

(s)
i

s
.

6. Calculate (for all i 6= i�) 
̂i(�
(s)) according to Remark 3 (iii) and r
̂i(�) according

to Lemma 3. (Replace in all formulas Fi and �i by F̂
(s)
i and �̂

(s)
i ).

7. Calculate

r
̂�(�) =
X
i6=i�

e�
̂i(�
(s))=�P

j 6=i� e�
̂j(�
(s))=�

r
̂i(�(s))

8. Find the component of r
̂�(�) with maximal value and denote it by l , i.e.

[r
̂�(�)]l = max
j

[r
̂�(�)]j :

Make one additional observation �l for alternative l and adjust the estimates

F̂
(s+1)

l =
m

(s)
l

m
(s)
l + 1

F̂
(s)
l +

1

m
(s)
l + 1

�l;

h
�̂
(s+1)

l

i2
=

1

m
(s)
l

�
(m

(s)
l � 1)

h
�
(s)
l

i2
+ �2l � (m

(s)
l + 1)[F̂

(s+1)

l ]2 + (m
(s)
l )[F̂

(s)
l ]2

�
;

m
(s+1)

l = m
(s)
l + 1

and keep all other estimates unchanged.

9. Increase s by 1 and go to 4.

The convergence of this algorithm is given by the following theorem

Theorem 2 The just described algorithm satis�es

lim
s

�(�(s)) = max

�2s

�(�)a:s:

Proof. We omit � for simplicity in the proof. Let 
̂s be the actual estimate of the function

� in step s. and let '̂s the expression analogous to (19). Let ês be the direction of move
in step s. We have by the mean value theorem


(�(s+1))� 
(�(s)) = hr
((1� t)�(s)) + t�(s+1);
1

s
[ês(�

(s))� �(s)]i

= hr
(�(s));
1

s
[ês(�

(s))� �(s)]i+Rs

= hr
̂s(�(s));
1

s
[ês(�

(s))� �(s)]i

+hr
(�(s))�r
̂s(�(s));
1

s
[ês(�

(s))� �(s)]i+Rs

=
1

s
'̂s(�

(s)) +
1

s
Vs +Rs:

9



Here jVsj � kr
(�(s))�r
̂s(�(s))k. By the Law of Large Numbers, Vs ! 0 a.s. Choose �

and � as in the proof of theorem 1. Choosing s0 large enough to make sups�s0 jVsj � �=2

and sup� j'̂s(�)�'(�)j � �=2 (on a set of arbitrary large probability) we get the recursion


(�(s+1)) � min[
(�(s)) +
�

4s
+Rs; 


� � �]; s � s0: (21)

By the same argument as in (20), this implies that

lim
s

(�(s)) = 
�:

2

s m
(s)
1 m

(s)
2 m

(s)
3 m

(s)
4 m

(s)
5 m

(s)
6 m

(s)
7 m

(s)
8 m

(s)
9 m

(s)
10

200 20 20 20 20 20 20 20 20 20 20
600 20 20 20 20 20 20 21 161 162 136

1000 20 20 20 20 20 55 66 307 239 233

1400 20 20 20 20 20 55 66 307 442 430
1800 20 20 20 20 20 55 66 307 643 629
2200 20 20 20 20 20 55 66 307 833 839

5000 20 20 24 37 27 104 104 351 2133 2180
10000 20 20 41 60 62 164 332 686 4204 4411

15000 29 26 56 99 140 227 450 1133 6257 6583

Table 1.
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Figure 1: The development of the sample sizes for the �rst 2200 allocations.

To investigate the performance of the algorithm, it has been applied to the following
example: Assume that S = f1; : : : ; 10g and that normally distributed observations from
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F with Fi = 0:008i2 � 0:3762i are available. The variance of an observation at point i is

0:88 + 0:11i. This choice seems reasonable, since in practice the variance is often largest

for observations at the optimum, which is here i� = 10. An initial sample of size n0 = 20

has been taken for each observation. Then our algorithm has been applied to obtain

further observations. The regularized gradients in step 7 have been based on � = 0:001.

Table 1 respectively Figure 1 show the cumulative allocations for the �rst 15000 resp. 2200

observations.

Figure 2 displays the rates 
̂i(�
(s)) as they occurred during the �rst 5000 steps. One

sees that not only the minimal rate increases but also that the maximal rate decreases.

We conjecture but could not prove that for the optimal � all 
i's are equal.

n

ga
m

m
a-

i

0 1000 2000 3000 4000 5000

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2: The rate functions 
̂i(�
(s)).
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5 Appendix: Properties of 
i and 
.

We will �rst summarize what is known from literature.

Remark 3 The following results may be veri�ed immediately e.g. from Robertson et al.

(1988), example 1.3.2.

(i) 
i(�) = minm

�
�i

�2
i

(Fi �m)2 +
P

j 6=i
�j

�2
j

(Fj �m)21[Fj�m]

�
.

(ii) The quantity m�
i (�) = argminm
i(�) is unique and can be calculated as follows: Let

d(l) denote the antiranks of (Fj)j 6=i, i.e Fd(l) = F[l] where F[l] is the l-th smallest

element of (Fj)j 6=i. De�ne sums with indexes from 1 to 0 to be 0. Then, with

wj = �j=�
2
j

m�
i (�) = min

0�l�k�1

 
wiFi +

Pl
j=1wd(j)Fd(j)

wi +
Pl

j=1 wd(j)

!
:

(iii) 
i(�) =
�i

�2
i

(Fi �m�
i (�))

2 +
P

j 6=i
�j

�2
j

(Fj �m�
i (�)) 1[Fj�m�

i
(�)]:

Lemma 2 For 
(�) = mini6=i� 
i(�) we have

(i) 
(�) is concave and nonnegative;

(ii) 
(�) = 0 at the boundary of S.

Proof. We start by proving (i). From Remark 3 (i) it follows immediately that all 
i are

nonnegative and thus 
 cannot be negative. Furthermore it may be seen immediately that
each function 
i is a minimum of linear functions (in �) and thus concave. Therefore 
 {
being the minimum of concave functions { is also concave.
Proof of (ii): Since we know that 
(�) � 0, it is su�cient to show that 
(�) � 0 at the
boundary, i.e. for points �, where �i = 0 for at least one i 2 S.

Assume �rst that �i = 0 for at least one i 6= i�. By Remark 3 (i)


i(�) � gi(�;m) :=

24�i

�2
i

(Fi �m)2 +
X
j 6=i

�j

�2
j

(Fj �m)21[Fj�m]

35 ; (22)

for any m. Therefore we obtain that


(�) � 
i(�) � gi(�;min
j

Fj) = 0:

Let us now assume ��i = 0. Take i+ as an index that satis�es Fi+ = F[2], where F[2]

denotes the second smallest value of F . Then, using again (22),


(�) � 
i+(�) = gi(�;Fi+) = 0:

2
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Lemma 3 The function � 7! 
i(�) is di�erentiable with gradient

[r
i(�)]j =
8<:

1

�2j
(Fj �m�

i (�))
21[Fj�m�

i
(�)] j 6= i

1

�2
i

(Fi �m�
i (�))

2 j = i
;

where m�
i (�) is calculated according to Remark 3 (ii).

Proof. Notice that 
i(�) has representation


i(�) = min
m
hci(m); �i;

where ci(m) is de�ned as

ci(m) =

8<:
1

�2
j

(Fj �m)21[Fj�m] j 6= i
1

�2
i

(Fi �m)2 j = i:
(23)

It is well known that the subgradient is given as,

@
i(�) = convf argmin ci(m)hci(m); �ig:

Since the argmin is unique it follows that

r
i(�) = ci(m
�
i (�));

with m�
i as in Remark 3 (ii). Therefore the gradient r
i(�) is given by (23) with m

replaced by m�
i , i.e. [r
i(�)]j = [ci(m

�
i )]j. 2

Let, for any c 2 Rk, ~c = c� 1

k
hc; 1li1l. Call gr
i(�) the reduced gradient. The lemma below

states the optimality condition for (15).

Lemma 4 �� solves (15), if and only if

0 2 convf gr
i(��) : i 2 I(��)g:

where I(�) = fi : 
i(�) = minj 
j(�)g.
Proof. Let 
0(�; �) = limt&0

1

t
[
((1� t)�+ t�)� 
(�)] be the directional derivative. It

is easily veri�ed that


0(�; �) = minfhr
i(�); � � �i : i 2 I(�)g:

�� is optimal, if and only if there is no � 2 S such that


0(��; �) > 0 for all i 2 I(��). (24)

We will show that (24) is equivalent to our assertion. Let ci = r
i(��) and I = I(��).

Assume �rst that

0 2 convf~ci : i 2 Ig

13



and that (24) does not hold. Then there would be a � 2 S such that hci; � � ��i > 0 for

all i 2 I. Since

hci; � � ��i = h~ci; � � ��i
this implies

h~ci; � � ��i > 0 for all i 2 I.

But since according to our assumption 0 is a convex combination of these ~ci it follows that

h0; � � ��i > 0;

which is a contradiction.

Assume now on the other hand that 0 62 convf~ci : i 2 Ig. Then there exists a vector

u such that h~ci; ui > 0 for all i 2 I. Since h~ci; 1li = 0, we have that

h~ci; ~ui > 0:

Choose now � > 0 small enough such that

� = �~u+ ��

is nonnegative. This is possible since �� is in the interior of S. With the above choice

h~ci; � � ��i > 0 for all i 2 I,

which is a contradiction to (24).

2

The following Lemma states some facts about the function �-min de�ned in (16).

Lemma 5 (i) �-min(x1; : : : ; x`) � min(x1; : : : ; x`).

(ii) j�-min(x1; : : : ; x`)�min(x1; : : : ; x`)j � �(`� 1).

(iii) �-min(x1; : : : ; x`) is monotone in each argument and concave.

(iv) �-min(x1; : : : ; x`) is di�erentiable with the Lipschitz bound

kr�-min(x)�r�-min(y)k � 2`

�
kx� yk

for the gradient. The partial derivatives satisfy

j @
@xj

�-min(x1; : : : ; x`)j � 1

and

lim
�!0

@

@xj
�-min(x1; : : : ; x`) =

(
0; xj > min(x1; : : : ; x`)

bi; xj = min(x1; : : : ; x`)

where bi = (#fi : xi = min(x1; : : : ; x`)g)�1.

14



Proof. Statement (i) is obvious. To prove assertion (ii) let x� = min(x1; : : : ; x`). Then

0 � min(x1; : : : ; x`)� �-min(x1; : : : ; x`)

� �

"
log

 X̀
i=1

e�xi=�
!
� log

�
e�x

�=�
�#

� �

e�x
�=�

"X̀
i=1

e�xi=� � e�x
�=�

#

= �

"X̀
i=1

e�(xi�x
�)=� � 1

#
� �(`� 1):

Proof of (iii). It is obvious that

xj 7! �� log
 X̀
i=1

e�xi=�
!

is monotonically increasing. To prove concavity it is enough to consider the case � = 1 for
the �-min. Denote by S�`�1 = f� 2 R` : �i > 0;

P`
i=1 �i = 1g the interior of the standard

simplex. We show that

1-min(x1; : : : ; x`) = inff
X̀
i=1

(xi�i + �i log �i) : � 2 S�`�1g (25)

which implies immediately concavity.
By Jensen's inequality, for all � 2 S�`�1

1-min(x1; : : : ; x`) = � log

 X̀
i=1

e�xi

!
= � log

 X̀
i=1

�i
e�xi

�i

!

� �
X̀
i=1

�i log

 
e�xi

�i

!

=
X̀
i=1

(xi�i + �i log �i):

On the other hand, choosing ��i =
e�xiP

1�j�`
e
�xj

one sees that

1-min(x1; : : : ; x`) =
X̀
i=1

(xi ��i + ��i log ��i)

and this implies (25).

Proof of (iv): Since

@

@xj
�-min(x1; : : : ; x`) =

e�xj=�P`
i=1 e

�xi=�
;
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the di�erentiability and the bound on the partial derivatives is obvious. The Lipschitz

bound can be obtained by the mean value theorem applied to the gradient, since no

second partial derivative is larger than 2=�.

Noticing that the gradient vector r�-min(x1; : : : ; x`) is equal to the Gibbs distribution

on 1; : : : ; `, the limit lim�!0 �-min(x1; : : : ; x`) can e.g. be found in Corollary 2.1 of Aarts

and Korst (1989).

2
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