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IIASA S TUDIES IN ADAPTIVE DYNAMICS NO. 5

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.
van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183-231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.
Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.
Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.
Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or
Chaotic Populations.
Theoretical Population Biology (1995) 48, 126–171.
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On Evolution under Asymmetric Competition
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The evolutionary consequences of asymmetric competition between species are
poorly understood in comparison with symmetric competition. A model for
evolution of body size under asymmetric competition within and between species
is described. The model links processes operating at the scale of the individual
to that of macroscopic evolution through a stochastic mutation-selection process.
Phase portraits of evolution in a phenotype space characteristically show character
convergence and parallel character shifts, with character divergence being relatively
uncommon. The asymptotic states of evolution depend very much on the properties
of asymmetric competition. Given relatively weak asymmetries between species, a
single equilibrium point exists; this is a local attractor, and its position is determined
by the intra- and interspecific asymmetries. When the asymmetries are made
stronger, several fixed points may come about, creating further equilibrium points
which are local attractors. It is also possible for periodic attractors to occur;
such attractors comprise Red Queen dynamics with phenotype values that continue
to change without ever settling down to constant values. From certain initial
conditions, evolution leading to extinction of one of the species is also a likely
outcome.

1 Introduction

Asymmetric competition arises when, during an encounter between two or more indi-

viduals for some limited resource, these resources are divided up unequally. The larger

individual wins the contest (Clutton-Brock et al., 1979), the territory holder keeps the

territory (Davies, 1978), the taller plant gets more light (Weiner, 1990). Such asym-

metries are known to be a common phenomenon in nature (Lawton and Hassell, 1981;

Connell, 1983; Schoener, 1983; Weiner, 1990), and are therefore likely to be an impor-

tant force of natural selection. Asymmetric competition has a special interest because it

does not necessarily cause evolution of weak interactions among species, as one might
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expect through divergent character displacement (the ’ghost of competition past’: Con-

nell, 1980). Thus natural selection generated by asymmetric competition is likely to be

a persistent and continuing phenomenon in communities.

In view of the importance of asymmetric competition between species, it is surpris-

ing how little understanding there is of its evolutionary effects both empirically and

theoretically. Interest has focussed more on interactions within species and how these

contribute to arms races and cyclic changes in phenotype (Maynard Smith, 1982: 94

et seq.; Parker, 1983; Maynard Smith and Brown, 1986; Abrams and Matsuda, 1994;

Matsuda and Abrams, 1994). There has however been some study of the role of asym-

metries in the taxon cycles of Anolis lizards (Rummell and Roughgarden, 1983, 1985;

Taper and Case, 1992a), and some more general discussion of the evolutionary con-

sequences of asymmetric competition (Abrams, 1987; Abrams et al., 1993a; Abrams

and Matsuda, 1994).

Studies of asymmetric competition in the empirical literature are of three main kinds,

distinguished by the temporal scale at which the process is studied. Those at the

smallest, microscopic scale deal with encounters between individuals which depend on

behavioural mechanisms of competition between animals (Perfecto, 1994; Robinson

and Terborgh, 1995), and on short-term effects of neighbours on growth in plants

(Goldberg, 1987). Those at the intermediate, mesoscopic scale are concerned with

population dynamics, often involving the manipulation of densities of pairs of species

in a reciprocal manner. Asymmetries are commonly found in these studies, one species

being much more affected by the manipulations than the other (Lawton and Hassell,

1981; Morin and Johnson, 1988; Thompson and Fox, 1993). Studies at the largest

temporal scale, the macroscopic scale of phenotype evolution, attempt to account for

phenotype patterns across species as an outcome of evolution driven by asymmetric

competition. Such patterns include the differences in body size of lizard species when

they coexist on islands, in contrast to their intermediate sizes on islands where only one

species occurs (Case and Bolger, 1991). The Anolis lizards of the Lesser Antilles have

been studied in greatest detail, and there is fossil evidence suggesting that coexisting

Anolis species gradually decline in body size. The larger Anolis species is thought

to do so at a faster rate, leading to extinction of the smaller species, the taxon cycle

eventually repeating itself by invasion of a new species of large body size from the

mainland (Roughgarden and Pacala, 1989).

In this paper we link together these three time scales in a formal model of phenotypic

evolution of two interacting species. The idea is to apply a single theoretical framework

across the time scales to retain explicitly the individual-based ecological processes

ultimately responsible for natural selection (Marrow et al., 1992; Dieckmann, 1994;

Dieckmann and Law, 1996; Marrow et al., 1996). This entails deriving a model of
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macroscopic phenotype dynamics as an approximation to a stochastic mutation-selection

process (Dieckmann and Law, 1996), where individuals with different phenotypic values

arise by mutation and replace one another in a trait substitution sequence (Metz et al.,

1992). Our intention is to complement earlier research, which was based on quantitative

genetics, by making explicit the randomness associated with mutation and survival of

mutants when rare. Our approach also differs from previous theory on taxon cycles

(Rummell and Roughgarden, 1983, 1985; Brown and Vincent, 1987; Taper and Case,

1992a) in that asymmetric competition becomes monotonically greater the larger the

phenotypic difference between individuals. This earlier work, motivated by resource

utilization functions, assumed that, if the phenotypic difference was large enough, there

would be no interaction. We want to add to this, because some kinds of interspecific

competition are intrinsically asymmetric however great the phenotypic difference. Such

asymmetries include for instance that between tall and short plants in competition for

light, and the asymmetry between large and small individuals in aggressive interactions.

We give our results in the form of phase portraits of the evolutionary dynamics in a two-

dimensional phenotype space. These portraits show that modifications to the properties

of asymmetric competition can cause a diverse range of evolutionary outcomes, with

multiple local attractors leading to extinction of one species or coexistence of both

species. (Multiple local attractors should not be confused with single equilibrium points

that allow multiple strategies within species at an ESS (Vincent and Brown, 1988).) In

cases where the species coexist, the attractors may be fixed points or cyclic orbits. The

fixed points have the property that only one of the species is uninvadable to mutants

(i.e. at an ESS); the other is at a fitness minimum. The cyclic orbits can be thought

of as ’Red Queen’ dynamics, from Van Valen’s (1973) Red Queen’s hypothesis, as

phenotype dynamics that do not tend to a fixed point in the absence of external forcing

(Dieckmann et al., 1995).

2 Theory

In the theory developed below, we assume that the evolving community comprises two

species. Individuals are distinguished by the value of some phenotypic trait, denotedsi

for an individual of speciesi (wherei = 1; 2). The phenotype values are continuous and

drawn from the setsSi, scaled so thatSi � (0; 1). It is convenient, but by no means

essential, to think of the traits as body size in view of the well-documented effect

this has on asymmetric competition (Clutton-Brock et al., 1979; Weiner, 1990). The

intention is to describe how these traits evolve under natural selection due to asymmetric

competition between and within species. We investigate this by constructing a model

for macroscopic phenotypic evolution from microscopic encounters between individuals

and mesoscopic population dynamics.
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The ecological assumptions made below are needed simply to specify a model system,

and can readily be altered to match the behaviour of particular ecological interactions.

On the other hand the evolutionary assumptions, labelled (A1) to (A3), are structural

and needed in the derivation of the macroscopic evolutionary dynamic.

2.1 Encounters Between Individuals (Microscopic Scale)

The essence of asymmetric competition is that, when two individuals encounter one

another as they search for resources, the effect on them is unequal. We assume that

eventually this is transformed into different probabilities of death,�ij, (per encounter

per unit time) of the two individuals, and describe the asymmetry as

�ij(si; sj)= = cij

�
1 �

1

1 + uij(si; sj)

�
(1)

where uij(si; sj) = exp (�kij(si � sj)). The first argumentsi is the body size of

the individual whose mortality risk we wish to determine and the secondsj is the

body size of the other individual. Parameterscij andkij are positive and non-negative

respectively. The parameter has dimensions time–1 and scales the population sizes.

Body size can be thought of as log-transformed when the asymmetry depends on body-

size ratios rather than differences (Schwinning and Fox, 1995); the scalingsi 2 (0; 1)

can be achieved by the transformation

si = log

�
li

li;min

�
= log

�
li;max

li;min

�
(2)

where the untransformed trait value isli 2 (li;min; li;max).

Although Equations (1) are rather simple, they are readily tailored to different kinds of

encounters (Figure 1). This includes encounters with conspecifics (i = j) and individuals

of the other species (i 6= j). The parametercij sets the overall mortality risk. When

the other individual is of the same size,�ij = cij=2; mortality increases to a maximum

value cij if the other individual is much larger, and to a minimum of zero if the other

individual is much smaller. The termkij measures the sensitivity of�ij to changes insi
when si � sj. The limit askij !1 describes a version of the opponent-independent

costs game (Parker, 1983) in which the costs arising from an encounter are set prior to

the encounter and the larger individual gets all the reward; the costs here would take

the form of increased mortality risks inherent from having a larger body size, and the

rewards would be reduced mortality risks associated with encounters.
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Figure 1 Asymmetric competition functions�ij(si; sj), with cij = 2. (a) No asymmetry:kij = 0;
(b) weak asymmetric competition:kij = 4; (c) intermediate asymmetric competition:kij = 8; (d) strong
asymmetric competition:kij = 12; (e) the limit askij ! 1.

2.2 Population Dynamics (Mesoscopic Scale)

We define a model of population dynamics which describes how the number of indi-

viduals in each population is affected by competitive encounters and the fate of mutant

individuals with body sizes that differ from those of the residents. By doing this the need

for an external measure of fitness is eliminated; natural selection is described internally

by the population dynamics of mutant phenotypes. We start by defining the dynamics

of a community without phenotypic variation within species, and then determine the

fate of mutants as they are added to it.

Call s = (s
1
; s
2
) the pair of body sizes in the resident community. Letn = (n

1
; n

2
)

be the number of individuals with each body size at some point in time. With large

numbers and the simplest assumption that individuals encounter one another at random,

the dynamics are given by

_ni = ni � fi(s; n) = ni �

0
@�i � �i(si)�

X
j=1;2

�ij(si; sj) � nj

1
A (3)

Here the per capita rate of increasefi(s; n) is partitioned into the following birth and

death components. The first,�i, is a birth rate; this is taken to be independent of

encounters and body size. The second component is a basal rate of mortality�i. The
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dependence of�i on si is introduced because an intrinsic cost to large body size is to

be expected; we use a linear function

�i(si) = ai + bisi (4)

to describe this, whereai and bi are non-negative parameters. This mortality is

augmented by the third component caused by asymmetric competition from Equations

(1).

2.3 Phenotype Evolution (Macroscopic Scale)

A dynamic for phenotype evolution can be constructed as the mean of a stochastic

process, the randomness entering both through mutation and through selection. First

we deal with mutation, writing the probability of a mutation per unit time as

Mi

�
s0

i; s
�
= �i � �i � n̂i(s) �Mi

�
s0

i � si

�
(5)

(Dieckmann and Law, 1996). Heres0

i
= si + �si is a mutant phenotype. The term�i is

the probability that a newborn individual is a mutant. This mutant has a phenotype value

drawn from a probability distributionMi symmetric aroundsi and with constant variance

�2
i
. (Departures from symmetry will have little effect on the deterministic dynamics

below as these are based on the assumption of small mutational steps. A constant

variance is most likely when body sizes are log-transformed.) The probability per unit

time of a birth is given by the product of the per capita birth probability per unit time,

�i, and the equilibrium population size of the resident phenotypes,n̂i(s). Equilibrium

populationsn̂i(s). are obtained from Equations (3) with_ni = 0 for i = 1; 2. We have

made an assumption (A1) in Equation (5) that mutations occur rarely enough for the

population sizes to reach equilibrium values between mutation events. This separation

of ecological and evolutionary time scales is widely used in theoretical work, in view

of the difficulties in making any generalizations about evolution on the transients of

ecological dynamics (e.g. Lande, 1982; Roughgarden, 1983a).

Stochasticity arises during natural selection because mutations occur first in single

individuals and are liable to extinction irrespective of how advantageous they are (Fisher,

1958: 80 et seq.). We now make a second assumption (A2) that populations of residents

are large. This has two consequences. First mutants will initially be rare enough for

their effect on the population dynamics of the residents to be ignored. The initial per

capita rate of increase of the mutantf i(s
0

i
; s) can then be written as a function of

the mutant phenotypes0

i
and the environment in which it arises, the latter being fully

specified by the resident trait valuess. Thus

f i

�
s0

i
; s
�
= �i � �i

�
s0

i

�
�

X

j=1;2

�ij

�
s0

i; s
�
� n̂j(s) : (6)
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This function is related to the fitness generating function (G-function) Gi(ui; u; p;N ),

which has been used to characterize evolutionary games in the context of ESS theory,

whereui = s0

i
, u = s, p = (1; 1), andN = n̂ (Vincent and Brown, 1988; Brown and

Vincent, 1992). Rosenzweig and McCord (1991) suggest that theG-function defines a

’bauplan’ within which microevolution takes place.

The second consequence of assumption (A2) is that the effect of demographic stochas-

ticity on the residents will be negligible. The probability that mutant numbers become

large enough to escape extinction due to demographic stochasticity can then be written as

S i

�
s0

i; s
�
=

�
f i(s

0

i
; s)=�i for f i(s

0

i
; s) > 0

0 for f i(s
0

i
; s) � 0

(7)

(Goel and Richter-Dyn, 1974: 79). With a third assumption (A3) that no two trait

valuess0

i
and si can coexist, a mutant which escapes accidental extinction when rare

must go to fixation. Under Lotka-Volterra dynamics such as those in Equations (3), it

can be shown that this assumption typically holds (Dieckmann, 1994: 96 et seq.).

Assumptions (A1) and (A3) specify a regime which is phenotypically monomorphic

except for those times when a mutant is replacing a resident phenotypic value. Under

these conditions the probability per unit time of the transition fromsi to s0

i
is given

by the productMi(s0

i
; s) � S i(s0

i
; s). This is a stochastic mutation-selection process

in which, from time to time, new trait values replace old ones in a trait substitution

sequence (Metz et al., 1992). A large number of realizations of this process can be

averaged to give a mean path. As long as the deviations from the mean path are small,

the mean path can be replaced by the following deterministic dynamics

_si = �i(s) �
@

@s0

i

f i

�
s0

i; s
� ���

s
0

i
=si

(8)

where

�i(s) =
1

2
� �i � �

2

i � n̂i(s)

(van Kampen, 1992: 122 et seq.; Dieckmann and Law, 1996). These dynamics describe

the process of phenotypic evolution in a trait spaceS which is the Cartesian product

S1�S2. The dynamics are exact if the mutational steps are infinitesimal and apply as a

close approximation if the steps are small, i.e.�2
i

is small. Evolution is driven essentially

by two factors according to Equations (8). The first is a coefficient�i(s) that scales

the rate of evolution, its value depending on how often mutations occur and the size of

the mutational steps. The second is a selection derivative (an evolutionary rate) which

depends on the underlying ecological processes responsible for natural selection, i.e.

what happens when individuals encounter one another and what effect these encounters

have on population dynamics. The dynamics are canonical, in that they can alternatively
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be derived from a starting point in quantitative genetics, although the meaning of the

evolutionary rate coefficient is then different (Iwasa et al., 1991; Taper and Case, 1992a;

Abrams et al., 1993a; Marrow et al., 1996).

2.4 Selection Derivative

This measures how sensitive the initial per capita rate of increase of a mutant is to

changes in its body sizes0

i
close tosi, when the mutant arises in a community with

trait valuess. It is given by

@

@s0

i

f i

�
s0

i; s
� ���

s0

i
=si

= lim
s0

i
�si!0

f i(s
0

i; s)� f i(si; s)

s0i � si
(9)

(Marrow et al., 1992), wheref i(si; s) = 0 since it is assumed that the populations of

resident phenotypes have come to equilibrium. The selection derivative is important

because it indicates the direction in which evolution is taking place; if it is positive

(negative), then mutants of greater (smaller) body size invade. From Equations (1), (4)

and (6), it can be written as

@

@s0i
f i

�
s0i; s

� ���
s0

i
=si

=

�bi +
�cii�kii

4
� n̂i(s) +

�cij�kij�uij(si;sj)

(1+uij(si;sj))
2 � n̂j(s)

| {z }
(I)

| {z }
(II)

| {z }
(III)

(10)

where is as given in Equations (1). This expression comes in three parts. (I) is a

constant negative term due to the intrinsic advantage of smaller body size. (II) is a

positive term proportional to the number of conspecifics, due to the advantage of larger

body size in encounters with these individuals. (III) is also a positive term, in this

case due to encounters with individuals of the other species, and proportional to the

population size of the other species.

2.5 Inner Evolutionary Isoclines

The isoclines are lines in the trait spaceS on which _si = 0, and are given by the union

of the manifolds on which either the resident population or the selection derivative

vanishes (Equations (8)). We are concerned primarily with the isocline

@

@s0i
f i

�
s0i; s

� ���
s0

i
=si

= 0 ; (11)

because this allows both species to be present and as a result coevolution can occur;

we call this the inner isocline. The following properties of the inner isoclines, which

we refer to as non-invasibility and convergence, help in understanding the phenotype

dynamics.
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Non-invasibility is familiar from the concept of an evolutionarily stable strategy (ESS)

as the property that mutantss0

i
, with phenotypes close to the isoclinic valuessi satisfying

Equation (11), cannot invade (Parker and Maynard Smith, 1990), and is given by the

condition

0 >
@2

@s02

i

f i

�
s0

i
; s

� �
�
�
s0

i
=si

: (12)

From Equation (10) this condition is

0 > � � cij � k
2

ij � n̂j(s) � uij(si; sj) �
1 � uij(si; sj)

(1 + uij(si; sj))
3

(13)

whereuij(si; sj) is as given in Equations (1). Notice that Inequality (13) holds only

for the larger species, which means that there is no point in the trait space satisfying

it simultaneously for both species.

Convergence was introduced in the context of phenotype dynamics in one dimension

and refers to the property of successive mutations in the vicinity of a fixed point to

cause evolution towards this point (Taylor, 1989; Abrams et al. 1993a; Metz, et al.

1994). This is distinct from the property of non-invasibility, and is given by

0 >
@2

@si@s
0

i

f i

�
s0

i; s
� �
��
s0

i
=si

(14)

on the inner isocline of this two-dimensional system. Convergence means that, in the

vicinity of the isocline, a sequence of successful mutants tends to the isocline, provided

that the body size in the other species is held constant.

The fixed pointsŝ at which both species coexist are the points in the trait space at

which the inner isoclines intersect, i.e.

@

@s0

i

f i

�
s0

i; s
� ��
�
s0

i
=si

= 0 for i = 1; 2 : (15)

These are of special interest because they are contenders as attractors of evolutionary

trajectories; over the course of time phenotypes may evolve towards them. It is clear

from Inequality (13) that, at all fixed points satisfyingŝ1 6= ŝ2, the species with smaller

body size is at a fitness minimum, and the one with a greater body size is at a maximum.

Nevertheless, it will be seen below that evolution readily leads towards such a point,

notwithstanding the fact that it is not an ESS for the species with smaller body size.

This is of interest because it shows that the ESS criterion cannot serve as a necessary

condition for identifying evolutionary attractors (Brown and Pavlovic, 1992; Abrams

et al., 1993a; Marrow et al., 1996). Neither does it qualify as a sufficient condition

(Hofbauer and Sigmund, 1990; Takada and Kigami, 1991; Abrams et al., 1993a; Marrow

et al., 1996); use of the ESS criterion is inadequate for delimiting the outcome of these

evolutionary processes.
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3 Results

The evolutionary dynamics (8) can be represented in terms of a two dimensional phase

portrait in the trait spaceS. This gives a clear picture of the geometry of evolution,

indicating the orientation of the isoclines, the positions of fixed points and the flow of

evolutionary trajectories. In this section we illustrate the varied evolutionary behaviour

which stems from modifications in asymmetric competition in Equations (1) using these

phase portraits. Throughout we hold = 5 � 10�4, �i = 1, ai = 0, and bi = 1 for

i = 1; 2 in Equations (1), (3) and (4), as this makes it possible to focus simply on the

effects of changes to asymmetric competition. The coefficients of the evolutionary rates

of the species in Equations (8) are kept the same unless otherwise stated.

It is important to appreciate that, on the time scale of population dynamics, the species

may not coexist, i.e. the asymptotic state to which the population size of one species

tends may be zero for constants. To make this precise, we define a subspaceSc of S

for which both species have positive equilibrium populations asymptotically:

Sc = fs 2 S j n̂i(s) > 0 for i = 1; 2g : (16)

It may often be the case thatSc is an empty set, and questions about coevolution

obviously do not then arise. We deal here only with those systems for whichSc is not

empty, so that there is some region in which coevolution takes place. For this to be the

case, we require that there should be some region inS with the properties

�i � �i(si)

�ii(si; si)
<

�j � �j(sj)

�ji(sj; si)
for i = 1; 2 and j 6= i : (17)

These conditions ensure that there is an equilibrium point satisfyingn̂i(s) > 0 for

i = 1; 2, and that the equilibrium point is a global attractor. With the values�i, ai

and bi given above, there are values of s satisfying Inequalities (17) whencii > cji

for i = 1; 2 and j 6= i. This is no more than saying that there is a region inS where

intraspecific competition is stronger than interspecific competition. To ensure that there

is a substantial region of coexistence, we setcii = 2 andcij = 1 for i = 1; 2 andj 6= i

in the examples below.

Notice that, once evolution of body size has been introduced, it is entirely feasible for

the body sizes to evolve to the boundary of the subspace of coexistenceSc, i.e. to

a point where the equilibrium population size of one of the species is zero. In such

cases the dynamics subsequently lie in one of the one-dimensional subspacesS1 or

S2. We indicate such parts of theSc boundary by discontinuous lines in Figure 2, in

contrast to those which repel the evolutionary trajectories. It should be borne in mind

that the deterministic population dynamics in Equations (3) do not allow for accidental

extinction of a species close to theSc boundary that results from the small size of the

resident population there.
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3.1 Asymmetry Absent

This is the null case, indicating what would happen if competition was present but

there were no asymmetries in the encounters (cij > 0, kij = 0 for i = 1; 2). The

path of evolution is very simple (Figure 2a): body sizes just evolve to the smallest

values inS. This is because the intrinsic costs associated with large size (Equation

(4)) are not countered by any advantage in encounters with other individuals. Notice

that, in certain regions of the trait spaceS, coexistence is not possible; body size, if

large enough, causes an intrinsic mortality rate too great to maintain a population under

competition. Moreover, evolution can lead to the boundary ofSc, and there the larger

species becomes extinct. Evolution then continues in one of the subspacesS1, S2 until

the smallest body size is reached.

3.2 Asymmetric Competition within Species

A first step towards a more realistic system would be to suppose that asymmetric

encounters occur only among conspecifics (kii > 0, kij = 0 for i = 1; 2 andi 6= j). This

would be expected if asymmetries were a special feature of intraspecific interactions such

as the ability to hold territories against conspecifics (Davies, 1978). Figure 2b shows

that the intrinsic advantage of small size is now opposed by an advantage of larger body

size in encounters with conspecifics. Just how great the overall advantage stemming

from asymmetric encounters is depends on the number of conspecifics (Equation (10)).

When conspecifics are scarce, as they will be when body size is large, encounters occur

infrequently and the advantage is not great enough to counter that of small body size.

This is reversed when body size is small and, as a result, inner evolutionary isoclines

exist for both species. The isoclines intersect at a single pointŝ which satisfies the

condition for convergence for both species and the second order condition for non-

invasibility for neither of them (see Inequalities (13) and (14)); nonetheless it is an

attractor for evolutionary trajectories in its neighbourhood. As before evolution leads

to the boundary ofSc from certain starting points, although this can now happen only

over a subset of the boundary.

3.3 Moderate Asymmetric Competition between Species

Asymmetric competition between species in addition to that within species is likely to

occur when all individuals must compete for a common resource, irrespective of their

identity. This changes some important features of the phase portrait. We consider first

a case in which the degree of asymmetry is equal for both species, (k12 = k21) and

moderate in size (Figure 2c). The inner isoclines and the boundary ofSc are now

non-linear. In the example shown, the single fixed point, now shifted to larger body

sizes, still remains in existence and is still an attractor for evolutionary trajectories in
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its neighbourhood. It is notable that the asymmetry in interspecific encounters expands

the regionSc over which the species coexist. This may seem counterintuitive until

it is understood that individuals of large body size are now less adversely affected in

their encounters with small individuals of the other species and that their populations

are correspondingly larger. A substantial part of the non-linear boundary ofSc permits

evolution on to the boundary, leading to extinction of the larger species.

3.4 Strong Asymmetric Competition between Species

As the asymmetry between species is made stronger, the non-linearities of the inner

isoclines become greater, generating more fixed points. This is because, where indi-

viduals of the two species are similar in size, the advantage of being the larger one

becomes greater; this distorts the inner isoclines, pulling them towards the upper right

corner,s = (1; 1). In Figure 2d for example, the single fixed point has been replaced

by five fixed points. The one in the middle at which the species have the same body

size still exists and has a small basin of attraction. But two new attracting fixed points

have arisen at which the body sizes of the two species are quite different; these are

attractors even though the species with smaller body size is at a fitness minimum (see

Inequality (13)). Evidently, as the degree of asymmetry increases, alternative outcomes

to coevolution become possible; which outcome is realized depends on the body sizes

at the start of the evolutionary process.

Figure 2 (continued) Phase portraits of the trait spaceS, showing contrasting dynamics as
asymmetric competition is altered. Evolutionary trajectories within the region of coexistence shown
as continuous lines. Inner evolutionary isoclines_si = 0 shown as dotted lines:_s1 species 1,_s2 species 2.
Isoclines marking the boundary of coexistencen̂i = 0 shown as:n̂1 species 1,̂n2 species 2; the isocline
is given as continuous (discontinuous) if it repels (attracts) orbits from the interior of the coexistence
region. Fixed points are shown as circles, and filled if the fixed point is an attractor. Parameters are
set as follows unless otherwise specified. Equations (1): = 5 � 10�4, cii = 2, cij = 1, kii = 4,
for i = 1; 2 and j 6= i; Equations (3): �i = 1, for i = 1; 2; Equations (4): ai = 0, bi = 1, for
i = 1; 2; Equations (8):�i = 10�4, �2i = 10�6, for i = 1; 2. (a) No asymmetric competition within and
between species:kij = 0, for i; j = 1; 2. (b) Asymmetric competition present within species and absent
between species:k12 = 0, k21 = 0. (c) Moderate asymmetric competition between species:k12 = 4,
k21 = 4. (d) Strong asymmetric competition between species:k12 = 8, k21 = 8. (e) Differences between
species in interspecific asymmetric competition functions:k12 = 9, k21 = 7. (f) Differences between
species in interspecific asymmetric competition functions together with fast evolutionary rate for species
2: k12 = 9, k21 = 7 �2

2
= 10�5.
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3.5 Differences in Interspecific Asymmetric Competition

In general the advantage gained by a large individual of species 1 over a small one of

species 2 does not have to be the same as the advantage to an individual of species 2

when the sizes are reversed, (k12 6= k21). For instance, one might well expect the canopy

architecture of two plant species to differ; the one with the more open canopy then has

a less adverse effect on its smaller neighbours than the species with the more closed

canopy when there is competition for light. Such differences between species seem

particularly likely when the species in competition are not closely related (Englund et

al., 1992).

Differences in the degree of asymmetry between species can add further complexities

to the dynamics, because the phase portrait is no longer symmetric about the line

s1 = s2. Figure 2e gives an example in which the inner isoclines intersect at three

points, the outer two points (A) and (B) both being attractors. Fixed point (A) satisfies

the condition for convergence for both species and the condition for non-invasibility for

species 2 (Inequalities (13), (14)). Point (B) satisfies the conditions for non-invasibility

and convergence for species 1 only. This illustrates the fact that convergence by both

species is not necessary for the fixed point to be an attractor, just as non-invasibility is

not (Abrams et al., 1993a; Marrow et al., 1996).

In fact the stability properties of fixed point (B) depend on the coefficients that scale the

evolutionary rates in Equations (8), in addition to the properties of the inner isoclines.

This is shown in Figure 2f, where the coefficient of species 2 is increased by a factor

of ten. As can be seen from the orientation of the trajectories, evolution in the vertical

direction (species 2) is now faster than in the horizontal direction (species 1), and this

prevents point (B) from being an attractor. The evolutionary trajectories are nonetheless

confined to a region around the fixed point, and consequently the asymptotic state is

now a periodic orbit.

The periodic asymptotic state constitutes a Red Queen dynamic, the sequence of trait

substitutions continuing for as long as the system remains in existence (Figure 3a)

(Marrow et al., 1992, 1996; Dieckmann et al. 1995). Depending on where the species

are on the periodic orbit, invasions are sometimes by larger mutants, and sometimes by

smaller mutants. The oscillations in body size of the two species are nearly in phase,

but the larger evolutionary rate constant of species 2 causes it to have oscillations of

greater amplitude. The cycle cannot be driven by changes in the relative abundance

of the two species (cf. Pimentel, 1968; Pease, 1984), since their equilibrium numbers

are approximately in phase, being high when body size is relatively small (Figure 3b).

Selection follows these changes in population size, the component due to intraspecific

encounters being at its peak when numbers are greatest as measured by Equation (10)
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Figure 3 Properties of the periodic attractor of Figure 2f, variables being given as functions of time:
(a) body size; (b) equilibrium population size /2 � 10

�3; (c) the intraspecific component of the selection
derivative (Equation (9,II)) shown as II, and the interspecific component of the selection derivative
(Equation (9,III)) shown as III. Continuous lines: species 1; discontinuous lines: species 2. Parameter
values as in Figure 2f.
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part (II) (Figure 3c). Conversely, the component due to interspecific encounters is at

its peak when the numbers are lowest as measured by Equation (10) part (III).

4 Discussion

The results above show that asymmetric competition between species can, in principle,

have the following evolutionary effects. First, the non-linearities in the inner isoclines

created by asymmetric competition (a) cause evolutionary fixed points to be shifted to

larger body sizes, and (b) can give rise to multiple fixed points. Second, the asymptotic

states can be periodic orbits (Red Queen dynamics), rather than fixed points. Third,

because large individuals suffer less disadvantage when competition is asymmetric,

coexistence of the species occurs over a larger part of the phenotype space. Fourth,

evolution to the boundary of the coexistence region remains possible, and the smaller

species then drives the larger one to extinction, as Taper and Case (1992a) found in their

analysis. Much of this rich behaviour arises from modelling evolution in a manner that

links it directly to the underlying population dynamics. Such population processes are

important for ecologically-significant traits, because the selection pressures one species

generates upon another depend on the abundance of the species concerned, as is clear

from Equation (10) (see also Pimentel, 1968; Abrams and Matsuda, 1994).

4.1 Quasi-Monomorphism

To lay bare the links from individual encounters, through population dynamics, to a

macroscopic model of coevolution, we have deliberately kept the processes operating

at each scale rather simple. As a result, some warnings about the limitations of the

phenotype dynamics in Equations (8) are needed. The most critical assumption is

that the populations can be treated, to a good approximation, as monomorphic with

respect to the evolving traits. Clearly one would wish to remove this; a model which

tracks phenotype distributions through time would be preferable. The quantitative-

genetic recursion used by Slatkin (1980) and Taper and Case (1985, 1992a) does retain

the phenotype distribution, but does not deal with the mutation process and is much

less tractable analytically. What we know from our stochastic simulations is that the

model remains a good approximation to the mean of a stochastic birth/death process in

which different phenotypes occur with a low probability through mutation, generating

a phenotype distribution with a small variance (Dieckmann, 1994; Dieckmann et al.,

1995).

The assumption of almost complete monomorphism is widely made in modelling

coevolution, through the use of the first order term of a Taylor’s expansion of the

fitness function (i.e. a selection derivative of the form used in Equations (8)). In models

motivated by quantitative genetics, the argument of the function is the additive genetic
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value, in which case monomorphism applies to this rather than the phenotypic value

(Iwasa et al., 1991; Taper and Case, 1992a; Abrams et al., 1993a; Marrow et al., 1996).

One might alternatively require that terms in the fitness function of order greater than

two are negligible (Abrams et al., 1993b), but this would not be generic for coevolving

systems. Dynamics like those of Equations (8) have been used heuristically on a number

of occasions in evolutionary biology (e.g. Brown and Vincent, 1987; Hofbauer and

Sigmund, 1990); these approaches also have an assumption of monomorphism although

this is not made explicit.

4.2 Dynamical Systems and Evolutionary Game Theory

The model illustrates how dynamical and game-theoretic approaches to study of evolu-

tion differ. Game theoretic approaches use isoclinic properties of non-invasibility (the

ESS condition). But it is clear from the phase portraits that this isoclinic property is

not enough to indicate whether the fixed point is an attractor of the evolutionary tra-

jectories (Takada and Kigami, 1991; Abrams et al., 1993a; Marrow et al., 1996). In

addition, they can provide no information on periodic attractors, where the trajectories

do not tend to a fixed point at all. There appears to be no short cut possible; direct

investigation of the dynamical system is needed.

Nevertheless, the isoclinic properties do provide some useful insights. For instance,

in the coevolutionary system considered here, at any fixed point with the property

ŝ1 6= ŝ2, the species with smaller body size is at a fitness minimum. Although selection

on the larger species is stabilizing, it is disruptive for the smaller one and this may

lead to a polymorphism developing (Christiansen, 1991; Metz et al., 1994). In this

event, evolutionary branching takes place, and the quasi-monomorphic evolutionary

dynamic we have used is no longer appropriate. In principle, it is possible to follow the

evolution further, by increasing the dimensionality of Equations (8) to three, and treating

the two phenotypes of the smaller species separately. We have not done this because

it has not yet been possible to observe such branching in our stochastic simulations

of the underlying birth-death processes; the robustness of branching remains to be

demonstrated.

4.3 Genetic Systems

Strictly speaking, the model we have described applies only to phenotypes with an

asexual or haploid genetic system. We suggest that, with few modifications, the

dynamics would also apply over much of the trait space to a diploid genetic system

if there is an ordering of the phenotypic effects of the genes. The ordering is either

that si < s
0

i
< s

00

i
or that si > s

0

i
> s

00

i
, where s0

i
and s00

i
are the phenotypes of

the mutant heterozygote and homozygote respectively; additivity of the phenotypic
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effects is a special case of this. The probability that a mutant replaces a resident

allele depends first of all on the probability that it escapes extinction when rare; this

is still given by Equations (6) and (7), the per capita rate of increase now being that

of the rare heterozygote. Replacement subsequently depends on whether the mutant

goes to fixation. As long ass0

i
and s

00

i
do not straddle the innersi-isocline, this

ordering should lead to fixation of mutants which have escaped extinction when rare.

Moreover, polymorphisms straddling the isocline would not normally be maintained,

because evolution in the other species usually moves the system away from the vicinity

of the isocline. Exceptions to this are the evolutionary fixed points themselves; here the

larger species may go into a sustained polymorphic state, in which case the assumption

of quasi-monomorphism no longer applies. Notice that the evolutionary rate coefficient

in Equation (8) has to be multiplied by a factor of two if a switch from haploidy to

diploidy is involved.

4.4 Transients of Evolutionary Dynamics

The focus of most early work on evolution of competing species was the divergence

of characters, in view of the potential importance of niche differentiation in structuring

ecological communities (Hutchinson, 1959; Roughgarden, 1983b). The trajectories in

Figure 2 illustrate how minor a role character divergence can play once asymmetric

competition is introduced (see also Abrams, 1987; Taper and Case, 1992a). Character

divergence would require a region in the phase space where the species with larger body

size evolves still larger sizes and the smaller species evolves still smaller sizes. Although

such regions do exist, the dynamics over most of the phase space comprise either

character convergence or parallel character shifts (Taper and Case, 1992b). Convergence

occurs when the larger species is evolving to a smaller size and the smaller one to a

larger size, as in the top left and bottom right regions of the phase space. Parallel

character shifts occur when both species change in the same direction, as in most of

the rest of the phase space. The parallel character shifts may themselves be convergent,

getting closer to the lines1 = s2, but it is also common in our examples to observe

divergent shifts, getting further from the lines1 = s2. Notice that, if there had already

been single-species evolution to a fixed point before the two species met, the starting

point for coevolution would be the body size at the fixed point that applies in the

absence of interspecific competition.
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4.5 Red Queen Dynamics

The results show that evolution can lead to a cyclic asymptotic state, although our

exploration of the parameter space suggests that such behaviour is relatively infrequent.

The existence of a Red Queen dynamic is important for several reasons. First, it

warns that the current preoccupation of evolutionary theory with fixed-point asymptotic

states of evolution, in particular ESSs, misses other possible outcomes (Dieckmann et

al., 1995); these are likely to require more consideration as theorists turn to problems

of higher dimensionality such as those of coevolution. Second, it demonstrates that

continuing evolution is not dependent on changes in the abiotic environment (although

normally this obviously plays a major part); all that is needed is a system of interacting

and mutating species to prevent evolution from coming to a halt.

Cyclic solutions are well known from previous studies of evolution under asymmetric

competition within species. What happens is that mutants with body sizes greater

than those prevailing in the population gain an advantage and body size increases; but

eventually mutants of small size can invade because they gain an advantage so great

from the low costs of small size that this outweighs the defeat they experience in every

encounter (Maynard Smith and Brown, 1986). Such models have the properties that:

(a) mutants can cause large changes in phenotype, and (b) the payoffs are discontinuous

functions of phenotype. Parker (1985) suggested that cyclic systems will typically revert

to fixed point behaviour if the payoffs are made continuous; if in addition mutational

steps are made small, cyclic dynamics ought to become still less likely. That Red Queen

dynamics can still occur in our model, under a small mutation variance and a continuous

fitness function, suggests that cyclic asymptotic states to phenotypic evolution are more

robust than has previously been thought.
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