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EEL: A Brief Presentation

The Laboratory of Experimental Economics was created in 1991 within the Department of
Economics of the University of Trento. Itsinitial purpose was to conduct experiments in analysis
of organisational behaviour — which is still its principal area of interest although others have
recently been added, most notably study of the formation of choice behaviour in demand for
consumer goods and decision making in the fiscal and distributive area.

The orgiginal idea was to develop models of ‘organisational learning’ which describe the
growth of organisational and informational structures in firms and institutions, and to conduct
analysis and empirical verification utilizing recent techniques developed in the field of Experi-
mental Economics. This purely experimental work is now flanked by analysis in the theoretical
area of the organisation and the firm. Particular emphasis has been placed on the development
of models of information structures in firms and on the representation and simulation of the
multiactor decision processes that unfold within them, at the managerial and planning level and
also from the point of view of consensus formation. The work of the Laboratory has fully borne
out the decision to conduct research from three different disciplinary points of view: (a) that
of the cognitive sciences, in order to deepen understanding of learning processes by means of
laboratory experiments and in order to model the knowledge transfer mechanisms that charac-
terize organisational learning; (b) that of the theory of decision support for the understanding
and formulation of the preferences leading to the decision; (c) that of organisational analysis in
order to study the emergence of different forms of cooperation and the solution of cognitive and
decisional conflicts; (d) that of institutional economics, to move into the direction of explaining
the rise of economic institutions on the basis of new micro-foundations.

One indirect aim of the project is to develop a research agenda in a coordinate way with
various groups sharing the same methodological approach. Among these groups several Italian
universities are involved (Ca Bembo at Venice, Political Science at Turin, the University of
Genoa, the Bocconi University of Milan, the Universities of Modena and Trento). The Labortory
is also cooperating in systematic manner with a number of international research centres, in
particular with the following groups: BACH (University of Michigan), CSOM (University of
Amsterdam), Dynamics of Computation Group (Palo Alto), SCANCOR (Stanford University),
CCE (University of California, Los Angeles).

The Laboratory gratefully acknowledges the support received from the University of Trento
(“Progetto Speciale”) and the Italian Ministry of University and Research (“MURST” 40%).

More information on Laboratory’s research is available on INTERNET at the location:
http://black.cs.unitn.it.
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Preface

The research project on Systems Analysis of Technological and Fconomic Dynamics at ITASA is
concerned with modeling technological and organisational change; the broader economic devel-
opments that are associated with technological change, both as cause and effect; the processes
by which economic agents - first of all, business firms — acquire and develop the capabilities
to generate, imitate and adopt technological and organisational innovations; and the aggregate
dynamics — at the levels of single industries and whole economies — engendered by the interac-
tions among agents which are heterogeneous in their innovative abilities, behavioural rules and
expectations. The central purpose is to develop stronger theory and better modeling techniques.
However, the basic philosophy is that such theoretical and modeling work is most fruitful when
attention is paid to the known empirical details of the phenomena the work aims to address:
therefore, a considerable effort is put into a better understanding of the ‘stylized facts’ concern-
ing corporate organisation routines and strategy; industrial evolution and the ‘demography’ of
firms; patterns of macroeconomic growth and trade.

From a modeling perspective, over the last decade considerable progress has been made on
various techniques of dynamic modeling. Some of this work has employed ordinary differential
and difference equations, and some of it stochastic equations. A number of efforts have taken
advantage of the growing power of simulation techniques. Others have employed more traditional
mathematics. As a result of this theoretical work, the toolkit for modeling technological and
economic dynamics is significantly richer than it was a decade ago.

During the same period, there have been major advances in the empirical understanding.
There are now many more detailed technological histories available. Much more is known about
the similarities and differences of technical advance in different fields and industries and there is
some understanding of the key variables that lie behind those differences. A number of studies
have provided rich information about how industry structure co-evolves with technology. In
addition to empirical work at the technology or sector level, the last decade has also seen a
great deal of empirical research on productivity growth and measured technical advance at the
level of whole economies. A considerable body of empirical research now exists on the facts that
seem associated with different rates of productivity growth across the range of nations, with the
dynamics of convergence and divergence in the levels and rates of growth of income, with the
diverse national institutional arrangements in which technological change is embedded.

As a result of this recent empirical work, the questions that successful theory and useful
modeling techniques ought to address now are much more clearly defined. The theoretical work
has often been undertaken in appreciation of certain stylized facts that needed to be explained.
The list of these ‘facts’ is indeed very long, ranging from the microeconomic evidence concerning
for example dynamic increasing returns in learning activities or the persistence of particular sets
of problem-solving routines within business firms; the industry-level evidence on entry, exit and
size-distributions — approximately log-normal - all the way to the evidence regarding the time-
series properties of major economic aggregates. However, the connection between the theoretical
work and the empirical phenomena has so far not been very close. The philosophy of this project
is that the chances of developing powerful new theory and useful new analytical techniques can
be greatly enhanced by performing the work in an environment where scholars who understand
the empirical phenomena provide questions and challenges for the theorists and their work.

In particular, the project is meant to pursue an ‘evolutionary’ interpretation of technological
and economic dynamics modeling, first, the processes by which individual agents and organisa-
tions learn, search, adapt; second, the economic analogues of ‘natural selection’ by which inter-
active environments — often markets — winnow out a population whose members have different
attributes and behavioural traits; and, third, the collective emergence of statistical patterns,
regularities and higher-level structures as the aggregate outcomes of the two former processes.

Together with a group of researchers located permanently at IIASA, the project coordinates
multiple research efforts undertaken in several institutions around the world, organises workshops
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and provides a venue of scientific discussion among scholars working on evolutionary modeling,
computer simulation and non-linear dynamical systems.
The research focuses upon the following three major areas:

1. Learning Processes and Organisational Competence.
2. Technological and Industrial Dynamics

3. Innovation, Competition and Macrodynamics
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Abstract

We investigate the emergence of (optimal and suboptimal) be-
havioural routines in the context of a cooperative game. In particular
we construct a search model of the gradient descent type for the op-
timization of ‘static’ and ‘dynamic’ playing routines. That optimality
study sets the basis for the analysis of the dynamics and modelling of
routine learning. In the last part of the paper we propose a learning
heuristics for the development of routinized behaviour on the basis of
a simple network model of the subject player.

Keywords: optimal cooperative routines, discrete optimization and search, rou-
tine learning, network models, bounded rationality, game theory
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1 Introduction

The questions of bounded rationality, behavioural routines and procedural
learning (3] [4] [5] [6] [7] [8] [9] [18] play a crucial role in modern theories of
evolutionary economics. In this research project we analyse the emergence
of behavioural routines in the context of a simple experimental setting, that
of a cooperative card game [6]. Our ultimate goal is to characterize the type
of routines that emerge and understand the nature of the learning process.

The game involves two players - colourkeeper and numberkeeper - and
the six cards 2,3,4 © and 2,3,4 &. The board on which the game is played is
as shown in figure 1.

Position ¢ Colourkeeper
Position u Target ¢
Position n Numberkeeper

Figure 1: The board

The cards in positions u and ¢ (target) are face-up, the others are face-
down. As a result, each player sees its own card and the two cards in positions
u,t. Neither player sees the other player’s card.

The states of the game with 2 © in the target position are called terminal
states. Once the cards are dealt the two players are supposed to cooperate in
order to transform the given initial state into a terminal state. Each player,
in turn, modifies the state of the game by applying one of the following
transformation operators,

T,U,C,N or P(pass).



The four transformation operators 7, U, C, N exchange the card in the
player’s hand with the card in position ¢, u, ¢, n respectively. The use of the
operator 7 is constrained: the colourkeeper can play 7 only if his card and
the one in position ¢t have the same colour; a similar rule applies to the
numberkeeper, with reference to numbers instead of colours.

In the laboratory study of Cohen & Bacdayan [6] and Egidi [8] [9] the
two players are encouraged not only to complete the game but also to play
in an efficient manner. An incentive system is used which rewards the two
players (in equal measure) in proportion to the number of hands successfully
completed within a given amount of time. Moreover, a fixed cost per move
is subtracted from the final payoff in order to discourage unnecessary moves.
For a detailed discussion of the experimental setting see the original references
indicated above.

In their original experiment Cohen & Bacdayan recorded the perfor-
mances of 32 pairs of subjects playing two separate game sessions of 40
minutes each. Naturally, the sequence of hands plaved during each session
was the same for all pairs. In our analysis of the resulting data the main
goal is to study whether or not subjects do develop behavioural routines for
cooperative playing and, if they do, identify which routines emerge and how.

The report is organized as follows: in the next section we introduce a
special state representation based on the modular structure of the game.
The modular representation suggests a set of simple static routines which
codify good cooperative playing in a large number of cases. As a result
we consider those routines as appropriate templates for our analysis of the
development of cooperative routines. In the third and fourth sections we
define the static and dynamic playing paradigms plus a search algorithm
(based on a discrete gradient descent scheme) for the extraction of the optimal
routine set. Finally, in the last section, we propose a learning model [10] [12]
[13] [15] based on the adaptive performance of a neural network architecture
[1] (2] [11] [14] [17].

2 The modular representation
The card game conceived by Cohen & Bacdayan has a natural modular struc-

ture. Any global solution to a particular hand decomposes into a sequence
of local solutions associated with target transitions. This crucial property is



best illustrated by means of the structural graph in figure 2 (see [8] [9] [16]),
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Figure 2: The structural graph

where the six nodes indicate the card in target and the arrows indicate posi-
tive target transitions (i.e. those that come closer to game completion). The
negative target transitions are those obtained by inverting the arrows and
the indifferent target transitions are the ones between 3 and 4 O, or 3 and
4&. Next to each target transition shown in the graph we indicate which of
the two players can produce it (recall that the constraints regarding the use
of the operator 7T are different for colourkeeper and numberkeeper).

We say that a game configuration is of level I if the card in target is
either 30, 40 or 2&. Instead, a game configuration is of level II if the card
in target is either 3d or 4. With reference to the structural graph above,
the geometrical meaning of the definition of level should be transparent.

In a game of level [ there is only one interesting card to look for, the 20.
In case 2 is in target, for instance, the numberkeeper has only to find the
2Q to complete the game, while the colourkeeper should do nothing except.
reveal the 2Q if lie has it in hand (by playing ¢). The same happens if either
30 or 40 are in target, with colourkeeper and numberkeeper interchanged.

The cooperative structure of a level II game is more interesting. The
reason is that either player can produce the first target transition, that which
transforms tlie level II configuration into one of level I. Clearly, the actual
target transition depends on which player produces it. Assume, for instance,
that the card in target is 4. In that case (see the structural graph above)
the colourkeeper can produce a positive target transition with the 2 while
the numberkeeper can do as much with the 49. Once one of the two players



has produced the first target transition it is up to the other player to complete
the game with the 2Q.

There are thus three key cards [8] [9] [16] in a game of level II. From the
point of view of player X (colourkeeper or numberkeeper) the key cards are

It flag - the card with which player X can produce a +tt
| dual flag - the card with which player Y can produce a +tt

{ double flag - the 29, i.e. the card with which to complete the game after
player Y lhas produced the first 4tt

where +tt stands for ‘positive target transition’. As an example suppose 3&
is in target. From the numberkeeper’s point of view the key cards are

1= 390 J=2&% =29
whereas from the point of view of the colourkeeper,
1= 2& J=30 = 20.

Tlhe modular representation (in terms of flags) of level IT states has several
advantages: the most important of these is that it captures the essential
aspects of the game dynamics, according to the structural graph mentioned
before. In doing so it provides a universal description of all level II games -
no matter whetlier in target is 3é or 4, or whether the plaver considered is
the colourkeeper or the numberkeeper -~ and thus opens the way to a universal
characterization of the behavioural routines developed by subject players.

Moreover the universality of the modular representation leads to a finer
and more reliable statistics of the experimental data and is also generalizable
to complex games with more than two levels.

We now turn to the problem of routinized behaviour and, in particular,
to the question of which rule templates are appropriate for its description.
In this respect our strategy is to begin with the simplest possibility, i.e. that
the subject players develop a pattern of cooperative playing depending solely
on the visible state of the game. In other words, we assume a static routine
paradigm in which the learning process leads to input-output rules where the
input is constructed from the three visible cards - i (hand), w and t - and the
output is the associated transformation operator - 7, U, S, P. The operator
S(search) stands for a random choice between C and N.

S



In this article we consider only games of level II for they are the most
interesting from the point of view of cooperation. In those cases the modular
representation suggests the set of reasonable behavioural routines illustrated
in table 1. The first rule reads if flag is in position h then play T ; the second

Priority code | Condition Action

I h={ T

I u =1 U

I h =] P

I1 u =] U

111 h=| U

111 u=l| S search for {f

) otherwise ) search for { or

Table 1: Condition-Action routines

rule if flug is in position u then play U, etc. The last rule means if none of
the preceding rules applies then play S.

The total number of static rules is 7. The first six rules are organized
in three different groups (pairs) associated with priority codes from I to III.
In each pair the first rule concerns the card in position /i while the second
rule regards the card in position u. Whereas the two rules in a pair are
clearly mutually exclusive, the first and second rules from different groups
are not necessarily so. As an example, it could happen that rules 1 and 4
are both applicable. In those cases dominates the rule with higher priority
(lower priority code).

The applicability of each rule depends on the visible state of the game,
as seen by either one of the two players. In other words, it depends on the
cards in positions i, v and t. Within the universal modular representation,
liowever, the information regarding the card in ¢ is used only to set the card-
value of the various flags. In this respect it plays the role of a pre-processing
mechanism. Once the card-values of the flags have been assigned the visible
state of the game is fully specified by the two positions i and u.

Our set of static rules performs optimally in a large number of cases
and only moderately sub-optimally in the few remaining ones. Moreover it is
simple and reflects common sense intuition within the modular approach. For
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these reasons we think that the static rule paradigm provides an appropriate
framework for the study of cooperative routines in our card game. In what
follows we introduce a search model designed to extract the optimal input-
output routines of the static type.

3 Static routines

In the previous section we explained the modular representation and pro-
posed to investigate the dynamics of procedural game playing within the
static routine paradigm. In this section we introduce a search model in the
space of static routines that looks for the optimal routine set of the static
type.

The motivation is twofold: on one hand we wish to classify static routines
according to their performance quality, as well as to establish whether our
set of static routines is indeed the optimal one; on the other hand the search
algorithm provides an opportunity to render explicit the limitations of the
static routine paradigm, either for lack of efficiency or for poor cooperation.

A static routine table S is essentially an artificial player whicl responds
in a predefined manner to each possible static configuration of the game. By
static configuration we mean the present visible state of the game, i.e. the
two cards in positions h and u .

The static routine tables are organized in 7 different rows, each of which
concerns one of the possible static configurations as seen by the subject
player. The game configurations are expressed in the modular represen-
tation: each of the two positions & and u can assume one of the following
three values: flag, doubleflag or null (i.e. else).

The number of visible flag configurations is 7: 2 with two flags, 4 with
one flag and 1 with no flags. The structure of a table S of static routines is
thus as in table 2.

The input-output data flow of each of the 7 rows in the static rule table
S is illustrated by the diagram in figure 3.

A static routine table assigns a definite response to each of the possible
static configurations. The possible responses, or moves, are 7 (target, only
when /i is flag), U (up), S(search) and P(pass). The number of different static
routine tables (static artificial players) is thus 4-4-3-3-3-3-3 = 3888.

The modular representation is convenient due to its universality, i.e. it



Rule index Condition Action
1 h =1 == —
2 h=f u=] —
3 h=— u= —
4 h=— u=-— —
5 = wu=- —
6 h=f wu=f —
7 h=— u={ —

D D ) e 0D o) o)

Table 2: Static Routine Table

| | | I —| output Y

Figure 3: Input-output rule structure

input X



is applicable to both players. The card-values of the flags, instead, depend
on the actual card in target. They must be reset each time, for colourkeeper
and numberkeeper in turn.

When written in the modular representation the number of possible dis-
tinct hands of level II reduces to 60: given the card in target, whose role is
to define the card-values of the various flags, there remain 5 positions among
which to distribute 3 flags, and thus 5-4 -3 = 60.

The search model is based on a cost function F = F(S) which assigns a
numerical cost to each static routine table S. The cost F(S) associated to a
static routine table is given by the convex combination of an efficiency cost
effic(S) and a cooperative cost coop(S),

F(S) = (1 —a)-effic(S) + a- coop(S)

wlere the weighting coefficient « is exogenous (i.e. fixed by the operator).
Clearly, the optimal static rule table S is the one which minimizes the cost
function F.

The efficiency cost effic(S) simply counts the number of moves necessary
to complete the full set of 60 Lhands (of level II). If for a given hand the
artificial player reaches the threshold of 10 moves the game is interrupted
and that particular hand contributes 10 to the efficiency cost.

The cooperative cost coop(.S) counts the total number of strategy changes
ocurred during playving. The strategy changes within one hand are detected
by means of 8 strategy markers, 4 for strategy + (‘get flag’) and 4 for strategy
— (‘get double flag’). The two sets of strategy markers are described in tables
3 and 4.

Each player has a three state (+1,0,—1) strategy indicator which is up-
dated every time the player’s move coincides with a strategy marker. At
the begining of each hand both markers are set to null. Each ‘reset’ of the
strategy indicator (after the first setting) is counted as a strategy change.

This completes the description of how to compute the cost F'(.S) of a given
static routine table S. We now explain the structure of the search algorithm
that looks for the optimal static routine table (the one with minimal cost):

1. Choose arbitrarily an initial static routine table Sy and compute F/(Sp).
The algorithm is based on a type of gradient descent procedure: in
each iteration each individual degree of freedom changes in the locally
optimal direction.



strategy, (GET 1)

h =1 followed by move T
u=1{ followed by move U

h=_ not followed by move P

u={ not followed by move U

Table 3: Strategy markers for GET 1}

strategy— (GET {})

h =1 followed by move P
u=7_ followed by move U

h =1{ not followed by move T

u =T not followed by move U

Table 4: Strategy markers for GET {
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2. Examine each of the 7 rows of the static routine table individually,
keeping the remaining 6 rows fixed, and determine the (locally) optimal
move for that row by computing the cost associated with each of the
three/four possible responses.

3. When the (locally) optimal move for a given row has been determined
update that row’s response and move on to the following row.

4. Repeat the procedure until the algorithm converges.

In the case a = 0 we have found a global optimuin plus a local optimum
which disappears when a = 0.5. The optimal and suboptimal static routine
tables are presented in tables 5 and 6.

h u action
T - T
T3 T
- U
- - S
T - P
(I} P
. U

Table 3: Optimal static routines

4 Dynamic routines

We now examine the dynamic playing paradigm, in which the artificial player
responds not only to the static configuration of the game but also to the
previous move by the other player. The dynamic model, therefore, corres-
ponds to an artificial player with minimal memory: it remembers only the
previous move.

In a dynamic routine table D the previous move is encoded in the (+1,0,
—1) representation for the other player's strategy indicator. Consistently

11
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action

==

D e

=

— =

KV YOWmhY

Table 6: Suboptimal static routines

with the minimal memory principle, however, the strategy indicators are up-
dated each time according to the actual move the other player has made. If
that move does not coincide with any of the 8 markers then the strategy indi-
cator is set to 0. The three cases ‘active’, ‘static’ and ‘passive’ are associated
with the three strategy indicator values +1, 0 and -1.

The dynamic routine tables are therefore organized in 3 sets of 7 rows, one
for each strategy indicator value (41,0, —1). The search algorithm operates
essentially as before, visiting in turn the 3.7 = 21 rows of the dynamic
table. In this case there are no local optima. The (globally) optimal dynamic
routine table is presented in tables 7 (static), 8 (active), 9 (passive).

Static
h wu action
Tt - — T
t 5 — T
- — U
- - — S
t - — P
T — 2
- — U

Table 7: Dynamic table: no markers set
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Active

h action

&

==
e

LELLTDLL

-
o=

Table 8: Dynamic table: active marker set

Passive

h  u action
T - — T
tro—

- 1 — U

- - — S
- = -
g — -

- ]:I — -

Table 9: Dynamic table: passive marker set
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5 A learning model

After having established a normative standard of optimallity with our static
and dvnamic routine tables we address the crucial issue of learning in the
context of our cooperative game. In this section we propose a learning mech-
anism - architecture and heuristics - with which to model the emergence of
cooperative routines among the subject players.

The idea is as follows: each subject player is modelled by an adaptive net-
work as in figure 4. The network architecture models the decisional structure
of the subject player and is therefore the same in all subjects. The network
parameters, on the other hand, change from one subject to another, they are
the distinctive individual labels of the various subject players.

Figure 4: The network model of the subject player

The sub-network dominated by node A is called the ‘self’ part of the
network. Its role is to construct a strategy preference based only on the
static inputs H (card in h) and U (card in u). The two input nodes H,U
take values within the interval [—1, +1] according to the following ‘self’ flag
representation,

14



1=+1 *=0 B=-1 (*x means ‘else’) .

On the basis of the inputs H,U the strategy node A constructs a strategy
preference with the usual local network law ‘y = o(Y w;z;)’ as in figure 5.
The sigma function o is illustrated in the final section at the end of the
report. The numerical semantics of node A is consistent with the ‘self’ flag
representation characteristic of its sub-network,

A= 41 means strategy GET 1
A=0  means strategy UNCLEAR
A=-1 means strategy GET {§

At this point it is clear that the ‘self’ sub-network models the static part
of the subject player. In the optimal case therefore the parameters a; and
a, are such that the ‘self’ sub-network emulates the optimal static routine
table (table 10).

H U A h u action
+1 0 +1 Tt * T
+1 -1 +1 0 T
0 +1 +1 * 1 Uu
0 0 0 * %k S
-1 0 -1 t * P
-1 41 -1 T P
0 -1 -1 * U

Table 10: Sub-network A (optimal)

In the optimal case the appropriate values for the parameters are a; = 2
& az =1 as can be seen from the linear separation diagram in figure 6.

The sub-network dominated by node B is called the ‘dual’ part of the
network. Its role is to construct the strategy preference of the other player

15



Figure 5: The ‘self’ sub-network A = o(a) - H + az - U)

u
gL N +1 . _|+1
é 2H+U>0 |
'15 §+1 H
i 0 E H_
52H+U<0 ;
-1 L1 ----------- J+1
2H+U=0

Figure 6: Sub-network A (linear separation diagram)
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based on the inpus V' and U, where V stands for the card in position u before
the previous move. As before, the two inputs take values within the [—1,+1]
interval but this time according to the ‘dual’ flag representation,

J=+1 *=() =-1 (* means ‘else’) .

On the basis of the inputs V,U the strategy node I3 constructs the other
player’s strategy preference (figure 7). The numerical semantics of node B is
consistent with the ‘dual’ flag representation characteristic of its sub-network,

B= +1 means strategy GET |
B=0  means strategy UNCLEAR
B=-1 means strategy GET {

The ‘dual’ sub-network models the dynamic part of the subject player. In
the optimal case therefore the parameters b; and b, are such that the ‘dual’
sub-network emulates the following optimal dynamic routine table (table 11).

V U B v u strategy ‘
+1 0 +1 I = +
+1 -1 +1 J ¢ +
0 +1 -1 * -
0 0 0 *  x ?
-1 0 -1 T * -
-1 41 -1 t ! -
0 -1 +1 * 0 +

Table 11: Sub-network B (optimal)

In the optimal case the appropriate values for the parameters are b; = 1
& by = —2 as can be seen from the linear separation diagram in figure 8.

The leading node C = —AD of the learning network plays a coordinating
role with respect to the strategy preferences expressed by nodes A and B, as

17



Figure 7: The ‘dual’ sub-network B = a(b; - V + by - U)

Figure 8: Sub-network B (linear separation diagram)

18



illustrated in figure 9. The optimally coordinated preferences are those with
C =1, the worse cases instead are those with C = —1.

Figure 9: The leading node

The learning heuristics of our network model is based on two principles:
the consistency principle states that the four network parameters ‘learn’ max-
imal consistency and the stability principle states that the parameters ‘learn’
to stabilize (from one move to the next) the strategy preferences expressed
by nodes A and B.

Our learning heuristics corresponds to an optimization algorithm based
on a cost function F which is a convex combination of a consistency term
and a stability term,

F = F(a1,a2,b1,05) = (1 — p)(1 = C)* + p[(4 — A" + (B — B')?]/2

where A' and B! stand for the previous A and B values. The resulting
learning process is an iterative gradient descent mechanism with respect to
the four parameters of the cost function F,

oF oF
a.’l =a — )\8—(11 GIQ = a9 — /\aa2

oF OF
0y =b — A= by = by — )
W=h Ay, hEheAp

where A is the so-called learning rate parameter.
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6 Concluding remarks

The learning heuristics above acts on the network parameters on the basis of a
learning table of selected examples of good playing, each of which corresponds
to an optimal transition from one game configuration (H,U,U,V) to the next.
The game configurations (input vectors for the network model) are extracted
from the following combinatorial table regarding all possible distributions of
the key cards 1, |, {,

H U, U V

* x| * x f 0 (4)
E L O (S | N A (4)
S | | A | 1] (4)
* 31T o~ b3 (4)
x| > Vg (3)
(R T LU i (3)
(A S L9 (3)
b x| * * 1 g (3)
[ N | i (3)
I ${T ~ 1 i3 (3)
g | > ~ 1 U (3)
/S | S | (3)
¢ U4 o« U (3)

Table 12: Full combinatorial table for ), {}, § configurations (43)

Clearly, not all rows in table 12 are relevant for the construction of the
learning table, since the ‘self’ part of the network disregards the key card I}
and the ‘dual’ part of the network, in turn, disregards the key card {. The
description and results of the experimental testing (computer simulation) of
the learning scheme will be presented elsewhere.

The sigma function o mentioned in the previous section is given by

et —e’*

o) = pramper o(z) € (—1,+1)

()= 1-o*z) , ¢(0)=1
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