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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 6

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

In this paper we (i) put forward a simple notational device clarifying the, un-
deniable but generally ignored, role of density dependence in determining evolu-
tionarily stable life histories, (ii) use this device to derive necessary and sufficient
conditions for (a) the existence of an evolutionary extremisation principle, and
(b) the reduction of such a principle to straight r- or R0-maximisation, (iii) use
the latter results to analyse a simple concrete example showing that the details of
the population dynamical embedding may influence our evolutionary predictions
to an unexpected extent.

1 Introduction

The literature is replete with statements that evolutionary predictions about be-
havioural, c.q. life history, parameters should be based on the maximisation of indi-
vidual lifetime reproductive success, R0 (Stearns, 1992, Roff, 1992, Charnov, 1993,
Charlesworth, 1994, provide surveys), or else the intrinsic rate of natural increase, r
(Stearns, 1992, Roff, 1992, Charlesworth, 1994, Caswell, 1989). In the former case
it is often added, rather confusingly, that due to density dependence necessarily
R0 = 1 (see e.g. Charnov, 1993, and its review by Maynard Smith, 1993). No
doubt most authors dealing with life history theory know how to interpret the last
statement, and are aware of the implicit limitations of the traditional optimisation
considerations. However, some asking around indicated that this awareness (i) has

1



2 When Does Evolution Optimise? Metz, Mylius & Diekmann

little diffusion among experimentalists, and (ii) appears rather dim even among
most theorists. Our quick and dirty survey also revealed that probably the main
cause of this small awareness is that advertising positive predictions gives more
kudos than repeatedly spelling out their limitations. Yet we feel that precisely de-
limiting the applicability of particular evolutionary arguments is a worthy effort,
not only for philosophical but also for practical reasons: By extending the limits as
far as one can, one usually also extends the effective toolbox.

In this paper we put forward three closely related messages:

(i) We argue that adhering to a simple explicit notation fosters the awareness of
some implicit limitations of life history arguments. Our notation only differs from
the traditional one in that the roles of (a) the life history traits, and in particular
(b) the environment, in determining the population dynamical behaviour of an
individual, are made visible. This visibility also has the advantage of removing the
minor confusion about R0 simultaneously being maximised and kept equal to 1. We
sincerely ask you to adopt this notation, or else to develop your own variant of it.
The use of more simplified notations too often misleads!

(ii) We give necessary and sufficient conditions for the eventual outcome of the
evolutionary process to be characterisable by some optimisation principle, and more
in particular by straight r- or R0-maximisation. These conditions are phrased in
mathematical, structural, terms only. So far we haven’t been able to delimit clear
classes of corresponding physiological mechanisms. Dreaming up simple classes of
mechanisms subsumed under our conditions is easy. We shall give some examples.
But how wide exactly is the net?

(iii) We show how the details of the population dynamical embedding can influence
the evolutionary predictions, by using the results from (ii) to analyse a particularly
simple sample model, closely akin to traditional life history models. Our explicit
notation also alerted us to the fact that for this example the life history parameters
determined in the field show patterns which differ in a non-trivial way from the pat-
terns in the parameters determined under laboratory conditions. This observation
may act as an antidote to the, apparently common, belief that the message from
(i) is for all practical purposes empty.

2 Setting the stage: fitness, density dependence,
and ESS considerations

Our starting point is that there is one master fitness concept: the hypothetical
average rate of exponential growth ρ which results from the thought experiment in
which we let a clone of the type under consideration grow in a stationary environ-
ment (Charlesworth, 1980, 1994; Tuljapurkar, 1989, 1990; Caswell, 1989; Metz et
al., 1992; Rand et al., 1994; Ferrière & Gatto, 1995).

Remark 2.1 The reasons for this particular choice of a definition are: (i) It is
consistent with the use of the word fitness in the context of simple evolutionary
scenarios on all points that count in a long term evolutionary context. (ii) For a
large range of ecological scenarios it is sufficiently precise to yield a definite number.
(iii) The number so defined is almost the minimal information necessary to deduce
predictions about both evolutionary final states and non-equilibrium evolutionary
patterns. See the arguments below, and Metz et al. (1995) for a further elaboration.

Our verbal definition immediately brings out that ρ necessarily depends both
on the type X of the clone and the environment E in which it supposedly lives.
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To keep our arguments, and our heads, clear we should explicitly account for this
dependency in the notation, by writing

ρ(X,E) (1)

(compare Diekmann & Metz, 1994, and Mylius & Diekmann, 1995).
A possible further potential source of confusion is that E necessarily refers to the

environment as perceived by the individuals. This means that for instance density
and types of conspecifics come as part and parcel of E (Michod, 1979; Metz &
Diekmann, 1986; Pásztor, 1988; Metz & de Roos, 1992; Diekmann & Metz, 1994;
Pásztor et al., 1995). Yet in our thought experiment we considered those densities
as given stationary random functions of time, not influenced by the growth of our
clone.

The justification of this mental somersault is that we should think of fitness as
the rate of invasion of a rare mutant multiplying amidst a large resident population.
This presupposes that all evolutionarily relevant resident (sub)populations of the
species are large, so that initially the influence of the mutant on the environment is
properly diluted. The mutant heterozygote swarm reproduces faithfully by crossing
with the residents. If dilution fails due to the interaction ranges of the individuals
containing but a few more permanent sparring partners, we can sometimes take
recourse to inclusive fitness considerations (Taylor, 1988a, 1988b, 1989), but in
ultimate generality the concept of fitness resists further extension. Luckily, the
range of conditions covered is sufficiently large that we need not be overly bothered.

The corollary is that predictions about the trait values favoured by evolution
should always derive from an ESS argument (e.g. Roughgarden, 1979; Charlesworth,
1994; Lessard, 1990):

1. Maximise ρ(X,E) for each given E over all potential trait values, resulting in
a function Xopt(E).

2. Determine for each trait value the environment which it generates as a resi-
dent, Eattr(X).

3. Vary X to find an evolutionarily unbeatable value X∗, i.e., an X∗ such that

Xopt(Eattr(X
∗)) = X∗ . (2)

4. Ascertain that the set of trait values X0 from which X∗ is approximated
with non-zero probability through a sequence X0, X1, X2, . . . , such that
ρ(Xi+1, Eattr(Xi)) > 0, is sufficiently large to warrant consideration of X∗

as a potential evolutionary trap.

The above description is only meant as a definition, not as a practical algorithm.
The general procedure 1 to 4 has a habit of exceeding the available computer ca-
pacity, except in the simplest possible cases. Practical algorithms circumvent this
by using special properties of particular cases.

One immediate general simplification is that even in the definition of an ESS we
may restrict the attention to those E that can occur as Eattr(X) for some X. As
this restriction becomes essential in the arguments below we introduce the

Convention Whenever we refer to E we shall mean only those E that can occur
as Eattr(X) for some X.

The notional index attr alludes to the assumption that the population dynamics
converges to an attractor. For later use we note that on this attractor necessarily

ρ(X,Eattr(X)) = 0 . (3)
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Remark 2.2 In general it cannot be excluded that the function Eattr is multi-
valued. In theory this does not invalidate our arguments, except that our present
phrasing is definitely lacking in the details. But it may considerably complicate
attempts at applying them in practice. The wording of the special arguments in
sections 3 and 4 happens to apply without change to the multi-valued case.

Remark 2.3 In step 4, and only step 4, of the above algorithmic definition of
an ESS, we implicitly invoked a genetical assumption. Whether or not convergence
to the unbeatable strategy can occur will also depend on the (non-)presence of so-
called genetic constraints. The simplest example is that the unbeatable phenotype
can only be produced by a heterozygote, so that the population can never converge
to a monomorphically X∗ condition. We assume that the only constraints that are
present are “physiological”, i.e., can be described in terms of a developmentally
realisable subset of the trait space. The belief is that this assumption guarantees
that convergence for the Mendelian case parallels that for the clonal case, as it allows
us to dream up any needed mutations, including mutations that break up heterotic
polymorphisms (compare Hammerstein & Selten, 1994, and Hammerstein, 1995).

3 When does evolution optimise?

The outcome of the ESS calculation can only be reached by the straightforward
application of some extremisation principle when the function ρ(X,E) satisfies some
rather stringent restrictions.

First we give some definitions. We shall say that the trait vector acts one-
dimensionally whenever there exists a function ψ of X to the real numbers such
that

sign ρ(X,E) = signα(ψ(X), E) , (4)

for some function α which increases in its first argument. And we shall say that the
environment acts one-dimensionally whenever there exists a function φ of E to the
real numbers such that

signρ(X,E) = signβ(X, φ(E)) , (5)

for some function β which increases in its second argument.

Example 3.1 Assume that we only need to deal with constant environments.
Whenever

R0(X,E) = φ(E)R0(X,EV ) , V for virgin, (6)

take

α := ln(R0) , β := ln(R0) , ψ := R0(X,EV ) . (7)

(See section 4.)

We shall call a function ψ of X to the real numbers with the property that
evolution maximises ψ for any constraint on X an optimisation principle. And we
shall call a function φ of E to the real numbers with the property that evolution
minimises φ(Eattr(X)) for any constraint on X, a pessimisation or Verelendungs
principle.

Proposition 3.1 Models in which the trait vector acts one-dimensionally have an
optimisation principle, and vice versa.
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The forward implication is immediate. The somewhat unexpected reverse im-
plication is spelled out in appendix A.

Proposition 3.1 is of course a weakened form of the familiar justification for many
of our commonly used optimisation principles: “Being more ‘efficient’ increases your
fitness in any relevant environment.” However, the crucial phrase in that argument,
“in any relevant environment”, rarely is mentioned explicitly.

Proposition 3.2 Models in which the environment acts one-dimensionally have a
pessimisation principle, and vice versa.

The forward implication is immediate. The somewhat unexpected reverse im-
plication is spelled out in appendix A. In this proof we construct a β such that (5)
holds true for the pessimisation principle φ. This construction also provided the
heuristics for the term Verelendungs principle: Any φ satisfying (5), with β in-
creasing in its second argument, allows a natural interpretation as a measure of
environmental quality, as perceived through the physiology of our individuals.

Proposition 3.2 is of course nothing but the ultimate generalisation of two fa-
miliar evolutionary extremisation principles pertaining to the case of population
dynamical equilibrium: (i) “Evolution minimises the availability of a limiting re-
source”, and (ii) “Evolution maximises total population density if the individual
life history parameters are negatively affected by the total population density (and
are unaffected by any other environmental variable influenced by the population)”.

Proposition 3.3 Any pessimisation principle carries an optimisation principle in
its wake and vice versa.

This is easily proved by gauging the “ability to cope” to the “quality of the
environment” through

ψ(X) = −φ(Eattr(X)) . (8)

This recipe produces a ψ for any φ pried out of an expression for ρ, or vice versa.
But beware, (8) usually doesn’t hold true for a ψ and a φ arrived at separately.
The strongest possible statement that can be made about two ψ’s, or φ’s, found by
different means is that they are necessarily monotonically related.

The construction used to prove proposition 3.3 has as a corollary:

Proposition 3.4 Whenever the trait vector acts one-dimensionally it is possible
to find a function φ of E to the real numbers, or alternatively, whenever the envi-
ronment acts one-dimensionally it is possible to find a function ψ of X to the real
numbers, such that

sign ρ(X,E) = sign
(
ψ(X) + φ(E)

)
. (9)

However, somewhat unexpectedly the aesthetically pleasing symmetry of (9)
isn’t very helpful, as usually at most one of the functions φ and ψ occurring in it can
be expressed as an explicit formula. In contrast the more relaxed characterisations
of one-dimensional action by means of either (4) or (5) often can be readily applied.

The arguments in appendix A are only based on evolutionary unbeatability
considerations. For completeness we summarise some immediately associated evo-
lutionary attractivity properties as

Proposition 3.5 When evolution operates in a context which allows an optimi-
sation principle ψ which is at least piecewise continuous, and the supports of any
mutation distribution contains at least the intersection of an ε-neighbourhood of the
trait value of the progenitor X with the developmentally realisable subset Xof the
trait space, with ε independent of X:
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1. A unique global optimum of ψ has a non-negligible basin of evolutionary attrac-
tion. Better still, it will often be a global evolutionary attractor. This happens
for example when (a) the supports of the mutation distributions equal X, or
(b) ψ is continuous, and there are no local optima other than the global one.

2. When mutant trait values are restricted to a δ-neighbourhood ofX, a particular
non-isolated local optimum of ψ will have a non-negligible basin of evolutionary
attraction whenever δ is sufficiently small.

The application of (8) immediately yields the corresponding proposition for pes-
simisation principles.

As a final point we mention that for a one-dimensionally acting environment
φ(Eattr(X)) can be directly determined from

β(X, φ(Eattr(X))) = 0 . (10)

This allows the construction of a simple general algorithm for numerically analys-
ing any model with a one-dimensionally acting environment: Numerically maximise
ψ defined by (8), where φ(Eattr(X)) is at each iteration step numerically determined
from (10). This way the potentially unpleasant object Eattr(X) is eliminated before
the numerics.

We finish this section with three examples. The first example is essentially
trivial. We put it in to demonstrate the various concepts in rigorous detail, unen-
cumbered by technical distractions. Its second purpose is demonstrating how our
formal definition of a one-dimensionally acting environment may somehow carry a
wrong suggestion at the mechanistic level. The second example demonstrates why it
may be difficult to find an explicit pessimisation principle from a given optimisation
principle. The third example shows how it may be possible to find a pessimisation
principle for non-equilibrium attractors, leading to an otherwise non-obvious opti-
misation principle.

Before starting on the examples we introduce one more piece of notation as
this considerably simplifies their presentation: We shall denote the geometric mean
operator as G,

G(z) := lim
T→∞

T

√√√√ T∏
t=1

z(t) , (11)

and the logarithm of G as L, i.e.,

L(z) := lim
T→∞

T−1
T∑
t=1

ln(z(t)) . (12)

In order not to unduly complicate the examples we shall moreover proceed as if
reproduction were clonal.

Example 3.2 Consider the following thought experiment. Birds are limited by
the availability of nest sites. These sites have a density s. Only birds who have
obtained a nest site in spring breed. The number of young M which they produce
per capita is an increasing function of their ability to gather energy ψ(X), where X
is the trait which is assumed to be under evolutionary control. We measure this
ability by the number of offspring it produces:

M = ψ(X) . (13)

Old and young survive the winter with a probability p. Next spring, nest sites are
allotted randomly among the survivors. Birds that fail to obtain a site are removed
from the system.
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An obvious choice for the condition of the environment in year t as perceived by
a bird, is the total density n of winter survivors, of all trait types together,

E(t) = n(t) . (14)

We shall present side by side a classical population dynamical calculation, and
a calculation along the route laid out above. In neither calculation we take the
obvious shortcuts as this would obstruct their comparison. Please bear with us, we
only want to help you understand the full meaning of our previous considerations.

We shall distinguish the resident and mutant types by means of the indices 0
and 1. With this notation the population equations become, with i ∈ {0, 1},

ni(t+ 1) =

(
p (1 +Mi)

s

n(t)

)
ni(t) =

(
p s (1 + ψ(Xi))

1

E(t)

)
ni(t) , (15)

with

n(t) = n0(t) + n1(t) . (16)

(For notational simplicity we confine ourselves to initial conditions such that con-
sistently n(t) > s.)

Applying the definition of ρ to (16) (without already confining the attention to
the Eattr(X) which for this particular model necessarily are constant) results in

ρ(X,E) = L

(
p s (1 + ψ(X))

1

E

)
= ln(ps) + ln(1 + ψ(X)) − L(E) . (17)

Given the functional form of (17) and the verbal model description with which
we started, one natural choice for φ is

φ(E) :=
1

G(E)
, (18)

i.e., we measure the quality of the environment of a bird as the inverse of (the geo-
metric mean of) the density of competitors which it encounters when it is searching
for a nest site. With this definition we can write

ρ(X,E) = ln(ps) + ln(1 + ψ(X)) + ln(φ(E)) . (19)

From this formula we see that both the trait and the environment act one-dimen-
sionally, with

α(ψ(X), E) := ρ(X,E) =: β(X, φ(E)) . (20)

The conclusions that ψ is an optimisation, and φ a pessimisation principle, won’t
come as a surprise. Combining (8) with (10) and (19) leads to the, equivalent,
optimisation principle

ψ′(X) := −φ(Eattr(X)) = − 1

p s (1 + ψ(X))
. (21)

Our first choice was to have our measure for the quality of the environment, φ,
inversely proportional to the density of conspecifics. The matching “ability to
cope”, ψ′, given by (21), is, of course, monotonically related to energy gather-
ing ability ψ. A measure of environmental quality which for constant environments
matches the optimisation principle ψ, is given by

φ′(E) = 1− 1

p sφ(E)
= 1− G(E)

p s
. (22)
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For each of these pairs

sign ρ(X,E) = sign
(
ψ′(X) + φ(E)

)
= sign

(
ψ(X) + φ′(E)

)
. (23)

For the population dynamical invasion calculation we set E(t) = n0(t) to get

n(t) = n0 = p s (1 + ψ(X0)) , (24)

and

n1(t+ 1) = p s (1 + ψ(X1))
n1(t)

n0

=
1 + ψ(X1)

1 + ψ(X0)
n1(t) . (25)

(25) tells that evolution leads to the optimisation of ψ′′(X) := 1 + ψ(X).
This example also shows how our unguided intuition may clash with our formal

characterisations. Mechanistically the bird density is regulated by the nest sites,
but structurally (i.e., in terms of the mathematical relations connecting the various
population dynamical variables) by the density of conspecifics competing for those
sites. One should watch out for this type of discrepancy when applying proposition
3.2 to 3.4 in mechanistically formulated examples.

Example 3.3 We make the following changes in the previous example. Losers of
the lottery for nest sites aren’t removed, and winter survival is variable. In that
case

E(t) =
(
p(t), n(t)

)
, (26)

and

ρ(X,E) = L(p) + L

(
1 +

ψ(X) s

n

)
. (27)

The fact that
(
1 + ψ(X) s

n(t)

)
increases in ψ, independent of n(t), implies that

L
(
1 + ψ(X) s

n

)
and therefore ρ(X,E) increases whenever ψ(X) increases. Since

ψ is an optimisation principle, our model allows a pessimisation principle φ, by
proposition 3.3. But it is clearly impossible to find any sort of explicit expression
for φ(E).

Example 3.4 Consider the population dynamical equations

ni(t+ 1) = ai
(
f(E(t))

)bi
ni(t) , i = 0, . . . , k , (28)

with

E(t) =
(
c0n0(t) + · · ·+ cknk(t)

)
, (29)

all ai, bi, and ci > 0, and f decreasing from 1 to 0 for E increasing from 0 to ∞.
With the choice

f(E(t)) =
(
1 +E(t)

)−1
, (30)

and k = 0, this model becomes the model launched into fashion by i.a. Hassell,
Lawton & May (1976) as a touchstone for the appearance of chaotic fluctuations in
single species population dynamics.



Metz, Mylius & Diekmann When Does Evolution Optimise? 9

The trait vector appearing in (28) is

X = (a, b, c) . (31)

The parameters a, 1/b, and c can be interpreted in individual-based terms as respec-
tively the per capita reproduction in a boom environment, the ability to cope with
a bust environment, and the per capita impingement on the common environment.

From (28) we find

ρ(X,E) = L
(
a (f(E))b

)
= ln(a) + b φ(E) , (32)

with

φ(E) = L(f(E)) . (33)

From ρ(X,Eattr(X)) = 0 we deduce that

φ(Eattr(X)) = −b−1 ln(a) . (34)

We conclude that evolution maximises

ψ(X) :=
ln(a)

b
. (35)

In accordance with propositions 3.3 and 3.4 we can define the functions a and b
occurring in the definitions of one-dimensional action, as

α(ψ(X), E) := ψ(X) + φ(E) =: β(X, φ(E)) . (36)

The point that we want to make is that the quantities α and beta defined by (36)
have the same sign as ρ(X,E), but are not equal to ρ(X,E), as was the case in the
previous example. It can even be proved that for ρ given by (32) it is impossible to
find pairs α and ψ, or β and φ, for which such an equality holds good.

4 When does evolution maximise r or R0?

In this section we shall consider the optimisation principles of classical life history
theory, to wit r- and R0-maximisation. Since r and R0 are only defined for constant
environments we shall from now on (i) assume that population dynamical equilib-
rium obtains, and (ii) have the symbol E refer alternatively to a potential condition
of the environment at a particular time, or to constant functions of time having
that condition of the environment as value. For constant environments

ρ(X,E) = r(X,E) . (37)

Moreover,

r(X,E)
>
=
<

0 if, and only if, R0(X,E)
>
=
<

1 , (38)

allowing the replacement of ρ(X,E) in the recipes of sections 2 and 3 by ln(R0(X,
E)). (See e.g. Roughgarden, 1979, Charlesworth, 1994, Metz & Diekmann, 1986.)

Incidentally, although the usual definitions of r and R0 are predicated upon all
individuals being born equal, they can readily be extended to cater for variable birth
states and spatial heterogeneity. The only proviso is that E should be constant in
time. (See e.g. Diekmann et al., 1990, Jagers, 1991, 1995, Kawecki & Stearns, 1993,
Koz lowski, 1993, Diekmann & Metz, 1994.)

Below E0 denotes some specially chosen fixed value of E.
The following proposition is an immediate corollary of proposition 3.1.
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Proposition 4.1 r(X,E0), or R0(X,E0), is an optimisation principle for, and
only for, combinations of life histories and ecological embedding, such that there
exists a function α increasing in its first argument such that

sign r(X,E) = signα
(
r(X,E0), E

)
, (39)

or

sign ln(R0(X,E)) = signα
(
ln(R0(X,E0))

)
(40)

respectively.

Remark 4.1 The result from proposition 3.4 allows us to replace the charac-
terisations from proposition 4.1 by the characterisation that there should exist a
function φ of E to the real numbers such that

sign r(X,E) = sign
(
r(X,E0) + φ(E)

)
, (41)

or

sign ln(R0(X,E)) = sign
(
ln(R0(X,E0)) + φ(E)

)
(42)

respectively. However, this characterisation may in theory be equivalent to the
characterisation from proposition 4.1, in practice it is less useful as φ rarely pops
up as an explicit formula, whereas it is usually fairly easy to spot the α occurring
in the characterisation from proposition 4.1.

We shall say that evolution just maximises r, or R0, whenever r(X,E0), respec-
tively R0(X,E0), is an optimisation principle for every choice of E0.

Proposition 4.2 Evolution just maximises r, or R0, if and only if it deals with
combinations of life histories and ecological embedding such that is possible to write

r(X,E) = α(r(X,E0), E) , (43)

or

R0(X,E) = exp
(
α(ln(R0(X,E0)), E)

)
(44)

respectively, with α increasing in its first argument, and E0 fixed, but otherwise
arbitrary.

A proof of this proposition can be found in appendix A.

Example 4.1 Whenever the environment makes itself felt only through an addi-
tional death rate µ(E), acting equally on all individuals, r(X,E) can be expressed
as

r(X,E) = r(X,EV)− µ(E) , (45)

EV the virgin environment. Therefore evolution within those confines just max-
imises r.

Example 4.2 The confinement of the X- and E-dependence to non-overlapping
life stages allows R0(X,E) to be expressed as

R0(X,E) = φ(E)R0(X,EV) , (46)

EV the virgin environment. Therefore evolution within those confines just max-
imises R0.
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5 The potential of the community dynamical feed-
back-loop for influencing life history predictions:
an example

Consider the following simple family of life histories: Juveniles die at a rate µJ

and mature into adults at age T . Adults die at a rate µA and reproduce at a
rate b. All these parameters may in principle be affected by E. Their values in the
virgin environment EV we shall indicate with an (additional) index V. The strategy
parameter is the length of the juvenile period in the virgin environment, TV. The
adult reproduction rate b increases linearly with TV; in the virgin environment

b(TV, EV) = bV(TV) = max (0, TV − 1) . (47)

In addition we (i) brashly assume that population dynamical equilibrium ob-
tains, and (ii) have the symbol E refer alternatively to a constant (with as value
a condition the environment might be in at a particular time) or to a constant
function of time.

We combine this basic scenario with six alternative environmental feedback rules:

1. E only equally additively affects the juvenile and adult mortality rates,

µJ(E) = µJV + γ1(E) , µA(E) = µAV + γ1(E) , (48)

(parameters for which nothing is specified are assumed always to take the value
for the virgin environment, in this case T (E) = TV, b(TV, E) = bV(TV)),

2. E only additively affects the adult mortality rate,

µA(E) = µAV + γ2(E) , (49)

3. E only multiplicatively affects the reproduction rate,

b(TV, E) =
bV(TV)

θ3(E)
, (50)

4. E only additively affects the age at maturation (without affecting the birth
rate) in such a manner that for a constant environment

T (E) = TV + γ4(E) , (51)

5. E only multiplicatively affects the age at maturation (without affecting the
birth rate), in such a manner that for a constant environment

T (E) = θ5(E)TV , (52)

6. E only additively affects the juvenile mortality rate,

µJ(E) = µJV + γ6(E) , (53)

with

γi(E) ≥ γi(EV) = 0 for i ∈ {1, 2, 4, 6} , and (54)

θj(E) ≥ θj(EV) = 1 for i ∈ {3, 5} . (55)
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For fixed values of TV and E we can, directly from our initial model description,
derive the characteristic equation,

b e−(r+µJ) T

r + µA
= 1 , (56)

as well as an explicit expression for R0,

R0 =
b e−µJT

µA
. (57)

Below we shall use a ∗ to mark the ESS value of any quantity.
Feedback rule 1 makes our model a special case of the models considered in

example 4.1. Therefore we can determine T ∗V by maximising r(·, EV). In appendix B
we describe a simple way to calculate the, unique, maximum.

Feedback rules 2 to 4 all lead to a formula for R0 which, although the biological
mechanism differs from that of the models considered in example 4.2, can be brought
into the form (46), with

R0(TV, EV) =
bV(TV) e−µJVTV

µAV
, (58)

and

rule 2 : φ(E) =
µAV

µAV + γ2(E)
, (59)

rule 3 : φ(E) =
1

θ3(E)
, (60)

rule 4 : φ(E) = e−µJV γ4(E) . (61)

(In appendix C we show that it is possible to slightly reinterpret the model
formulation such that cases 2 to 4 do become subsumed under example 4.2.)

Case 5 doesn’t belong to any of the special cases considered in examples 4.1
or 4.2. However, it is easily seen from the interpretation that θ5(E) monotonically
affects R0. Therefore we fall back on the general procedure for one-dimensionally
acting environments, with ln(R0) substituted for β, and 1/θ5 for φ, i.e., we set

R0(TV, Eattr) =
bV(TV) e−µJV θ5(Eattr)TV

µAV
= 1 , (62)

in order to calculate the optimisation principle ψ(TV) := θ5(Eattr(TV)). It turns
out that we are lucky, and we end up with the explicit expression (after multiplying
out the constant factor µJV)

ψ(TV) =
ln(bV(TV)) − ln(µAV)

TV
. (63)

The story for case 6 is exactly the same as for case 5, with −γ6 in the role of φ,
even to the extent that we end up with the same optimisation principle.

Remark 5.1 In principle case 1 can be analysed by exactly the same procedure
as cases 5 and 6, except that it isn’t possible to find an explicit expression for
γ1(Eattr(TV)). And our general results tell that anyway the resulting optimisation
principle would be monotonically related to r(·, EV).

After the mathematics comes the interpretation problem. In the classic life
history model this is less of a problem, as it is assumed that the life history parame-
ters of an individual are constants, instead of being potentially under environmental
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Figure 1: Correlations between the adult mortality rate µA and the duration of
the evolutionarily stable juvenile period T ∗, both “observed in the field”, for the six
models with alternative environmental feedback rules described in section 5. The
value of the “physiological parameter” juvenile mortality in the virgin environment,
µJV, was kept fixed at µJV = 0.25.

control. In the case of the present model we shall distinguish two situations, called
“laboratory” and “field”. In the laboratory situation the environment is kept con-
stant, whereas in the field situation the environment adjusts itself such that

R0(T
∗
V, E) = 1 . (64)

For the feedback rules 1 to 6 the values of the life history parameters in the lab-
oratory situation differ from those in the virgin environment by at most either
an additive or a multiplicative constant. The field values are obtained by adjust-
ing the virgin parameter values, where appropriate, by γi(E) or γj(E) determined
from (64).

Figure 1 shows the correlations obtaining between the field observables T ∗

and µA, for a fixed value of µJV, for each of our six feedback rules.
The numbering of the panes refers to the feedback rules. The plotted field

observables are determined by a combination of the “physiological parameters”
µAV (the adult death rate in the virgin environment) and T ∗V (the ESS value of TV,
the juvenile period in the virgin environment), and the corresponding feedback
rule. This amounts to plotting T ∗V versus µAV + γ1(Eattr(T

∗
V)) (for model 1), T ∗V

versus µAV + γ2(Eattr(T
∗
V)) (for model 2), T ∗V versus µAV (for model 3), T ∗V +

γ4(Eattr(T
∗
V)) versus µAV (for model 4), θ5(Eattr(T

∗
V))T ∗V versus µAV (for model 5),

and T ∗V versus µAV (for model 6). For the computational details we refer to section 5
and appendix B.

The, for all curves identical, upper limit of µA results from the fact that for
higher values of µAV no strategy can invade into the virgin environment. Such
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Figure 2: Correlation between the adult mortality rate µA and the evolutionarily
stable duration of the juvenile period T ∗, both “observed in the field”, for feedback
rule 1 from section 5. The difference with pane 1 of figure 1 is that now the value
of the observed juvenile mortality µJ, instead of the physiological parameter µJV,
was kept fixed, at µJ = 0.5.

values of µAV would lead in a, naive, calculation to γi(Eattr(T
∗
V)) < 0 (in models

1, 2, 4, or 6) or θj(Eattr(T
∗
V)) < 1 (in models 3 or 5), i.e., values of γi or θj which

were excluded a priori in our model specification. In pane 1 the lower limit of µA

results from the additional mortality due to environmental feedback. In pane 2 we
see that a feedback through the adult mortality by necessity exactly compensates
for any difference in the adult mortality rate in the virgin environment.

Apparently different feedback rules can lead to radically different patterns.
Pane 1 of figure 1 differs from figure 2 by whether we plot cases with matching
values of µJV (figure 1) or matching values of µJ (figure 2). The second picture
applies to a protocol in which we select species on the basis of their equality of the
observed value of µJ, the first picture to the more usual protocol where we select
them for their a priori expected similarity with respect to µJV. Although concep-
tually different, the two protocols induce similar model predictions. In cases 2 to 6
the predictions for the two protocols are even exactly the same. In cases 2 to 5 this
is due to the assumption that µJ = µJV, in case 6 to what appears to be just an
algebraic quirk (see appendix B).

Remark 5.2 We refrained from including plots for all different possible parameter
combinations: The plots of T ∗V against µAV, with µJV fixed, are less spectacular.
The plots for cases 1, 3 and 6 look like the corresponding panes in figure 1, those
for cases 2 and 4 like pane 3 of figure 1, and the plot for case 5 is equal to that for
case 6. The plots of T ∗ against µJ, with µAV fixed, all show a roughly hyperbolically
decreasing relation, like in pane 4 of figure 1. The plots of T ∗V against µJV, with
µAV fixed, show either a decreasing relation, in cases 1 to 4, or a horizontal line in
cases 5 and 6.

6 Concluding remarks

The main relevance of our propositions is that they rigorously show that on an
abstract level the suite of simple examples 3.2 to 3.4 are representative of all popu-
lation dynamical scenarios allowing an evolutionary extremisation principle. These
scenarios can only differ in the, unfortunately often quite horrible, technical details
of the calculations.

Our propositions also show that having an extremisation principle really is a
rather special property.
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In the intuitively obvious case we can point to an intermediate scalar quantity
which when increased, increases fitness in all relevant environments. As it turns out
the environments that matter are those stationary environments that can poten-
tially be generated by the family of communities under consideration as reactions
to particular values of the trait vector. A technical elaboration moreover shows
that the initial requirement can be weakened by replacing the word “fitness” by the
phrase “some quantity that is sign-equivalent with fitness”. This technical variant
we have dubbed “one-dimensional action” of the trait vector (or strategy parame-
ters, if your leaning is ecological instead of taxonomical).

The other, slightly less obvious, scenario, is that the environment acts one-
dimensionally (in the aforementioned technical sense). We have proved that these
two cases are effectively only one case, and, what is more, the only case allow-
ing an evolutionary extremisation principle. Proposition 3.4 tells moreover that
in that case the trait vector and the environment by necessity act not only one-
dimensionally but also, in a certain technical sense, independently.

It is our conviction that it is only our own, unwitting or deliberate, moulding
of evolutionary scenarios that leads to the frequent occurrence of extremisation
principles in the life history models studied in the literature. For more complicated
feedback rules shortcuts in the form of an optimisation principle don’t exist!

The next step should be to analyse scenarios where there is not one but two
essential scalar components of environmental action. The initial stages of such an
analysis can be found in Meszéna (1995).

The cases where evolution just maximises r or R0 are considerably rarer still.
First of all the community should generate only constant environments. Secondly
the dependencies of r or R0 on the trait vector in these different environments
should be monotonically related.

The example from section 5 furthermore shows how the details of the environ-
mental feedback loop can have a non-trivial influence on the predicted relationships
between life-history parameters, even when we restrict ourselves to scenarios where
evolution just maximises R0 (cases 2 to 4).

In conclusion, the choice of a single optimisation criterion, be it R0 or r or still
something else, always entails, often fairly special, assumptions about the nature of
the environmental feedback loop. The current literature consistently underempha-
sises this aspect.
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Appendices

A Theorems underlying the statements in sections
3 and 4

In the main text we presented our propositions in an order which seemed natural
in view of their interpretation and/or application. The order in which these results
are naturally deducible is rather different. Therefore we make a fresh start. The
propositions of the main text should be seen primarily as but a convenient summary
of the results from the arguments below.

Convention Whenever we refer to r or R0 we implicitly restrict ourselves to com-
munity dynamical scenarios for which Eattr(X) is time-constant for all relevant X.
Otherwise we only require E to be ergodic (and realisable as Eattr(X) for some X).
The virgin environment will be denoted as EV.

The following four theorems and corollaries are trivial. The crux are the ques-
tions that follow them.
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Theorem 1 If there exist functions ψ of X, and α of ψ and E, to the real numbers,
with α increasing in ψ, such that

signα(ψ(X), E) = signρ(X,E)

then evolution maximises ψ(X) (or equivalently α(ψ(X), E) for any fixed E).

Theorem 2 (universal Verelendungs principle) If there exist functions φ of
E, and β of X and φ, to the real numbers, with β increasing in φ, such that

signβ(X, φ(E)) = sign ρ(X,E)

then evolution minimises φ(Eattr(X)).

Corollary 3 If we can write r(X,E) in the form

r(X,E) = α(ψ(X), E) ,

with α increasing in ψ, then evolution maximises r(X,EV) (and, more generally,
r(X,E0) for any fixed E0).

Corollary 4 If we can write R0(X,E) in the form

R0(X,E) = exp
(
α(ψ(X), E)

)
,

with α increasing in ψ, then evolution maximises R0(X,EV) (and, more generally,
R0(X,E0) for any fixed E0).

Questions

1. Is there any relation between theorems 1 and 2?

2. Can theorems 1 and 2 be made into “if and only if” statements, e.g. by requir-
ing that the extremisation principle should hold independent of the particular
choice we may still make for a constraint on X?

3. Is this also possible for the corollaries?

Theorem 5 (answer to question 1) The assumptions of both theorems 1 and 2 are
equivalent to: There exist functions φ of E, and ψ of X to the real numbers, such
that

sign
(
ψ(X) + φ(E)

)
= sign ρ(X,E) . (65)

Proof : Theorem 1: Define the function φ of E to the real numbers by α(−φ(E),
E) = 0. Then

sign
(
ψ(X) + φ(E)

)
= signα(ψ(X), E) = sign ρ(X,E).

Therefore the assumption of theorem 1 implies the assumption made above. The
converse implication is obvious.

Theorem 2: Let ψ(X) := −φ(Eattr(X)). As β(X, φ(Eattr(X))) = 0

sign
(
φ(E) + ψ(X)

)
= sign

(
φ(E)− φ(Eattr(X))

)
=

signβ(X, φ(E)) = sign ρ(X,E).

Therefore the assumption of theorem 2 implies the assumption made above. The
converse implication is obvious.
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Apparently we may without loss of essential information replace α(ψ,E) by
ψ + φ(E) respectively β(X, φ) by ψ(X) + φ, with φ respectively ψ defined above.

Remark 1.1 The reasoning underlying theorem 5 does not extend to corollaries
3 and 4: From r(X,E) = α(ψ(X), E) we cannot even conclude that there exist
functions φ′ of E and ψ′ of X such that r(X,E) = ψ′(X) + φ′(E). Neither can we
conclude from R0(X,E) = exp(α(ψ(X), E)) that there exist functions φ′ of E and
ψ′ of X such that R0(X,E) = exp(ψ′(X) + φ′(E)).

The next theorem is again trivial. However, it forms a natural introduction to
the somewhat unexpected, though on second thought equally trivial, theorem 7.

Theorem 6 (first part of the answer to question 2)

(1) If we require that we can determine the ESS under any possible constraint by
maximising a function ψ of X then this function is uniquely determined up to
an increasing transformation.

(2) If we require that that we can determine the ESS under any possible constraint
by minimising a function φ of E ∈ Eattr(X) then this function is uniquely
determined up to an increasing transformation.

Theorem 7 (second part of the answer to question 2)

(1) If there exists a function ψ of X to the real numbers such that we can determine
the ESS value of X by maximising ψ, independent of any choice that we may
still make for a constraint on X, then there exists a function φ of E such that
(65) applies.

(2) If there exists a function φ of E to the real numbers such that we can determine
the ESS value of X by minimising φ(Eattr(X)), independent of any choice that
we may still make for a constraint on X, then there exists a function ψ of X
such that (65) applies.

(3) The functions φ respectively ψ are uniquely determined by their counterparts.

Proof : In case (1) we define φ by φ(Eattr(X)) := −ψ(X). In case (2) we de-
fine ψ(X) := −φ(Eattr(X)). (65) is derived by considering all possible constraints
of the type X ∈ {X1, X2}. Maximising ψ(X) or minimising φ(Eattr(X)) will
only predict the right ESS for this constraint if sign

(
ψ(Xi) + φ(Eattr(Xj))

)
=

sign ρ(Xi, Eattr(Xj)) for all values of i and j. Uniqueness of φ respectively ψ follows
from the fact that sign

(
ψ(X) + φ(Eattr(X))

)
should be 0.

Apparently any optimisation principle ψ automatically carries a pessimisation
principle φ in its wake, and vice versa.

Corollary 8 (last part of the answer to question 2) We may replace the opening
“if”s of theorems 1 and 2 by “iff”s.

Corollary 9 (first part of the answer to question 3)

(1) If we can determine the ESS value of X by maximising r(X,E0) for some
special value E0 of E, independent of any choice that we may still make for a
constraint on X, then there exists a function φ of E such that

sign
(
r(X,E0) + φ(E)

)
= sign r(X,E) .
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(2) If we can determine the ESS value of X by maximising R0(X,E0) for some
special value E0 of E, independent of any choice that we may still make for a
constraint on X, then there exists a function φ of E such that

sign
(
ln(R0(X,E0)) + φ(E)

)
= sign ln(R0(X,E)) .

It is not possible to get any representation of r(X,E) or R0(X,E) under the,
weak, condition that there is at least one E0 such that evolution maximises r(X,E0)
respectively R0(X,E0). We need to make a stronger assumption about the sense in
which evolution maximises r respectively R0:

Theorem 10 (last part of the answer to question 3)

(1) If the maximisation principle from corollary 9 (1) holds good for all possible
choices of E0, then it is possible to write

r(X,E) = α(ψ(X), E) ,

with α increasing in its first argument and ψ(X) = r(X,E0) for some, arbi-
trary but fixed, E0.

(2) If the maximisation principle from corollary 9 (2) holds good for all possible
choices of E0, then it is possible to write

R0(X,E) = exp
(
β(ψ(X), E)

)
,

with β increasing in its first argument and ψ(X) = ln(R0(X,E0)) for some,
arbitrary but fixed, E0.

Proof : The maximisation of, say, γ(X,E), E fixed, can only lead to the same
value of the maximum as the maximisation of γ(X,E0) for all possible constraints
if γ(X,E0) and γ(X,E), considered as functions of X, are related by an increasing
function: γ(X,E) = f(γ(X,E0), E, γ), where the last argument is at this stage only
notional. For any given E (and γ) this function is necessarily unique. In cases (1)
and (2) we define α(ψ,E) := f(ψ,E, r) respectively β(ψ,E) := ln(f(ψ,E,R0)).

B Analysis of the example from section 5

Case 1 We consider the maximisation of r defined by

g(r, TV) = 1 , (66)

with

g(r, TV) =
bV(TV) e(r+µJV) TV

r + µAV
. (67)

Implicit differentiation of (66) gives

∂r

∂TV

∂g

∂r
= − ∂g

∂TV
. (68)

From (68) we see immediately that g decreases in r. Therefore ∂g
∂r < 0. It is

also easy to see (i) that ∂g
∂TV

< 0 for TV sufficiently large, and (ii) that the fact that

bV(1) = 0, and that bV increases in TV, imply that ∂g
∂TV

> 0 for TV = 1. Therefore
r has at least one maximum in (1,∞).
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To calculate that maximum we set ∂r
∂TV

= 0 in (68). This tells us that at TV = T ∗V

∂g

∂TV
= 0 .

By differentiating (67) for TV we find that

∂g

∂TV
=

∂bV
∂TV

g

bV
− (r + µJV) g .

Substitution of the resulting relation

(r + µJV) =
d ln(bV)

dTV

in (66) with (67) gives

bV(TV) exp

(
−d ln(bV)

dTV
TV

)
=

d ln(bV)

dTV
+ (µAV − µJV) (69)

together with

d ln(bV)

dTV
> (µJV − µAV) .

The next step is to substitute (47). This reduces (69) to

(TV − 1) exp

(
− TV

TV − 1

)
=

1

TV − 1
+ (µAV − µJV) . (70)

The introduction of

y :=
1

T ∗V − 1
(71)

lets us replace (70) by

e−(1+y)

y
− y = µAV − µJV . (72)

The left hand side of (72) decreases from∞ at y = 0 to −∞ at y =∞. We conclude
that r has a unique optimum T ∗V which can easily be determined from (72) with (71).

Formulas (71) and (72) moreover allow us immediately to plot the relation be-
tween T ∗V and µA at fixed µJV. The relation of T ∗V with µA for fixed µJ, can be
plotted as a parametric curve, with y as a parameter.

Cases 2 to 4 From ∂R0

∂TV
= 0 we find that

T ∗V = 1 +
1

µJV
.

Apparently T ∗V is independent of µAV. This is clearly brought out in pane 3 of
figure 1, where the environmental feedback loop acts through the birth rate b. The
decreasing relation in pane 4 derives entirely from the effect of the environmental
feedback loop on T ∗ = T ∗V +γ4(E). In pane 2 we see the effect of the environmental
feedback loop keeping µA constant, independent of µAV.
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Cases 5 and 6 Setting ∂ψ
∂TV

= 0 leads to

(TV − 1) exp

(
− TV

TV − 1

)
= µAV . (73)

When TV increases from 1 to ∞ the left hand side of (73) increases from 0 to ∞.
Therefore (73) has a unique solution.

In case 5 we plot the relation between T ∗ = θ5(E)T ∗V and µA as a parametric
curve with T ∗V as parameter. Although in case 6 the feedback loop influences µJ, it
makes no difference whether we keep µJV or µJ constant, as by (73) T ∗ is indepen-
dent of µJV.

C Bringing cases 3 to 4 from the example in sec-
tion 5 in line with example 4.2

We can, by slightly reinterpreting the model formulation, make each of the cases
2 to 4 from the example from section 5 into a special case of example 4.2. This is
done by introducing a third stage which is either the only stage affected by E, and
isn’t affected by TV, or the only stage affected by TV, and isn’t affected by E. We
shall consider the cases in opposite order.

Case 4: We split the juvenile period into a basic juvenile period of length TV, and
a subadult period of length γ4(E).

Case 3: We introduce an infinitesimally short nursery stage before the juvenile
stage. Adults reproduce according to bV(TV). Nursery survival is 1

θ3(E) .

Case 2: We again apply the nursery stage trick, except that we now assume that
the adult reproduction rate and nursery survival are

bM := max
TV

(
bV(TV)

)
, and

bV(TV)

bM
respectively . (74)

(In case 3 we first consider models with a maximum adult lifespan, to let (74)
make sense, and then use a limit argument.)


