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EEL: A Brief Presentation 

The Laboratory of Experimental Economics was created in 1991 within the Department of 
Economics of the University of Trento. Its initial purpose was to  conduct experiments in analysis 
of organisational behaviour - which is still its principal area of interest although others have 
recently been added, most notably study of the formation of choice behaviour in demand for 
consumer goods and decision making in the fiscal and distributive area. 

The orgiginal idea was to  develop models of 'organisational learning' which describe the 
growth of organisational and informational structures in firms and institutions, and to  conduct 
analysis and empirical verification utilizing recent techniques developed in the field of Experi- 
mental Economics. This purely experimental work is now flanked by analysis in the theoretical 
area of the organisation and the firm. Particular emphasis has been placed on the development 
of models of information structures in firms and on the representation and simulation of the 
multiactor decision processes that unfold within them, at  the managerial and planning level and 
also from the point of view of consensus formation. The work of the Laboratory has fully borne 
out the decision to conduct research from three different disciplinary points of view: (a) that  
of the cognitive sciences, in order to  deepen understanding of learning processes by means of 
laboratory experiments and in order to  model the knowledge transfer mechanisms that  charac- 
terize organisational learning; (b) that  of the theory of decision support for the understanding 
and formulation of the preferences leading to the decision; (c) that  of organisational analysis in 
order t o  study the emergence of different forms of cooperation and the solution of cognitive and 
decisional conflicts; (d) that  of institutional economics, to  move into the direction of explaining 
the rise of economic institutions on the basis of new micro-foundations. 

One indirect aim of the project is to  develop a research agenda in a coordinate way with 
various groups sharing the same methodological approach. Among these groups several Italian 
universities are involved ( C i  Bembo at  Venice, Political Science a t  Turin, the University of 
Genoa, the Bocconi University of Milan, the Universities of Modena and Trento). The Labortory 
is also cooperating in systematic manner with a number of international research centres, in 
particular with the following groups: BACH (University of Michigan), CSOM (University of 
Amsterdam), Dynamics of Computa.tion Group (Palo Alto), SCANCOR (Stanford University), 
CCE (University of California, Los Angeles). 

The Laboratory gratefully acknowledges the support received from the University of Trento 
("Progetto Speciale") and the Italian Ministry of University and Research ("MURST" 40%). 

More information on Laboratory's research is available on INTERNET a t  the location: 
http://black.cs.unitn.it. 



Preface 

The research project on Systems Analysis of Technological and Economic Dynamics a t  IIASA is 
concerned with modeling technological and organisational change; the broader economic devel- 
opments that  are associated with technological change, both as cause and effect; the processes 
by which economic agents - first of all, business firms - acquire and develop the capabilities 
to  generate, imitate and adopt technological and organisational innovations; and the aggregate 
dynamics - a t  the levels of single industries and whole economies - engendered by the interac- 
tions among agents which are heterogeneous in their innovative abilities, behavioural rules and 
expectations. The central purpose is to  develop stronger theory and better modeling techniques. 
However, the basic philosophy is that  such theoretical and modeling work is most fruitful when 
attention is paid to the known empirical details of the phenomena the work aims to address: 
therefore, a considerable effort is put into a better understanding of the 'stylized facts' concern- 
ing corporate organisation routines and strategy; industrial evolution and the 'demography7 of 
firms; patterns of macroeconomic growth and trade. 

From a modeling perspective, over the last decade considerable progress has been made on 
various techniques of dynamic modeling. Some of this work has employed ordinary differential 
and difference equations, and some of it stochastic equations. A number of efforts have taken 
advantage of the growing power of simulation techniques. Others have employed more traditional 
mathematics. As a result of this theoretical work, the toolkit for modeling technological and 
economic dynamics is significantly richer than it was a decade ago. 

During the same period, there have been major advances in the empirical understanding. 
There are now many more detailed technological histories available. Much more is known about 
the similarities and differences of technical advance in different fields and industries and there is 
some understanding of the key variables that  lie behind those differences. A number of studies 
have provided rich information about how industry structure co-evolves with technology. In 
addition to  empirical work a t  the technology or sector level, the last decade has also seen a 
great deal of empirical research on productivity growth and measured technical advance a t  the 
level of whole economies. A considerable body of empirical research now exists on the facts that  
seem associated with different rates of productivity growth across the range of nations, with the 
dynamics of convergence and divergence in the levels and rates of growth of income, with the 
diverse national institutional arrangements in which technological change is embedded. 

As a result of this recent empirical work, the questions that  successful theory and useful 
modeling techniques ought to  address now are much more clearly defined. The theoretical work 
has often been undertaken in appreciation of certain stylized facts that needed to be explained. 
The list of these 'facts7 is indeed very long, ranging from the microeconomic evidence concerning 
for example dynamic increasing returns in learning activities or the persistence of particular sets 
of problem-solving routines within business firms; the industry-level evidence on entry, exit and 
size-distributions - approximately log-normal - all the way to  the evidence regarding the time- 
series properties of major economic aggregates. However, the connection between the theoretical 
work and the empirical phenomena has so far not been very close. The philosophy of this project 
is that  the chances of developing powerful new theory and useful new analytical techniques can 
be greatly enhanced by performing the work in an environment where scholars who understand 
the empirical phenomena provide questions and challenges for the theorists and their work. 

In particular, the project is meant to pursue an 'evolutionary' interpretation of technological 
and economic dynamics modeling, first, the processes by which individual agents and organisa- 
tions learn, search, adapt; second, the economic analogues of 'natural selection' by which inter- 
active environments - often markets - winnow out a population whose members have different 
attributes and behavioural traits; and, third, the collective emergence of statistical patterns, 
regularities and higher-level structures as the aggregate outcomes of the two former processes. 

Together with a group of researchers located permanently a t  IIASA, the project coordinates 
multiple research efforts undertaken in several institutions around the world, organises workshops 



and provides a venue of scientific discussion among scholars working on evolutionary modeling, 
computer simulation and non-linear dynamical systems. 

The research focuses upon the following three major areas: 

I .  Learning Processes and Organisational Competence. 

2. Technological and Industrial Dynamics 

3. Innovation, Competition and Macrodynamics 
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Abstract 
Wc invcstigate the  cmergcnce of (optimal and suboptimal) bc- 

havioural roiltines in the context of a coopcrativc game. In pal-titular 
we ronstrilct a. search model of the gradicrlt dcsccnt type for the  op- 
timization of 'static' and 'dynainic' playing routines. That  optiinality 
study sets thc basis for the analysis of thc dynamics and modclling of 
routinc learning. In  the last part of the paper we propose n lcnrning 
llcliristics for the development of routinized behaviolir on the basis of 
a simple network model of the subjcct player. 
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1 Introduction 

The questions of bounded rationality, behavioural rout.ines and procedural 
learning [3] [4] [5] [GI [7] [8] [9] [18] p la j~  a crucial role in modern theories of 
e17olut.ionary economics. In tliis research project we analyse the emergence 
of behavioural routines in the context of a simple experimental set.ting, that 
of a cooperative carcl game [GI. Our ultimate goal is to characterize tlie type 
of routines that emerge and understand tlie nature of the learning process. 

The game involves two players - colourlteeper and numberlteeper - and 
tlie six cards 2,3,4 V and 2,3,4 4. The board on which the game is played is 
as slio~vn in figure 1. 

Position c 

Position u 

Position n 

Colourkeeper 

Target t 

Numberkeeper 

Figure 1: Tlie board 

Tlie carcis in posit.ions u ancl t (target) are face-up, tlie ot.l.iers are face- 
clown. As a result., each player sees it.s own card and t,he t,wo cards in positions 
u, t .  Neitlier plajler sees the ot,Iier plajler's card. 

Tlie stat,es of t.he game with 2 V in the target position are called terminal 
st,at.es. Once the cards are dealt t,he t.wo players are supposed t.o cooperat,e in 
order t,o t.ransform tlie given init,ial stmate into a t.ermina1 state. Each player, 
in turn, ~nodifies the state of t'he game by applying one of t,lie following 
t.ransformation operators, 



The four t,ransformat,ion operators 7 ,  U ,  C, M excliange the card in the 
player's hand with the card in position t ,  u ,  c, n respectively. The use of the 
operator 7 is const,rained: the colourlceeper can play Tonly if his card and 
the one in position t have the same colour; a similar rule applies to the 
numberkeeper, 1~i t .h  reference to numbers instead of colours. 

In t,he laborat'ory study of Cohen & Bacdayan [GI and Egidi [8] [9] t,lie 
two players are encouraged not only to complete the game but also t,o plav 
in an efficient manner. An incentive system is used uihicli rewards the two 
players (in equal measure) in proportion to the number of hands successfully 
complet.ed within a given amount. of time. Moreover, a fixed cost per move 
is subt,ract.ed from t,lie final payoff in order t,o discourage unnecessary moves. 
For a det,ailed discussion of tlie experiment.al sett,ing see t,he original references 
indicated above. 

In t,heir original experiment Cohen & Bacdayan recorded the perfor- 
mances of 32 pairs of subjects playing two separat,e game sessions of 40 
minut.es each. Nat.urally, t'he sequence of hands playeci during each session 
was t,he same for all pairs. In our analysis of t.he result,ing tiatma t,he main 
goal is t.o st.udj? whether or not,  subject.^ (lo develop belia~lioural rout.ines for 
cooperat,ive playing and, if t.hey (10, ident'ify which rout,ines emerge and how. 

Tlie report. is organized as follows: in t,lie next, section we int.roduce a 
special st.at.e representat.ion based on the modular structure of t,he game. 
Tlie mociular representation suggests a set of simple st,atic routines which 
cociify good cooperat,ive playing in a large number of cases. As a result 
we consider t.hose routines as al~propriat,e t.emplat,es for our analysis of the 
cievelopment. of cooperative routines. In t,l~e third anti f0urt.h sect.ions we 
define t,he st.atic and dynamic playing paraciigms plus a search algoritlim 
(1)aseci on a t1iscret.e gradient descent scheme) for t,he ext,ract.ion of t.lie opt.ima1 
rout,ine set,. Finallg, in tlie last. sect,ion, we propose a learning mociel [lo] [12] 
[13] [I 51 based on t.he adapt,ive performance of a neural net,work architecture 

PI 121 [ill PI ~ 7 1 .  

2 The modular representation 

Tlie card game conceived by Cohen 8t Bacdayan has a natural modular st,ruc- 
t'ure. -Any global solut.ion t,o a particular liand decomposes int,o a sequence 
of local solut~io~is associated u~itli target transit,ions. This crucial property is 



best. illust,rat,ed by means of the structural graph in figure 2 (see [8] [9] [16]), 

Figure 2: The structural graph 

where t,he six nodes indicate t.he card in target and the arrows indicate posi- 
t,ive target transitions (i.e. those that come closer to game complet,ion). The 
negat.ive target t.ransitions are t,llose obtained by inverting the arrows and 
the indifferent t,arget t,ransit,ions are t.he ones between 3 and 4 0, or 3 and 
4 4 .  Next. to each t,arget transition s1101r.n in the graph we indicat,e which of 
the t.wo players can produce it (recall t,llat the c0nst.raint.s regarding t.he use 
of t.he operator Tare different for colourlieeper and numberlieeper). 

We say t.llat a game configuration is of level I if the card in t,arget is 
eit.her 3 0 ,  4 0  or 2 4 .  Instead, a game configuration is of level I1 if t.he card 
in t.arget is either 3 4  or 4 4 .  With reference to the structural graph above, 
t.lie geomet,rical meaning of the definit.ion of level sliould be t,ransparent. 

In a game of level I there is only one interesting card t.o lool< for, the 2 0 .  
In case 2 4  is in t.arget, for instance, t,he numberl<eeper has only to find t,he 
2 0  t.o complet,e t.he game, while the colourl<eeper should do not.hing except. 
reveal t.he 2 0  if he has it in liand (by pla>ring U). The same liappens if eit,her 
3 0  or 4 0  are in t.arget., with colourl<eeper and numberlieeper int.erclianged. 

Tlie cooperat'ive structure of a level I1 game is more interesting. The 
season is that eit'lier player can produce the first target transition, that whicl-1 
t.ransforms t.lie level I1 configurat.ion into one of level I. Clearly, the actual 
target t.ransition depends on which player produces it. Assume, for inst,ance, 
t,liat. the card in t,arget is 4 4 .  In that case (see t.he st,ructural graph above) 
t.he colourkeeper can produce a positive target t,ransition ~v i th  the 2 4  while 
t,he numberlieeper can do as much with the 4 0 .  Once one of t,he two players 



lias producetl the first target transition it is up to tlie otlier player to coml~lete 
tlie game with the 2 0 .  

Tliere are thus tliree key cards [8] [9] [16] in a game of level 11. From tlie 
point of view of player X (colourlieeper or numberlieel~er) tlie lie~r cards are 

fi flag - t.he card with wliich player X can produce a +tt 

JJ dual flag - tlie card with nrhich player Y can produce a +t,t. 

$ double flag - the 2 0 ,  i.e. t,he card with ~vllicli to complete tlie game after 
player 1' has produced tlie first +t t  

wliere +tt stands for 'positive target transition'. AS an example suppose 3 4  
is in target. From tlie numberkeeper's point of view tlie liey cards are 

nrhereas from tlie point. of view of the colourlieeper, 

Tlie moclular representat.ion (in t.erms of flags) of level I1 st.at.es lias several 
ad~,ant.ages: t.lie most. iinport.ant of t,liese is t,liat. it. c;~ptures t,he essential 
aspect,s of t.lie game dynamics, according t,o t.lie st~ruct~ul*al gral~li ment,ioned 
before. In doing so it. provides a universal clescription of all level I1 games - 
no mat.t.er whetlies in t,arget is 3 4  or 4 4 ,  01. w11et.her t.he player considered is 
t.lie colourlieeper or the numberlieeper - and thus opens t.he wajr t,o a universal 
cliaract.esization of tlie behavioural routines develol~eci by subject. players. 

b'loreover t.he universa1it.y of t.he modular representation leads t,o a finer 
ancl more reliable statistics of tlie experiment.al data and is also generalizable 
t.o coinplex games wi t.11 Inore t.lian t.wo levels. 

TJ't now t8urn t.o tlie l~roblem of rout,inized t)eliaviour and, in particular, 
t.o the question of ~vliicli rule t.emp1at.e~ are appropriat.e for it,s clescript.ion. 
In this respect. our st.rategy is t.o begin wit.11 the siml~lest possibilit,~r, i.e. t.11at. 
t,lie subject. players develop a pat.t.ern of cooperat.ive playing clepending solely 
on t,lie ~;isible st.at.e of t.he game. In other words, we assume a static routine 
paradigm in wliich t.1-ie learning process leads t.o input-out,put rules where t,he 
input. is const,ruct.ed from the t,l~ree visible cards - 11 (hand), 11 and t - and t,he 
out,put, is t.he associat.etl transformat~ion ol~erator - 7,  U ,  S, P.  The operat,or 
S(searc11) st.ands for a randoni choice 1)et.ween C and N. 



I11 t,liis art.icle we consider only games of level I1 for t,lieji are the most 
int.erest.ing from t.he point. of view of cooperation. In t.hose cases t.he modular 
represent.ation suggests t.he set of reasonable behavioural rout,ines illust.rated 
in t.able 1. The first rule reads if flc~g is  in position /I, tl/,en play 7; the second 

searcli for 0 
searcli for fi or :I 

Priority code 
I 
I 
I1 
I I 
I11 
I11 

Table 1 : Coiidi t.ion-Act,ion sou t.ines 

Condition Act,ion 
I1 =fi 7 
u =fi U 
12 =Q P 
u =$ U 
h =U U 
u =u S 

ot,lier?vise S 

rule if flag is  171 position u then pl(~?j U,  et.c. T l ~ e  last rule means if none of 
the precediny rules c~pplies then play S .  

The t'ot.al number of static rules is 7. Tlie first. six rules are organized 
in t,liree clifferent. groups (pairs) associat,ecl wit,li priorit.~r cocies from I t.o 111. 
In eacll pair the first rule concerns t.11e card in posit.ion I L  while t'lie second 
rule regartls t.lle card in posit,ion 1 6 .  \\:hereas tlie t.wo rules in a pair are 
clearly mutually exclusive, tlie first, and second rules froin different groups 
are not, necessarily so. As an example, it. could liappeli t,llat. rules 1 and 4 
are I)ot,li applical~le. In tliose cases domii1at.e~ t.he rule wit.11 liiglier priority 
(lower priori t,y code). 

The applical)ilit,y of each rule clepencls on t,lie visiI>le st,at,e of t.lie game, 
as seen 1)y eit.lier one of t'lie t.1~0 players. In ot,lier words, it clepends on t.he 
carcis in posit,ions h,  Z L  and t .  \Vit.liin the universal modular represent.at.ion, 
lio~vever, t.l~e information regardiiig the card in t is used only to set t.he cartl- 
value of the various flags. In this respect it plays the role of a pre-processing 
ineclianism. Once t.he card-values of t.he flags liave been assigned the visible 
st.at.e of t,he game is fully specified by t.he t,wo positions h and u. 

Our set, of st.at.ic rules performs opt.imally in a large number of cases 
a i d  olily moclerat.ely sub-opt.imally in t,he few re~naining ones. hloreover it is 
sinlple and refleck common sense int.uit.ion wit.liin t , l~e modular approacli. For 



these reasons we think that the stmatic rule paradigm provides an appropriate 
fi-ameworlc for t.he study of cooperative rout,ines in our card game. In what 
follows we int,roduce a search model designed to extract, tlie optimal input- 
out.put. routines of t'lie static type. 

3 Static routines 

In the previous section we explained tlle modular representation and pro- 
posed to invest.igate the dynamics of procedural game playing within the 
st.atic routine paradigm. In this section we introduce a search model in the 
space of st.atic rout.ines that looks for the opt.ima1 routine set of the static 
t,~rpe. 

The mot.ivat,ion is t.nrofold: on one hand we 1vis11 t'o classify st'atic rout,ines 
according t,o their performance quality, as well as to est.ablish whether our 
set. of st.at,ic routmines is indeed the optimal one; on t,lie other liand the searcll 
algorit,llnl provides an opportunity to render explicit t.he limitations of tlie 
st,at,ic routine paradigm, eit.her for lack of efficiency or for poor cooperation. 

A static routine t.able S is essentially an artificial player which responds 
in a predefined manner to each possible static configurat.ion of t.he game. By 
st,at.ic configuration we mean the present visible stat.e of t,lle game, i.e. the 
t.wo cards in posit,ions h and 11 . 

Tlle st.at,ic rout,ine tables are organized in 7 different rows, each of n~liich 
concerns one of t'he possible st,at,ic configurat'ions as seen by t,lle subject. 
player. Tlie game configurations are expressed in t,he modular represen- 
t.ation: eacli of tlie t,wo posit.ions h and u can assume one of t.he follonring 
t,l~ree ~palues: flag, doubleflag or null (i.e. else). 

Tlie number of visible flag configurations is 7: 2 with t,~vo flags, 4 wit11 
one flag and 1 wit11 no flags. The structure of a table S of stat.ic routines is 
t.hus as in t,able 2. 

The input-out,put data flow of each of the 7 rows in the st.atic rule table 
S is illust,rated by t.he diagram in figure 3. 

A st.atic routine table assigns a definite response t,o eacli of tmlie possible 
st.at.ic configurat,ions. The possible responses, or moves, are T(t,arget, only 
~vlien 11, is flag), U(up), S(searc11) and P(pass).  The number of different st.at.ic 
rout.ine t,ables (st,at.ic art,ificial players) is thus 4 4 . 3 . 3 . 3 . 3 3 = 3888. 

Tlie motlular represent.at,ion is convenient due to it,s universality, i.e. i t  



Table 2: Static Routine Table 

Ruleindex 
1 
2 
3 
4 
5 
G 
7 

T U S P  
output Y 

Condition Action 
12 =,h u  = - + ? 
1 2 = , h  u = o  + ? 
h = -  u = f i  + ? 
h = -  u = -  + ? 
h=:@ u = -  + ? 
1 u = f i  + ? 
h = -  u = $  + ? 

HAND UP 
input X 

Figure 3: Input-output rule structure 



is applicable t.o both players. The card-values of the flags, instead, depend 
on t,he act.ual card in t,arget,. Thejr must be reset each time, for colourlteeper 
and numberkeeper in t.urn. 

\\'lien ~vrit,t,en in the modular represent,at,ion the number of possible dis- 
t.illct, liands of level I1 reciuces t.o 60: given tlie ca,rd in t.arget., whose role is 
to define t,lie card-\values of the various flags, there remain 5 posit,ions among 
n~hicli t.o dist,ribut,e 3 flags, and t,lius 5 4 . 3 = 60. 

Tlie searcli model is based on a cost function F = F(S) ~vliicli assigns a 
numerical cost. to each st>at'ic routine t.able S .  The cost F(S) associated to a 
st,at,ic rout,ine t,ahle is given by t.he convex combination of an efficiency cost 
eff ic(S) and a ~ooperat~i~re cost coop(S), 

~1.71iere t.he 1veiglit.ing coefficient. a is exogenous (i.e. fixed by t,he operat.or). 
Clearly, t,he opt.ima1 static rule table S is t.he one nlliicli minimizes t,lie cost 
funct.ion F. 

Tlie efficiency cost eff ic(S) simply c0unt.s t.he number of moves necessary 
t,o coml>let.e t.lie full set of 60 liancis (of level 11). If for a given liand t,lie 
artificial player reaclies t.lie tliresliol(i of 10 moves t.lie game is interrupted 
ancl t.llat, part.icular liand cont,ribut.es 10 t.o t.he efficiency cost,. 

Tlie cooperat'ive cost. coop(S) counts t,lie t'ot.al number of st.rat.eg!; changes 
ocurred during playing. Tlie st,rat,eg!r clianges wibhin one hand are det.ect.eci 
I)!; means of 8 st.rat,egy niarlters, 4 for st.rategy + ('get Bug 3 and 4 for st.rategy 
- ( ' ge t  double flag 3. Tlie two set.s of st'rateg!; lnarlters are describecl in t.al)les 
3 and 4. 

Eacli player lias a t.liree st.at,e (+I ,  0, -1) strat,egy indicat.0~ whicli is up- 
ciat.ecl every t'ime tlie player's move coincides wit.11 a st.rat.egy niarlter. -At, 
the l~egining of eacli liand l~otl i  markers are set, to null. 'reset,' of t,he 
st.rat,eg!; inclicator (aft.er t.lie first, set.ting) is count.ec1 as a st,rat.egy change. 

Tliis cornp1et.e~ the ciescript.ion of how to c0mput.e t.he cost F(S) of a b' riven 
stat'ic rout.ine t,able S. We now explain t,he struct,ure of the searcl.1 algorit,hm 
t,liat, loolts for t.he opt.ima1 st.at.ic rout.ine t,able (t,lie one wit.l-1 minimal cost,): 

1. Clioose arbit.rarily an initial st,at.ic rout'ine tSable So and compute &'(So). 
Tlie algorit'hm is based on a t.ype of gradient descent, procedure: in 
each it.erat.ion each individual degree of freedom clianges in t,he locally 
opt.i~nal direct,ion. 



s t ra tegy+ (GET fi) 

h = fi followed by move 7 

u = fi followed by move U 

/I, = 0 not. follo~ve(I by move P 

el = 0 not follo~ved by move U 

Table 3: St.rat.egy ~narkers for GET fi 

s t ra tegy-  (GET 0) 

I = followed I)\; move P 

u = 0 followed by move U 

I = fi not followed I)jr move 7 

el = not follo~ved by move U 

Table 4: St,rat~eg?; markers for GET 0 



2. Examine each of t,lie 7 rows of tlle st,at.ic rout.ine t.able individually, 
lceeping t,he remaining 6 rows fixed, and det.ermine the (localljr) opt,imal 
move for t,llat row b j ~  comput.ing the cost. associated 1vit.11 each of the 
three/four possible responses. 

3. \\:.'hen the (locally) optimal move for a given r o ~ v  has been determined 
update t.llat, row's response and move on to the following row. 

4. R,epeat t.lie l~rocedure until the algorithm converges. 

In t.lle case a = 0 we have found a global opt.iinuin 111~s a local opt'imum 
which ciisal>pears when a = 0.5. The opt'imal and subopt.ima1 st.at,ic routsine 
t.ables are present,ed in t.ables 5 and 6. 

4 Dynamic routines 

h ti. 

fr - 

fr a 
- fr 
- - 

:a - :a fr 
- 0 

\J7e now examine t,he dynamic playing paradigm, in ~vhicli t.he art,ificial player 
responds not. only t'o tlle st.at,ic configurat.ion of t,lie game but. also to t.lie 
l~revious move by t.he ot.her player. The dynamic model, therefore, corres- 
ponds to an artificial player wit'li minimal memory: it remembers only t.he 
previous move. 

In a dynamic routine table D t,lle previous move is encoded in t'he (+I ,  0, 
-1) represent.at,ion for the other pla>rer's st,rategy indicat.0~. Consist.ently 

act ion 
7 
T 
U 
s 
P 
P 
U 



1 h u I action I 
l't I *  

Table 6: Suboptimal stat.ic rout.ines 

~vitli the minirnal memory principle, ho~ve~rer, the st.rat,egy indicators are up- 
clat.ed eacli t.ime according t-o t,he act.ua1 move the ot.her player has made. If 
t,llat move does not, coincide wit.11 any of the S marlters then t,lle strat.egy indi- 
cat.or is set, t.o 0. Tlie three cases 'act.ive7, 'stat.ic' and 'passive' are associat.ed 
niit,li t.lie t.hree strategy indicat,or values $1, 0 and -1. 

Tlle dynamic rout.ine t,ables are t.herefol-e organized in 3 set.s of 7 SOTVS, one 
for eacli st.rategy indicat,or value (+I ,  0, -1). Tlie search algori t,llln operat,es 
e~sent~iall!~ as before, visit.ing in turn t,lle 3.7 = 21 rows of t.he dynamic 
t,able. In t.his case t.here are no local opt,ima. Tlie (globally) opt.ima1 dynamic 
rout,ine t,able is presented in t'ables 7 (static), S (act.ive), 9 (passive). 

Static 
11, 11 action 

l ' t -  + T 
l't :a + T 
l ' t  + U 
- - + s 
:a - -+ P 
o l ' t  + U 
- :a + u 

Table 7: Dynamic table: no marlters set. 



Active 
h u action 

I t -  + S 
0 0  + U 
- 0  + S 
- - * S 
:(t - + P 
: rr + P 
- 0  + U 

Table 8: Dynamic t,able: active marker set, 

Passive 
11 ZL adion 

I t -  + 7 
r r 0  + 
- 0  -+ U 
- - + S 
D -  + - 

$ 0  + 
- 0  + - 

Table 9: Dynamic table: passive marker set 



5 A learning model 

After having established a normative standard of opt.imallity with our stmatic 
and dynamic routine tables we address the crucial issue of learning in the 
cont.ext of our cooperat.ive game. In this section mre propose a learning mech- 
anism - archit.ect,ure and heuristics - with which to model t.he emergence of 
cooperat,ive routines among t,he subject players. 

Tlie idea is as follo~vs: each subject plajrer is modelled by an adapt.ive net- 
work as in figure 4. Tlie net~vorli architecture models t.he decisional structure 
of t.he subject plajrel- and is therefore the same in all subjects. The network 
paramet.ers, on t,he other hand, change from one subject t,o another, they are 
t.he dist.inct.ive individual labels of the various subject plajrers. 

Figure 4: Tlie network model of tlie subject plaver 

The sub-network dominat.ed by node A is called the 'self' part of the 
network. 1t.s role is t,o construct a strategy preference based only on the 
st.at.ic input.s H (card in h )  and U (card in u).  The t,wo input nodes H,U 
t.ake values within t,he int>erval [-I, +1] according to t.he following 'self' flag 
represent,at,ion, 



h=+1 *=O n=-1 (* meails 'else') . 

On the basis of the inputs H,U the strategy node A constructs a strategy 
preference with the usual local network law 'y = a(C w , ~ , ) '  as in figure 5 .  
The sigma function a is illustrated in t,he final section a t  the end of t,he 
report,. Tlle numerical semantics of node A is consistent with the 'self' flag 
representat,ion characteristic of it.s sub-network, 

A= +1 means strategy GET 0 
A= 0 means strategy UNCLEAR, 
A= -1 means strategy G E T  Q 

At t,liis point it. is clear that t.he 'self' sub-net,worli models the static part 
of t.he subject. player. In the opt.ima1 case therefore t.he parameters a1 and 

are such t,llat. t.he 'self' sub-networli emulates the opt,imal stat,ic rout,ine 
table (t.able 10). 

Table 10: Sub-network A (optimal) 

H U A  

In t,he opt*imal case t.he appropriat,e values for t,he parameters are a.1 = 2 
k a2 = 1 as can be seen from t.he linear separat.ion diagram in figure 6. 

The sub-net,worlc dominated by node B is called the 'dual' part. of t,he 
llet,?~orli. 1t.s role is t.o construct. t.he strat>egy preference of t.he ot.ller plaj~er 

I ,  u action 



Figure 5: The 'self' sub-network A = a(al . H + a:! U) 

Figure 6: Sub-network A (linear separat'ion diagram) 



based on tlie inpus V and li, wliere V stands for tlie card in position u before 
the pre\iious move. *As before, the two inputs talie values within tlie [- 1, + 11 
interval but tliis time according to the 'dual' flag representation, 

6=+1 *=O @=-I (* meails 'else') . 

On t.he basis of tlie inputs IT, U the strategy node B const,ructs tlle ot.1ier 
player's strat.egy preference (figure 7). The numerical semantics of node B is 
consist,ent. with t.he 'dual' flag representation cliaracteristic of its sub-net,worli, 

B= +1 means strat,egy GET .lJ 
B= 0 means strategy UNCLEAR, 
B= -1 means strategy GET @ 

The 'dual' sub-net.wor1~ models the dynamic part of the subject. player. In 
t,he optimal case t,herefore tlie parameters bl and b2 are such t,Ilat. t,he 'dual' 
sub-network emulat'es the following optimal dynamic rout.ine t,able (t.ahle 11). 

Table 11: Sub-net.worl< B (opt.ima1) 

I n  tlie optimal case the appropriate values for the parameters are bl = 1 
& b2 = -2 as can be seen from t.he linear separation diagram in figure 8. 

The leading node C = -AB of t,he learning net4worl< plays a coordinating 
role with respect. t.o the strategy preferences expressed by nodes A and B, as 



Figure 7: The 'dual' sub-net.~vorl< B = a ( b l  . V + biz . U) 

Figure S: Sub-net.~vork B (linear separat,ion diagram) 



illustrated in figure 9. The optimally coordinated preferences are tliose wit11 
C = 1, t.lie worse cases instead are tliose with C = -1. 

Figure 9: Tlie leading node 

The learning heuristics of our net.~vorlc model is based on t,wo principles: 
t.he consistency principle states that the four network parameters 'learn' max- 
imal consistency and the stability principle states that the parameters 'learn' 
t.o st.abilize (from one move t.o t,l.ie next.) t.he st,rat.egy preferences expressed 
by nodes A and B. 

Oul- learning lleurist,ics corresponds t,o an optimizat,ion algorithm based 
on a cost, f~~nct , ion F ~vliicli is a convex combinat'ion of a consist'ency t,erm 
and a stabi1it.y term, 

~vliere .4t and Bt s t a d  for tlie previous A and B values. Tlie resulting 
learning process is an it.erative gradient descent. mechanism wit.11 respect to 
t.lie four parameters of tlie cost function F, 

where X is tlle so-called learning rat,e parameter. 



6 Concluding remarks 

The learning 1leurist.ics above acts on the net~vorli parameters on t.he basis of a 
learning table of selected examples of good playing, each of nrhich corresponds 
t.o an ogt.ima1 t.ransit,ion from one game configurat.ion (H,U,U,V) to the next. 
Tlie game configurat.ions (input. vectors for t.he networli model) are extract.ed 
from t , l~e following combinat.oria1 table regarding all possible dist.ributions of 
t,he Itey cards 0 ,  .I, 0 ,  

Table 12: Full combinatorial table for fi, 4, $ configuratioils (43) 

Clearl~l, not. all rows in table 12 are relevant for t.he construct.ion of t,he 
learning t,able, since t.he 'self' part of the networlc disregards t.he liejr card lJ 
and t.he 'dual' part of t.he net.worli, in turn, disregards the lieJr card 0 .  The 
c1escript.ion and results of the experimental t.esting (computer simulation) of 
t . l~e learning scheme will be present,ed elsewhere. 

The  sigina funct,ion a ment,ioned i11 the previous sect.ion is given by 
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