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IIASA S TUDIES IN ADAPTIVE DYNAMICS NO. 2

ADN

The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.
van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183-231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.
Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.
Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.
Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or
Chaotic Populations.
Theoretical Population Biology (1995) 48, 126–171.

No. 8 Ferrìere R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.

No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.
American Naturalist (1996) 147, 692–717.



No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-
Equilibrium Dynamics.
IIASA Working Paper WP-96-070.
Journal of Evolutionary Biology (1997) in press.

No. 11 Geritz SAH, Metz JAJ, Kisdi E, Mesz´ena G:
The Dynamics of Adaptation and Evolutionary Branching.
IIASA Working Paper WP-96-077.
Physical Review Letters (1997) 78, 2024–2027.

No. 12 Geritz SAH, Kisdi E, Mesz´ena G, Metz JAJ:
Evolutionarily Singular Strategies and the Adaptive Growth and Branching
of the Evolutionary Tree.
IIASA Working Paper WP-96-114.
Evolutionary Ecology (1997) in press.

No. 13 Heino M, Metz JAJ, Kaitala V:
Evolution of Mixed Maturation Strategies in Semelparous Life-Histories:
the Crucial Role of Dimensionality of Feedback Environment.
IIASA Working Paper WP-96-126.
Philosophical Transactions of the Royal Society of London Series B (1997) in press.

No. 14 Dieckmann U:
Can Adaptive Dynamics Invade?
IIASA Working Paper WP-96-152.
Trends in Ecology and Evolution (1997) 12, 128–131.

No. 15 Mesz´ena G, Czibula I, Geritz SAH:
Adaptive Dynamics in a Two-Patch Environment: a Simple Model for
Allopatric and Parapatric Speciation.
IIASA Interim Report IR-97-001.
Journal of Biological Systems (1997) in press.

No. 16 Heino M, Metz JAJ, Kaitala V:
The Enigma of Frequency-Dependent Selection.
IIASA Interim Report IR-97-061.

No. 17 Heino M:
Management of Evolving Fish Stocks.
IIASA Interim Report IR-97-062.

No. 18 Heino M:
Evolution of Mixed Reproductive Strategies in Simple Life-History Models.
IIASA Interim Report IR-97-063.

No. 19 Geritz SAH, van der Meijden E, Metz JAJ:
Evolutionary Dynamics of Seed Size and Seedling Competitive Ability.
IIASA Interim Report IR-97-071.

No. 20 Galis F, Metz JAJ:
Why are there so many Cichlid Species? On the Interplay of Speciation
and Adaptive Radiation.
IIASA Interim Report IR-97-072.
Trends in Ecology and Evolution (1998) 13, 1–2.



No. 21 Boerlijst MC, Nowak MA, Sigmund K:
Equal Pay for all Prisoners. / The Logic of Contrition.
IIASA Interim Report IR-97-073.
AMS Monthly (1997) 104, 303–307.
Journal of Theoretical Biology (1997) 185, 281–294.

No. 22 Law R, Dieckmann U:
Symbiosis without Mutualism and the Merger of Lineages in Evolution.
IIASA Interim Report IR-97-074.

No. 23 Klinkhamer PGL, de Jong TJ, Metz JAJ:
Sex and Size in Cosexual Plants.
IIASA Interim Report IR-97-078.
Trends in Ecology and Evolution (1997) 12, 260–265.

No. 24 Fontana W, Schuster P:
Shaping Space: The Possible and the Attainable in RNA Genotype-
Phenotype Mapping.
IIASA Interim Report IR-98-004.

Issues of the IIASA Studies in Adaptive Dynamics series can be obtained free of
charge. Please contact:

Adaptive Dynamics Network
International Institute for Applied Systems Analysis
Schloßplatz 1
A–2361 Laxenburg
Austria

Telephone +43 2236 807, Telefax +43 2236 71313, E-Mail adn@iiasa.ac.at,
Internet http://www.iiasa.ac.at/Research/ADN



The Dynamical Theory of Coevolution:
A Derivation from

Stochastic Ecological Processes

Ulf Dieckmann
1,3

and Richard Law
2

1 Theoretical Biology Section, Institute of Evolutionary and Ecological
Sciences, Leiden University, Kaiserstraat 63, 2311 GP Leiden, The

Netherlands 2 Department of Biology, University of York, York
YO1 5DD, U.K. 3 Adaptive Dynamics Network, International

Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

In this paper we develop a dynamical theory of coevolution in ecological commu-
nities. The derivation explicitly accounts for the stochastic components of evolu-
tionary change and is based on ecological processes at the level of the individual.
We show that the coevolutionary dynamic can be envisaged as a directed random
walk in the community’s trait space. A quantitative description of this stochastic
process in terms of a master equation is derived. By determining the first jump
moment of this process we abstract the dynamic of the mean evolutionary path. To
first order the resulting equation coincides with a dynamic that has frequently been
assumed in evolutionary game theory. Apart from recovering this canonical equa-
tion we systematically establish the underlying assumptions. We provide higher
order corrections and show that these can give rise to new, unexpected evolutionary
effects including shifting evolutionary isoclines and evolutionary slowing down of
mean paths as they approach evolutionary equilibria. Extensions of the deriva-
tion to more general ecological settings are discussed. In particular we allow for
multi-trait coevolution and analyze coevolution under nonequilibrium population
dynamics.

1 Introduction

The self-organisation of systems of living organisms is elucidated most successfully by

the concept of Darwinian evolution. The processes of multiplication, variation, inheri-

tance and interaction are sufficient to enable organisms to adapt to their environments by

means of natural selection (see e.g. Dawkins 1976). Yet, the development of a general

and coherent mathematical theory of Darwinian evolution built from the underlying eco-
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logical processes is far from complete. Progress on these ecological aspects of evolution

will critically depend on properly addressing at least the following four requirements.

1. The evolutionary process needs to be considered in a coevolutionary context.This

amounts to allowing feedbacks to occur between the evolutionary dynamics of

a species and the dynamics of its environment (Lewontin 1983). In particular,

the biotic environment of a species can be affected by adaptive change in other

species (Futuyma and Slatkin 1983). Evolution in constant or externally driven

environments thus are special cases within the broader coevolutionary perspective.

Maximization concepts, already debatable in the former context, are insufficient in

the context of coevolution (Emlen 1987; Lewontin 1979, 1987).

2. A proper mathematical theory of evolution should be dynamical.Although some

insights can be gained by identifying the evolutionarily stable states or strategies

(Maynard Smith 1982), there is an important distinction between non-invadability

and dynamical attainability (Eshel and Motro 1981; Eshel 1983; Taylor 1989). It can

be shown that in a coevolutionary community comprising more than a single species

even the evolutionary attractors generally cannot be predicted without explicit

knowledge of the dynamics (Marrow et al. 1996). Consequently, if the mutation

structure has an impact on the evolutionary dynamics, it must not be ignored

when determining evolutionary attractors. Furthermore, a dynamical perspective

is required in order to deal with evolutionary transients or evolutionary attractors

which are not simply fixed points.

3. The coevolutionary dynamics ought to be underpinned by a microscopic theory.

Rather than postulating measures of fitness and assuming plausible adaptive dy-

namics, these should be rigorously derived. Only by accounting for the ecological

foundations of the evolutionary process in terms of the underlying population dy-

namics, is it possible to incorporate properly both density and frequency dependent

selection into the mathematical framework (Brown and Vincent 1987a; Abrams et

al. 1989, 1993; Saloniemi 1993). Yet, there remain further problems to overcome.

First, analyses of evolutionary change usually can not cope with nonequilibrium

population dynamics (but see Metz et al. 1992; Rand et al. 1993). Second, most

investigations are aimed at the level of population dynamics rather than at the level

of individuals within the populations at which natural selection takes place; in con-

sequence, the ecological details between the two levels are bypassed.

4. The evolutionary process has important stochastic elements.The process of muta-

tion, which introduces new phenotypic trait values at random into the population,

acts as a first stochastic cause. Second, individuals are discrete entities and con-

sequently mutants that arise initially as a single individual are liable to accidental

extinction (Fisher 1958). A third factor would be demographic stochasticity of
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resident populations; however, in this paper we assume resident populations to be

large, so that the effects of finite population size of theresidentsdo not have to be

considered (Wissel and Stöcker 1989). The importance of these stochastic impacts

on the evolutionary process has been stressed by Kimura (1983) and Ebeling and

Feistel (1982).

Only some of the issues above can be tackled within the mathematical framework of

evolutionary game dynamics. This field of research focuses attention on change in

phenotypic adaptive traits and serves as an extension of traditional evolutionary game

theory. The latter identifies a game’s payoff with some measure of fitness and is

based on the concept of the evolutionarily stable strategy (Maynard Smith and Price

1973). Several shortcomings of the traditional evolutionary game theory made the

extension to game dynamics necessary. First, evolutionary game theory assumes the

simultaneous availability of all possible trait values. Though one might theoretically

envisage processes of immigration having this feature, the process of mutation typically

will only yield variation that is localized around the current mean trait value (Mackay

1990). Second, it has been shown that the non-invadability of a trait value does not imply

that trait values in the vicinity will converge to the former (Taylor 1989; Christiansen

1991; Takada and Kigami 1991). In consequence, there can occur evolutionarily stable

strategies that are not dynamically attainable, these have been called ’Garden of Eden’

configurations (Hofbauer and Sigmund 1990). Third, the concept of maximization,

underlying traditional game theory, is essentially confined to single species adaptation.

Vincent et al. (1993) have shown that a similar maximization principle also holds for

ecological settings where several species can be assigned a single fitness generating

function. However, this is too restrictive a requirement for general coevolutionary

scenarios, so in this context the dynamical perspective turns out to be the sole reliable

method of analysis.

We summarize the results of several investigations of coevolutionary processes based

on evolutionary game dynamics by means of the followingcanonical equation

d

dt
si = ki(s) �

@

@s0

i

Wi

�
s0

i
; s

� �
�
�
s0

i
= si

: (1.1)

Here, thesi with i = 1; . . . ; N denote adaptive trait values in a community comprising

N species. TheWi(s
0

i
; s) are measures of fitness of individuals with trait values0

i
in the

environment determined by the resident trait valuess, whereas theki(s) are non-negative

coefficients, possibly distinct for each species, that scale the rate of evolutionary change.

Adaptive dynamics of the kind (1.1) have frequently been postulated, based either on

the notion of a hill-climbing process on an adaptive landscape or on some other sort of

plausibility argument (Brown and Vincent 1987a, 1987b, 1992; Rosenzweig et al. 1987;

Hofbauer and Sigmund 1988, 1990; Takada and Kigami 1991; Vincent 1991; Abrams
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1992; Marrow and Cannings 1993; Abrams et al. 1993). The notion of the adaptive

landscape or topography goes back to Wright (1931). A more restricted version of

equation (1.1), not yet allowing for intraspecific frequency dependence, has been used

by Roughgarden (1983). It has also been shown that one can obtain an equation similar

to the dynamics (1.1) as a limiting case of results from quantitative genetics (Lande 1979;

Iwasa et al. 1991; Taper and Case 1992; Vincent et al. 1993; Abrams et al. 1993).

In this paper we present a derivation of the canonical equation that accounts for all

four of the above requirements. In doing this we recover the dynamics (1.1) and

go beyond them by providing higher order corrections to this dynamical equation;

in passing, we deduce explicit expressions for the measures of fitnessWi and the

coefficientski. The analysis is concerned with the simultaneous evolution of an arbitrary

number of species and is appropriate both for pairwise or tight coevolution and for

diffuse coevolution (Futuyma and Slatkin 1983). We base the adaptive dynamics of

the coevolutionary community on the birth and death processes of individuals. The

evolutionary dynamics are described as a stochastic process, explicitly accounting

for random mutational steps and the risk of extinction of rare mutants. From this

we extract a deterministic approximation of the stochastic process, describing the

dynamics of the mean evolutionary path. The resulting system of ordinary differential

equations covers both the asymptotics and transients of the adaptive dynamics, given

equilibrium population dynamics; we also discuss an extension to nonequilibrium

population dynamics.

The outline of the paper is as follows.Section 2provides a general framework for

the analysis of coevolutionary dynamics. The relationship of population dynamics to

adaptive dynamics is discussed in a coevolutionary context and we describe the basic

quantities specifying a coevolutionary community. For the purpose of illustration we

introduce a coevolutionary predator-prey system that serves as a running example to

demonstrate most of the ideas in this paper. InSection 3we derive the stochastic rep-

resentation of the coevolutionary process, explaining the notion of a trait substitution

sequence and giving a dynamical description of these processes in terms of a master

equation. InSection 4we utilize this representation in combination with the stochastic

concept of the mean evolutionary path in order to construct a deterministic approxima-

tion of the coevolutionary process. From this the canonical equation (1.1) is recovered

and we demonstrate its validity up to first order. This result is refined inSection 5by

means of higher order corrections, where a general expression for the adaptive dynamics

is deduced allowing for increased accuracy. The higher order corrections give rise to

new, unexpected effects which are discussed in detail. We also provide the conditions

that must be satisfied for making the canonical equation exact and explain in what sense

it can be understood as the limiting case of our more general process. InSection 6we
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extend our theoretical approach to a wider class of coevolutionary dynamics by dis-

cussing several generalizations such as multiple-trait coevolution and coevolution under

nonequilibrium population dynamics.

2 Formal Framework

Here we introduce the basic concepts underlying our analyses of coevolutionary dynam-

ics. Notation and assumptions are discussed, and the running example of predator-prey

coevolution is outlined.

2.1 Conceptual Background

The coevolutionary community under analysis is allowed to comprise an arbitrary

numberN of species, the species are characterized by an indexi = 1; . . . ; N . We

denote the number of individuals in these species byni, with n = (n1; . . . ; nN ). The

individuals within each species can be distinct with respect to adaptive trait valuessi,

taken from setsbSi and being either continuous or discrete. For convenience we scale

the adaptive trait values such thatbSi � (0; 1). The restriction to one trait per species

will be relaxed in Section 6.2, but obtains until then to keep notation reasonably simple.

The development of the coevolutionary community is caused by the process of mutation,

introducing new mutant trait valuess0

i
, and the process of selection, determining survival

or extinction of these mutants. A formal description will be given in Sections 2.2 and

3.2; here we clarify the concepts involved. The change of the population sizesni

constitutes thepopulation dynamics, that of the adaptive trait valuessi is calledadaptive

dynamics. Together these make up thecoevolutionary dynamicsof the community. We

follow the convention widely used in evolutionary theory that population dynamics

occurs on an ecological time scale that is much faster than the evolutionary time scale

of adaptive dynamics (Roughgarden 1983). Two important inferences can be drawn

from this separation.

First, the time scale argument can be used in combination with a principle of mutual

exclusion to cast the coevolutionary dynamics in aquasi-monomorphic framework. The

principle of mutual exclusion states that no two adaptive trait valuessi and s0

i
can

coexist indefinitely in the populations of speciesi = 1; . . . ; N when not renewed by

mutations; of the two trait values eventually only the single more advantageous one

survives. For the moment we keep this statement as an assumption; in Section 6.1 we

will have built up the necessary background to clarify its premisses. Together with the

time scale argument we conclude that there will be one trait value prevailing in each

species at almost any point in time. This is not to say that coexistence of several mutants

cannot occur at all: we will regard an evolving population as quasi-monomorphic, if the
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periods of coexistence are negligible compared to the total time of evolution (Kimura

1983). The adaptive state of the coevolutionary community is then aptly characterized

by the vectors = (s1; . . . ; sN ) of prevailing or resident trait values and the state

space of the coevolutionary dynamics is the Cartesian product of themonomorphic trait

spacebS = �N
i=1

bSi � RN and thepopulation size spacebN = �N
i=1

bNi = ZN
+

. When

considering large population sizes we may effectively replacebNi = Z+ by bNi = R+.

Second, we apply the time scale argument together with an assumption of monostable

population dynamics to achieve adecouplingof the population dynamics from the

adaptive dynamics. In general, the population dynamics could be multistable, i.e.

different attractors are attained depending on initial conditions in population size space.

It will then be necessary to trace the population dynamicsd

dt
n in size spacebN

simultaneously with the adaptive dynamicsd
dt
s in trait spacebS. This is no problem in

principle but it makes the mathematical formulation more complicated; for simplicity we

hence assumemonostability. Due to the different time scales, the system of simultaneous

equations can then be readily decomposed. The trait valuess or functions thereof can be

assumed constant as far as the population dynamicsd

dt
n are concerned. The population

sizesn or functionsF thereof can be taken averaged when the adaptive dynamicsd

dt
s

are considered, i.e.

F(s) = lim
T!1

1

T
�

TZ

0

F (s; n(s; t)) dt (2.1)

where n(s; t) is the solution of the population dynamicsd
dt
n with initial conditions

n(s; 0) which are arbitrary because of monostability. With the help of these solutions

n(s; t) we can also define theregion of coexistencebSc as that subset of trait spacebS
that allows for sustained coexistence of all species

bSc =
n
s 2 bS j lim

t!1
ni(s; t) > 0 for all i = 1; . . . ; N

o
: (2.2)

If the boundary@ bSc of this region of coexistence is attained by the adaptive dynam-

ics, the coevolutionary community collapses fromN species to a smaller number of

N 0 species. The further coevolutionary process then has to be considered in the cor-

respondingN 0-dimensional trait space. There can also exist processes that lead to an

increase in the dimension of the trait space, see e.g. Section 6.1.
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2.2 Specification of the Coevolutionary Community

We now have to define those features of the coevolutionary community that are relevant

for our analysis in terms of ecologically meaningful quantities.

We first consider the process of selection. In an ecological community the environment

ei of a speciesi is affected by influences that can be either internal or external with

respect to the community considered. The former effects are functions of the adaptive

trait values s and population sizesn in the community; the latter may moreover

be subject to external effects like seasonal forcing which render the system non-

autonomous. We thus write

ei = ei(s; n; t) : (2.3)

The quantitiesebi and edi are introduced to denote theper capita birth and death rates

of an individual in speciesi. These rates are interpreted stochastically as probabilities

per unit time and can be combined to yield the per capita growth rateefi =
ebi � edi of

the individual. They are affected by the trait values0

i
of the individual as well as by

its environmentei, thus with equation (2.3) we have

ebi = ebi
�
s0

i; s; n; t
�

and edi =
edi

�
s0

i; s; n; t
�
: (2.4)

Since we are mainly interested in the phenomenon of coevolution – an effect internal to

the community – in the present paper we will not consider the extra time-dependence

in equations (2.4) which may be imposed on the environment by external effects.

We now turn to the process of mutation. In order to describe its properties we introduce

the quantities�i and Mi. The former denote thefraction of births that give rise to

a mutation in the trait valuesi. Again, these fractions are interpreted stochastically

as probabilities for a birth event to produce an offspring with an altered adaptive trait

value. These quantities may depend on the phenotype of the individual itself,

�i = �i(si) ; (2.5)

although in the present paper we will not dwell on this complication. The quantities

Mi = Mi

�
si; s

0

i � si

�
(2.6)

determine theprobability distribution of mutant trait valuess0

i
around the original trait

valuesi. If the functionsMi and�i are independent of their first argument, the mutation

process is calledhomogeneous; if Mi is invariant under a sign change of its second

argument, the mutation process is calledsymmetric.
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With equilibrium population sizeŝn(s) satisfying efi(si; s; n̂(s)) = 0 for all i =

1; . . . ; N , the time average in equation (2.1) is simply given byF (s) = F (s; n̂(s)). In

particular we thus can define

f i

�
s0

i; s
�
= efi

�
s0

i; s; n̂(s)
�

(2.7)

and analogously forbi and di. We come back to the general case of nonequilibrium

population dynamics in Section 6.3.

We conclude that for the purpose of our analysis the coevolutionary community ofN

species is completely defined by specifying the ecological ratesebi, edi and the mutation

properties�i, Mi. An explicit example is introduced for illustration in Section 2.3.

We will see that our formal framework allows us to deal both with density dependent

selection as well as with interspecific and intraspecific frequency dependent selection.

2.3 Application

To illustrate the formal framework developed above, here we specify a coevolutionary

community starting from a purely ecological one. The example describes coevolution

in a predator-prey system.

First, we choose the population dynamics of prey (index 1) and predator (index 2) to

be described by a Lotka-Volterra system with self-limitation in the prey

d

dt
n1 = n1 � (r1 � � � n1 � � � n2) ;

d

dt
n2 = n2 � (�r2 +  � n1)

(2.8)

where all parametersr1, r2, �, � and are positive. These control parameters of the

system are determined by the species’ intraspecific and interspecific interactions as well

as by those with the external environment.

Second, we specify the dependence of the control parameters on the adaptive trait

values s = (s1; s2)

(s1; s2)=u = c1 � �(s1; s2)

�(s1; s2)=u = exp
�
��2

1
+ 2c2 � �1 � �2 � �2

2

�
;

�(s1)=u = c7 � c8 � s1 + c9 � s
2

1

(2.9)

with �1 = (s1 � c3)=c4 and�2 = (s2 � c5)=c6; r1 andr2 are independent ofs1 ands2.

The constantu can be used to scale population sizes in the community. For the sake

of concretenesss1 and s2 may be thought of as representing the body sizes of prey

and predator respectively. According to the Gaussian functions� and, the predator’s

harvesting of the prey is most efficient at(s1 = c3; s2 = c5) and, sincec2 > 0, remains
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parameters affecting selection

r1 r2 c1 c2 c3 c4 c5 c6 c7 c8 c9

0:5 0:05 0:2 0:6 0:5 0:22 0:5 0:25 2:0 8:0 10:0

parameters affecting mutation

�1 �1 �2 �2 u

5 � 10�3 10�4 5 � 10�3 10�3 10�3

Table 1 The default parameter values for the coevolutionary predator-prey community.

particularly efficient along the line(s1; s2 = s1), i.e. for predators having a body size

similar to their prey. According to the parabolic function�, the prey’s self-limitation

is minimal ats1 = c8=2c9. Details of the biological underpinning of these choices are

discussed in Marrow et al. (1992).

Third, we provide the per capita birth and death rates for a rare mutant trait values0
1

or s0
2

respectively,

eb1�s01; s; n� = r1 ;ed1�s01; s; n� = �
�
s0
1

�
� n1 + �

�
s0
1
; s2

�
� n2 ;eb2�s02; s; n� = 

�
s1; s

0

2

�
� n1 ;ed2�s02; s; n� = r2 :

(2.10)

These functions are the simplest choice in agreement with equations (2.8) and can be

inferred by taking into account that mutants are rare when entering the community.

Fourth, we complete the definition of our coevolutionary community by the properties

of the mutation process,

�1 ;

M1(s1;�s1) =
1

p
2� � �1

� exp
�
�
1

2
�s2

1
=�2

1

�
;

�2 ;

M2(s2;�s2) =
1

p
2� � �2

� exp
�
�
1

2
�s2

2
=�2

2

�
:

(2.11)

The standard numerical values for all parameters used in subsequent simulations are

given in Table 1.

Although the coevolutionary community defined by (2.10) and (2.11) captures some

features of predator-prey coevolution, other choices for the same purpose or for entirely
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different ecological scenarios could readily be made within the scope of our approach.

Many features of the model presented will be analyzed in the course of this paper;

additional discussion is provided in Marrow et al. (1992, 1996) and Dieckmann et

al. (1995).

3 Stochastic Representation

In this section we establish the stochastic description of the coevolutionary dynamics.

The central idea is to envisage a sequence of trait substitutions as adirected random

walk in trait spacedetermined by the processes of mutation and selection.

3.1 Stochastic Description of Trait Substitution Sequences

The notion of the directed random walk is appropriate for three reasons. First, the

current adaptive state of the coevolutionary community is represented by the vector

s = (s1; . . . ; sN ) composed of the trait values prevalent in each species. This is due to

the assumption of quasi-monomorphic evolution discussed in the last section. So atrait

substitution sequenceis given by the dynamics of the points in N-dimensional trait

space (Metz et al. 1992). Second, these dynamics incorporate stochastic change. As

already noted in the Introduction, the two sources for this randomness are (i) the process

of mutation and (ii) the impact of demographic stochasticity on rare mutants. Third,

the coevolutionary dynamics possess no memory, for mutation and selection depend

only on the present state of the community. The trait substitution sequence thus will

be Markovian, provided thats determines the state of the coevolutionary system. To

meet this requirement for realistic systems, a sufficient number of traits may need to

be considered, see Section 6.2.

By virtue of the Markov property the dynamics of the vectors is described by the

following equation

d

dt
P (s; t) =

Z h
w
�
sjs0

�
� P

�
s0; t

�
� w

�
s0
js
�
� P (s; t)

i
ds0: (3.1)

HereP (s; t) denotes the probability that the trait values in the coevolutionary system are

given bys at timet. Note thatP (s; t) is only defined on the region of coexistencebSc.
The w(s0

js) represent the transition probabilities per unit time for the trait substitution

s ! s0. The stochastic equation above is an instance of a master equation (see e.g. van

Kampen 1981) and simply reflects the fact that the probabilityP (s; t) is increased by

all transitions tos (first term) and decreased by all those froms (second term).
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3.2 Transition Probabilities per Unit Time

We now turn to the definition of the transition probabilities per unit time. Since

the changedP in the probabilityP (s; t) is only considered during the infinitesimal

evolutionary time intervaldt, it is understood that only transitions corresponding to a

trait substitution in a single species have a nonvanishing probability per unit time. This

is denoted by

w
�
s0js
�
=

NX

i=1

wi

�
s0

i; s
�
�

NY

j=1
j 6=i

�
�
s0
j � sj

�
(3.2)

where� is Dirac’s delta function. For a givens the ith component of this sum can be

envisaged in the space of alls0 � s as a singular probability distribution that is only

nonvanishing on theith axis. The derivation ofwi(s
0
i; s), the transition probability per

unit time for the trait substitutionsi ! s0
i, comes in three parts.

1. Mutation and selection are statistically uncorrelated. For this reason the probability

per unit timewi for a specific trait substitution is given by the probability per

unit timeMi that the mutant enters the population times the probabilityS i that it

successfully escapes accidental extinction

wi

�
s0
i; s
�
=Mi

�
s0
i; s
�
� S i

�
s0
i; s
�
: (3.3)

2. The processes of mutation in distinct individuals are statistically uncorrelated. Thus

the probability per unit timeMi that the mutant enters the population is given by

the product of the following three terms.

a. The per capita mutation rate�i(si) � bi(si; s) for the trait valuesi. The

term bi(si; s) is the per capita birth rate of theith species in the community

determined by the resident trait valuess, and �i(si) denotes the fraction of

births that give rise to mutations in the speciesi.

b. The equilibrium population sizêni(s) of the ith species.

c. The probability distributionMi(si; s
0
i � si) for the mutation process in the trait

si.
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Figure 1 Invasion success of a rare mutant. The probabilitySi(s
0

i
; s) of a mutant population initially

of size1 with adaptive trait values0

i
in a community of monomorphic resident populations with adaptive

trait valuess to grow in size such as to eventually overcome the threshold of accidental extinction is
dependent on the per capita growth and death rates,f i(s

0

i
; s) anddi(s0

i
; s), of individuals in the mutant

population. Deleterious mutants withf i(s
0

i; s) < 0 go extinct with probability1 but even advantageous
mutants withf

i
(s0

i
; s) > 0 have a survival probability less than1. Large per capita deaths rates hinder

invasion success while large per capita growth rates of the mutant favor it.

Collecting the results above we obtain

Mi

�
s0

i; s
�
= �i(si) � bi(si; s) � n̂i(s) �Mi

�
si; s

0

i � si

�
(3.4)

for the probability per unit time that the mutant enters the population.

3. The process of selection determines the mutant’s probabilityS i of escaping initial

extinction. Since mutants enter as single individuals, the impact of demographic

stochasticity on their population dynamics must not be neglected (Fisher 1958). We

assume, however, that the equilibrium population sizesn̂i are large enough for there

to be negligible risk of accidental extinction of the established resident populations.

Two consequences stem from this.

a. Frequency-dependent effects on the population dynamics of the mutant can be

ignored when the mutant is rare relative to the resident.

b. The actual equilibrium size of the mutant after fixation is not important as long

as it is large enough to exceed a certain threshold. Above this threshold the

effect of demographic stochasticity is negligible (Wissel and St¨ocker 1991).

The probability that the mutant population reaches sizen starting from size1

depends on its per capita birth and death rates,b and d. Based on the stochastic

population dynamics of the mutant (Dieckmann 1994) and statement (a) above, this

probability can be calculated analytically. The result is given by[1� (d=b)]=[1 �
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(d=b)n] (Bailey 1964; Goel and Richter-Dyn 1974). We exploit statement (b) above

by taking the limit n ! 1. The probabilityS i of escaping extinction is then

given by

S
i

�
s0

i
; s
�
=

�
1 � d

i
(s0

i
; s)=b

i
(s0

i
; s) for d

i
(s0

i
; s)=b

i
(s0

i
; s) < 1

0 for di(s0

i
; s)=bi(s0

i
; s) � 1

= b
�1

i

�
s0
i
; s
�
�
�
f
i

�
s0
i
; s
��
+

(3.5)

where the function(. . .)
+

: x ! x � �(x), the product of the identity and the

Heaviside function, leaves positive arguments unchanged and maps negative ones

to zero. It follows from equation (3.5) that deleterious mutants (with a per capita

growth rate smaller than that of the resident type) have no chance of survival but

even advantageous mutants (with a greater per capita growth rate) experience some

risk of extinction, see Figure 1.

We conclude that the transition probabilities per unit time for the trait substitutions

si ! s0
i

are

wi

�
s0
i
; s
�
=

�
i
(s

i
) � b

i
(s

i
; s) � n̂

i
(s) �M

i

�
s
i
; s0

i
� s

i

�
� b

�1

i

�
s0
i
; s
�
� (f

i

�
s0
i
; s
�
)+ :

(3.6)

This expression completes the stochastic representation of the mutation-selection process

in terms of the master equation.

3.3 Applications

The information contained in the stochastic representation of the coevolutionary dy-

namics can be used in several respects.

First, we can employ theminimal process method(Gillespie 1976) to obtain actual

realizations of the stochastic mutation-selection process. We illustrate this method by

means of our example of predator-prey coevolution. The two-dimensional trait spacebS of this system is depicted in Figure 2a. The dashed line surrounds the region of

coexistencebSc. Within this region different trait substitution sequences(s1(t); s2(t))

are displayed by continuous lines. Note that trait substitution sequences starting from the

same initial states (indicated by asterisks) are not identical. This underlines the unique,

historical nature of any evolutionary process. But, although these paths are driven apart

by the process of mutation, they are kept together by the directional impact of selection.
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Figure 2a Stochastic representation of the adaptive dynamics: trait substitution sequences as defined
by equations (3.1), (3.2) and (3.6). Ten directed random walks in trait space for each of five different
initial conditions (indicated by asterisks) are depicted by continuous lines. The discontinuous oval curve
is the boundary of the region of coexistence. The coevolution of both species drives the trait values
towards a common equilibrium̂s. The parameters of the coevolutionary predator-prey community are
given in Table 1.
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Figure 2b Stochastic representation of the adaptive dynamics: mean paths as defined by equation (3.7).
Ten trait substitution sequences for each of the five different initial conditions (indicated by asterisks)
are combined to obtain estimates for the mean paths, depicted by continuous lines. The jaggedness
of the lines is caused by the finite number of ten trait substitution sequences. The discontinuous oval
curve is the boundary of the region of coexistence. The parameters of the coevolutionary predator-prey
community are as in Figure 2a.
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Second, the latter observation underpins the introduction of a further concept from

stochastic process theory. By imagining a large numberr of trait substitution sequences

sk(t) =
�
sk
1
(t); . . . ; sk

N
(t)
�
, with k = 1; . . . ; r, starting from the same initial state, it is

straightforward to apply an averaging process in order to obtain themean pathhsi(t) by

hsi(t) = lim
r!1

1

r
�

rX
k=1

sk(t) : (3.7)

The construction of these mean paths is illustrated in Figure 2b. Since the mean path

obviously summarizes the essential features of the coevolutionary process, it is desirable

to obtain an explicit expression for its dynamics. This issue will be addressed in the

next two sections.

4 Deterministic Approximation: First Order

We now derive an approximate equation for the mean path of the coevolutionary

dynamics. In this section we obtain a preliminary result and illustrate it by application

to predator-prey coevolution. The argument in this section will be completed by the

results of Section 5.

4.1 Determining the Mean Path

The mean path has been defined above as the average over an infinite number of

realizations of the stochastic process. Equivalently, we can employ the probability

distribution P (s; t) considered in the last section to define the mean of an arbitrary

function F (s) by hF (s)i(t) =
R
F (s) � P (s; t) ds. In particular we thereby obtain for

the mean path

hsi(t) =

Z
s � P (s; t) ds : (4.1)

The different statess thus are weighted at timet according to the probabilityP (s; t) of

their realization by the stochastic process at that time. In order to describe the dynamics

of the mean path we start with the expression

d

dt
hsi(t) =

Z
s �

d

dt
P (s; t) ds : (4.2)

and utilize the master equation to replaced

dt
P (s; t). One then finds with some algebra

d

dt
hsi(t) =

Z Z �
s0 � s

�
� w
�
s0js

�
� P (s; t) ds0 ds : (4.3)

By exploiting the delta function property ofw(s0js), see equation (3.2), and introducing

the so calledkth jump moment of theith species

aki(s) =

Z �
s0i � si

�k
� wi

�
s0i; s

�
ds0i (4.4)
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with ak = (ak1; . . . ; akN ) we obtain

d

dt
hsi(t) = ha1(s)i(t) : (4.5)

If the first jump momenta1(s) were a linear function ofs, we could make use of the

relation ha1(s)i = a1(hsi) giving a self-contained equation for the mean path

d

dt
hsi(t) = a1(hsi(t)) : (4.6)

However, the coevolutionary dynamics typically are nonlinear so that the relation

ha1(s)i = a1(hsi) does not hold. Nevertheless, as long as the deviations of the stochastic

realizations from the mean path are relatively small or, alternatively, the nonlinearity is

weak, the equation above provides a very good approximation to the dynamics of the

mean path. A quantitative discussion of this argument is provided in van Kampen (1962)

and Kubo et al. (1973). To distinguish between the mean path itself and that actually

described by equation (4.6), the latter is called thedeterministic path(Serra et al. 1986).

4.2 Deterministic Approximation in First Order

We can now calculate the deterministic path of the coevolutionary dynamics by sub-

stituting (3.6) into (4.4) and the result into (4.6). Since from now on we concentrate

on this deterministic approximation we will cease denoting it by angle bracketsh. . .i.

So we obtain

d

dt
si =�i(si) � bi(si; s) � n̂i(s)�Z

Ri(s)

�
s0

i � si
�
�Mi

�
si; s

0

i � si
�
� b

�1

i

�
s0i; s

�
� f i

�
s0i; s

�
ds0i ;

(4.7)

where, as an alternative to employing the function(. . .)
+

in the integrand, we have

restricted the range of integration in (4.7) tos0
i
2 Ri(s) with

Ri(s) =
n
s0i 2 bSi j f i�s0i; s� > 0

o
: (4.8)

Note that the process of mutation causes the evolutionary rate ofsi to be dependent

on the per capita growth and birth rates of all possible mutant trait valuess0
i
. This

dependence is manifested both by the integrand of (4.7) and in the range of integration

(4.8). In order to transform the global coupling into a local one we apply a Taylor

expansion tof i(s
0

i
; s) and b

�1

i (s0
i
; s) � f i(s

0

i
; s) abouts0

i
= si. Higher orders in these

expansions are discussed in Section 5; in this section we will use the results only up

to first order

f i
�
s0i; s

�
= @ 0

i f i(si; s) �
�
s0i � si

�
+O[

�
s0i � si

�2
] (4.9)
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and

b
�1

i

�
s0
i
; s

�
� f i

�
s0
i
; s
�
= b

�1

i
(si; s) � @ 0

i
f i(si; s) �

�
s0
i
� si

�
+O[

�
s0
i
� si

�2
] :(4.10)

We have exploited the conditionf i(si; s) = 0 above, for the population dynamics of the

resident species are assumed to be at equilibrium. Since derivatives of the ecological

rate functions will be used throughout this paper, we apply the abbreviated notations

@ 0i f i =
@

@s0
i

f i ; @if i =
@

@si

f i (4.11)

and analogously for all functions taking the arguments(s0
i
; s). From (4.8) and (4.9) we

can infer that the rangeRi(s) of integration in this first order result is either(si;+1) or

(�1; si), depending only on the sign of@ 0
i
f i(si; s). If we assume the mutation process

to be symmetric, we obtain the same result in both cases by substituting (4.10) into (4.7)

d

dt
si =

1

2
� �i(si) � �

2
i (si) � n̂i(s) � @

0

i f i(si; s) (4.12)

where

�2i (si) =

Z
�s2i �Mi(si;�si) d�si : (4.13)

denotes the second moment of the mutation distributionMi. Since the first moment of

Mi vanishes due to symmetry, the second moment of this distribution equals its variance.

The set of equations (4.12) provides a first order, deterministic approximation of the

coevolutionary dynamics. The rate of evolution in the traitsi is determined by two

factors.

1. The first terms in equation (4.12) represent the influence of mutation. This product

is affected by the fraction�i(si) of mutations per birth and by the variance�2
i
(si)

of the mutation distributionMi. For homogeneous mutation processes these terms

are constant. The third factor̂ni(s) is the equilibrium population size. All these

three terms make up theevolutionary rate coefficientwhich is non-negative and

serves to scale the rate of evolutionary change.

2. The last factor accounts for the impact of selection. The function

@ 0
i
f i(si; s) =

@

@s0
i

fi

�
s0
i
; s

� ���
s
0

i=si

= lim
�si!0

1

�si
�

�
f i(si +�si; s)� f i(si; s)

�

= lim
�si!0

1

�si
� f i(si +�si; s)

(4.14)
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which we call theselection derivative(Marrow et al. 1992), indicates the sensitivity

of the per capita growth rate of a species to a change in the trait valuesi.

It is a measure of the selection pressure generated by the environment through

the ecological interactions. Consequently, this factor determines the direction of

adaptive change. When the selection derivative off i is positive (negative), an

increase (a decrease) of the trait valuesi will be advantageous in the vicinity of

the resident trait value.

The sign of the selection derivative evidently carries important information on the

dynamical structure of the mutation-selection process; yet, in Marrow et al. (1996)

we demonstrate that this information in general is not sufficient to predict evolutionary

attractors.

By means of equation (4.12) we have recovered the canonical equation (1.1) from the

stochastic ecological processes underlying the adaptive dynamics. For the evolutionary

rate coefficients we obtainki(s) =
1

2
��i(si)��

2

i
(si)�n̂i(s). In addition, we have shown the

appropriate measure of fitness to be given by the per capita growth rate of a rare mutant

evaluated while resident population sizes are at equilibrium,Wi(s
0

i
; s) = f i(s

0

i
; s).

4.3 Applications

The deterministic approximation (4.12) readily allows us to calculatephase portraits

of the adaptive dynamics. The application to predator-prey coevolution is depicted in

Figure 2c. The evolutionary trajectories given by the deterministic paths coincide with

the mean paths calculated from the stochastic process itself, see Figure 2b. In Figure

3 phase portraits of the predator-prey system are displayed that correspond to other

choices of parameters. We see that the coevolutionary dynamics can either lead to

extinction of one species (Figure 3a), approach one of several coevolutionarily stable

states (Figure 3b), or it can give rise to continuous, in particular cyclic, coevolutionary

change (Figure 3c); see Dawkins and Krebs (1979) for a discussion of the ecological

and evolutionary implications and Dieckmann et al. (1995) for a detailed investigation

of the cyclic regime.

However, some caveats are necessary for understanding the validity of any deterministic

approximation of a stochastic process. First, if the adaptive dynamics turn out to be

multistable (as in Figure 3b), it will be possible for trait substitution sequences to

exhibit jumps between the existing basins of attraction. This must be kept in mind

while applying the deterministic approximation to initial states very close to the basin

boundary. Figure 4a illustrates this point. In principle, large fluctuations between

the multiple stable states themselves can happen. However, the latter will typically

be associated with extremely small probabilities per unit time, which are negligible
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Figure 2c Deterministic approximation of the adaptive dynamics: phase portrait as defined by
equations (4.12). The deterministic trajectories which correspond to the trait substitution sequences
in Figure 2a and to the mean paths in Figure 2b are depicted by continuous lines (initial conditions
are indicated by asterisks). Other trajectories have been added to supplement the phase portrait. The
structure of the evolutionary flow in trait space thereby becomes visible. The discontinuous oval curve
is the boundary of the region of coexistence. The dotted curves are the inner evolutionary isoclines
of the two species (straight line: predator, curved line: prey). The parameters of the coevolutionary
predator-prey community are as in Figure 2a.

on ecological and even on evolutionary time scales; moreover, when the mutation

distributions are bounded, such large jumps become impossible altogether. Second,

if the flow of the dynamical system describing the deterministic path is expanding,

i.e. trajectories are diverging (as in some regions of Figure 3b), the deviations of the

stochastic realizations from the mean path can grow too fast for the identification of

the deterministic path with the mean path to be reliable (see Figure 4b). Note that the

construction of phase portraits based on the deterministic path is useful in any case,

since these allow qualitative predictions of the stochastic dynamics by considering the

combined process of movement along the trajectories accompanied by jumps between

them. For illustration compare Figure 2a and 2c, see also Figure 4b. Third, if the

attractors of the adaptive dynamics turn out to have dimensions other than0 (as in

Figure 3c), the deterministic approximation in principle cannot predict aspects of the

asymptotic mean dynamics of the stochastic process tangential to the attractor. The

reason is that the tangential fluctuations are not balanced by counteracting forces. In

consequence, for example, the asymptotic mean phase of stochastic limit cycle dynamics

is not defined, though the asymptotic mean period is accurately described (Dieckmann

et al. 1995).



20

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 3a,b,c



21

In addition to investigating the coevolutionary dynamics by means of phase portraits,

much insight is gained by applying techniques frombifurcation analysisto the deter-

ministic approximation (4.12). The effects of varying different ecological parameters,

which have an impact on the adaptive dynamics, can then be systematically explored

(Dieckmann et al. 1995).

5 Deterministic Approximation: Higher Orders

The first order result that we have obtained in Section 4 for the adaptive dynamics is not

always sufficient. In this section we will enhance the deterministic approximation by

accounting for the higher order corrections. In particular, two interesting consequences,

the shifting of evolutionary isoclines and the phenomenon of evolutionary slowing down

will be discussed.

5.1 Deterministic Approximation in Higher Orders

The process of mutation has induced a global coupling in the adaptive dynamics (4.7).

To substitute it precisely by a local one, an infinite number of orders in the Taylor

expansions off i(s
0

i
; s) andb

�1

i (s0
i
; s) � f i(s

0

i
; s) abouts0

i
= si is required. Thejth order

results are given by

f i

�
s0i; s

�
=

jX
k=1

�
s0i � si

�k
�
1

k!
� @ 0k

i f i(si; s) +O[
�
s0i � si

�j+1
] (5.1)

and

b
�1

i

�
s0i; s

�
� f i

�
s0i; s

�
=

jX
k=1

�
s0i � si

�k
�
1

k!
�

kX
l=1

�
k

l

�
� @ 0l

i f i(si; s) � @
0k�l
i b

�1

i (si; s)

+O[
�
s0i � si

�j+1
] :

(5.2)

Figure 3a,b,c (continued) Deterministic approximation of the adaptive dynamics: phase portraits.
The deterministic trajectories are depicted by continuous lines. Three qualitatively distinct outcomes of
two-species coevolution are illustrated. Figure 3a: Evolutionary extinction (the coevolution of both
species drives the trait values towards a boundary isocline where the predator becomes extinct). Figure
3b: Evolutionary multistability (depending on initial condition the coevolution of both species drives the
trait values towards one of two equilibria which are separated by a saddle). Figure 3c: Evolutionary
cycling (the coevolution of both species eventually forces the trait values to undergo sustained oscillatory
change). The discontinuous oval curve in each figure is the boundary of the region of coexistence. The
dotted curves are the inner evolutionary isoclines of the two species (straight lines: predator, curved
lines: prey). The parameters of the coevolutionary predator-prey community are as in Table 1, except
for: c1 = 1, c7 = 3, c8 = 0, c9 = 0 and�1 = 10

�3 (Figure 3a);c1 = 1, c7 = 3, c8 = 10 and�1 = 10
�3

(Figure 3b);c1 = 0:11, c7 = 3, c8 = 10 and�1 = 10
�3 (Figure 3c).
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Figure 4a,b Descriptive capacity of the stochastic representation. Ten directed random walks in trait
space with a common initial condition are depicted in each figure by continuous lines. Figure 4a: The set
of trait substitution sequences splits permanently into two separate bundles as the initial condition is close
to an existing basin boundary (depicted as a curve of dots and dashes). Figure 4b: The splitting of the set
of trait substitution sequences into two separate bundles is only temporary and is caused by the existence
of an expanding flow (shown as gray curves) in a region that contains the initial condition. Deterministic
descriptions of the dynamics of the mean path cannot capture these features. The discontinuous oval
curve in each figure is the boundary of the region of coexistence. The parameters of the coevolutionary
predator-prey community for Figure 4a are as in Figure 3b, and for Figure 4b as in Figure 2c except
for �1 = 10

�3.
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Again we have already accounted forf i(si; s) = 0. Substituting (5.2) into (4.7) yields

the result for the deterministic approximation of the coevolutionary dynamics injth

order

d

dt
si = �i(si) � n̂i(s)�

jX
k=1

mk+1;i(s) �

1

k!
�

kX
l=1

�
k

l

�
� @ 0l

i f i(si; s) � @ 0k�l
i b

�1

i (si; s)
(5.3)

with

mki(s) =

Z
Ri(s)

�
s0i � si

�k
�Mi

�
si; s

0

i � si
�
ds0i : (5.4)

The range of integration in (5.4) is given by substituting (5.1) into (4.8)

Ri(s) = fs0i 2
bSi j

jX
k=1

�
s0i � si

�k
�
1

k!
� @ 0k

i f i(si; s) > 0g : (5.5)

The interpretation of the adaptive dynamics (5.3) is analogous to that given for (4.12)

in Section 4.2. Themki(s) are called thekth mutation moments of theith species. They

actually coincide with thekth moments of the mutation distributionMi only if the range

of integrationRi(s) is (�1;+1). However, as (5.5) indicates, this is generically not

the case. Even in the first order result the range of integration was restricted to either

(si;+1) or (�1; si) and the situation gets more complicated now that higher orders

are considered. Notice that in the derivation above we did not require any symmetry

properties of the mutation process so the result (5.3) is independent of this assumption.

The corrections arising from the higher order result (5.3) in comparison to the first order

result (4.12) can be small for two reasons.

1. The ratios of the per capita growth and birth rates,f i(s
0

i; s) and bi(s0i; s), can be

almost linear, i.e. they can possess only weak nonlinearities ins0i aroundsi. In

this case theith derivatives@ 0

i

�
b�1i fi

�
(si; s) with i � 2 are small compared to the

first order derivative.

2. Moreover, the mutation distributionsMi can be narrow, i.e. they may have only

small variances. Then the higher order mutation momentsmki(s) are negligible

compared to the second order moment.
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We conclude that in either limit – that of vanishing nonlinearity or that of vanishing

variance – the first order result (4.12) of the adaptive dynamics becomes an exact

representation of the deterministic path. The virtue of the dynamics (4.12) is its

simplicity combined with good accuracy as long as one of the two conditions above is

met. The virtue of the dynamics (5.3) is its generality, as it covers the coevolutionary

dynamics of mutation-selection systems allowing both for nonlinearities in the ecological

rates and for finite mutational steps as well as for asymmetric mutation processes.

However, it should be kept in mind that both results describe the dynamics of the

deterministic path; conditions for it to coincide with the mean path have been discussed

in Section 4.1. To illustrate the importance of the higher order corrections in specific

circumstances we now investigate two consequences. Both effects, the shifting of

evolutionary isoclines and the phenomenon of evolutionary slowing down, only become

visible in the deterministic dynamics when second and higher order correction terms

are considered.

5.2 Shifting of Evolutionary Isoclines

Given expression (5.3) which describes the coevolutionary dynamics beyond the first

order result, we can now analyze the conditions under which evolution in single traits

or in the whole community comes to a halt.

The evolutionarysi-isoclines are defined as those manifolds in trait spacebS on which
d

dt
si = 0 holds. The intersection of all isoclines coincides with the set of fixed points

of the adaptive dynamics. In a first step we analyze the location of the evolutionary

isoclines considering only infinitesimal mutational steps, in accordance with assumptions

usually made in the literature (see e.g. Reed and Stenseth 1984; Taylor 1989). The result

(4.12) is then exact, and we infer that the evolutionarysi-isoclines are given by the union

of manifolds on which either the selection derivative@ 0

i
f i(si; s) or the population size

n̂i(s) vanishes. We refer to the former asinner isoclines(these are subsets ofbSc) and

call the latterboundary isoclines(as they are subsets of@ bSc). Since extinction of one

species terminates the coevolutionary process of theN-species system, we concentrate

on the inner isoclines. These can be classified as below (Metz et al. 1994).

1. Inner isoclines on which@ 02

i
f i(si; s) < 0 holds are called�-stable ornon-invadable.

2. Inner isoclines whose points satisfy@ 02

i
f i(si; s) � @

2

i
f i(si; s) < 0 are calledm-

stable orconvergent.

3. Inner isoclines characterized by@ 02

i
f i(si; s) + @

2

i
f i(si; s) < 0 are said to benot

mutually invadable.
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The notions of�- andm-stability are due to Taylor (1989) the other names have been

used by Metz et al. (1994). For illustration, the evolutionary isoclines of the predator-

prey system are given in Figures 2c, 3 and 4, the dotted curve corresponding to the prey,

the dotted straight line to the predator. The conditions above can be slightly generalized

in order to account also for those cases where the right hand side of the inequalities

vanishes; for brevity this issue will not be covered here.

Now we consider the second order result. According to equation (5.5) the range of

integration here is given byRi(s) =
�
s0

i
2 bSi j (s

0

i
� si) � @

0

i
f i(si; s) + (s0

i
� si)

2
�

1

2
� @ 02

i
f i(si; s) > 0

	
. For @ 0

i
f i(si; s) = 0 this range either vanishes or extends to

(�1;+1), depending on the sign of@ 02

i
f i(si; s). Thus if an innersi-isocline is non-

invadable, the mutation momentm3i(s), see equation (5.4), and in consequence the

second order correction in equation (5.3) drops out owing to the vanishing integration

range. If the innersi-isocline is invadable, the same conclusion holds true for symmetric

mutation distributions sincem3i(s) now coincides with the vanishing third moment

of those distributions. For asymmetric mutation distribution we already in second

order get a shifting of invadable inner evolutionary isoclines. For symmetric mutation

distributions, however, the evolutionary isoclines of the second order result match

those already established by the first order result. In both cases the inner isoclines

are determined by the vanishing of the selection derivative,@ 0

i
f i(si; s) = 0.

This simple picture changes when we consider the adaptive dynamics in terms of the

third and higher order results. We first examine the case of invadable evolutionary

si-isoclines. Since in general the integration range is now no longer symmetric, the

odd mutation moments do not vanish, and neither do the even mutation moments.

Further, the second and higher order derivatives@ 0l
i
f i(si; s) and the first and higher order

derivatives@ 0k�l

i
b
�1

i (si; s) in equation (5.3) usually contribute. The third and higher

order corrections therefore cause a displacement of the invadable inner evolutionary

isoclines. These displacements are quantitative deviations from the first order result. But

the higher order corrections can give rise even to qualitative discrepancies. Consider a

manifold in trait space on which@ 0

i
f i(si; s) = @ 02

i
f i(si; s) = 0 but@ 03

i
f i(si; s) 6= 0 hold.

In terms of the first order result (4.12) this manifold would be called an evolutionary

si-isocline. In terms of the more general higher order result (5.3) we notice that this

manifold is not an isocline at all, for the evolutionary rated

dt
si, though probably being

small, does not vanish here. The deviations are not so dramatic for non-invadablesi-

isoclines. Here the range of integration cannot contain the resident trait valuesi. The

displacement of the isocline thus will only be significant, if the mutation distribution

Mi(si; s
0

i
� si) extends considerably beyond that zeros0

i
of f i(s

0

i
; s) which is closest

to the zero atsi itself. In general however, inner evolutionary isoclines are no longer

determined by the vanishing of the selection derivative.
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Figure 5a Shifting of evolutionary isoclines: the effect of finite mutation variance. The discontinuous
oval curve is the boundary of the region of coexistence. The continuous curves are the inner evolutionary
isoclines of the two species (straight line: predator, curved line: prey) for infinitesimal mutation variances,
�1 ! 0 and�2 ! 0. The dotted curve is the inner evolutionary isoclines of the predator for finite mutation
variances,�1 = 5 � 10

�2 and�2 = 5 � 10
�2. The other parameters of the coevolutionary predator-prey

community are as in Table 1.

We summarize that the shift of inner evolutionary isoclines owing to the finiteness of

mutational steps is a second or third order effect, depending on the symmetry of the

mutation distribution. This shift is illustrated for the case of predator-prey coevolution

by the dotted curve in Figure 5a. Note that not only the isoclines can be displaced, but

in consequence also the fixed points themselves. Thus the shifting discussed here may

affect the asymptotic stationary states of the coevolutionary system.

5.3 Conditions for Evolutionary Slowing Down

For illustration, we consider the two dynamical systemsd

dt
x1 = �x1 and d

dt
x2 = �x

3

2
.

Both examples possess a locally stable fixed point at the origin. The time evolution of

these systems is described byx1(t) = x1(0)�e
�t andx2(t) = �

�
x
�2

2
(0) + 2t

�
�1=2

. Note

that for t!1 the first system approaches the fixed pointexponentially, x1(t) / e
�t,

while in the second case the approach is onlyalgebraic, x2(t) / t
�1=2, and therefore

much slower. The latter effect is called slowing down. It can occur at fixed points

that are not only characterized by the vanishing of the rate of the dynamical system,
d
dtx = 0, but also by a vanishing of the rate’s slope,d

dx
d
dtx = 0.
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Figure 5b Evolutionary slowing down: algebraic approach towards a fixed point. The continuous
curve shows the mean path dynamics of the predator’s trait value close to the evolutionary equilibriumŝ

in Figure 2 (constructed from 20 trait substitution sequences). The fixed pointŝ lies on a non-invadable
predator isocline. In the figure the actual algebraically slow approach toŝ is compared to the exponentially
fast one, depicted by the discontinuous curve, that is obtained from the first order result which cannot
account for evolutionary slowing down. The inset confirms the derived power laws2(t) � ŝ2 / t

�1=3

by means of a double logarithmic plot, the jaggedness of the continuous curve stems from the extreme
amplification of single trait substitutions due to the logarithmic scale. The dotted straight line resulting
from a linear least square fit to the time series turns out to have a slope of�0:3154, close to the predicted
value of�1=3. The parameters of the coevolutionary predator-prey community are as in Table 1.

In general, a dynamical systemd
dt
x = F (x) is said to exhibitjth order slowing down

at a fixed pointx̂ if F (x) =
P
1

k=j ak� � (x� x̂)
k aroundx = x̂ with (i) j > 1 and

with (ii) �aj� < 0 for j even andaj� < 0 for j odd. The distinction� refers to

the two cases�(x� x̂) > 0 and is necessary to account for slowing down of even

order. Condition (ii) only ensures the local stability of the fixed pointx = x̂, whereas

condition (i) implies the vanishing of the rate’s slope atx = x̂. The algebraically slow

approach towards the fixed point is described byx(t)� x̂ / �(aj� � t)
1=(1�j).

The phenomenon of slowing down does arise in the context of coevolutionary dynamics.

Before turning to the general case, for intuition we first utilize the second order result.

We consider a locally stable fixed point of the adaptive dynamics which is situated

on a non-invadable inner evolutionarysi-isocline such that@ 02

i
f i(si; s) < 0 holds

in the vicinity of this isocline. Thus the range of integration is given according

to (5.5) by Ri(s) =
�
si; si � 2 � @ 0

i
f i(si; s)=@

02

i
f i(si; s)

�
for @ 0

i
f i(si; s) > 0 and
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by Ri(s) =
�
si � 2 � @ 0

i
f i(si; s)=@

02

i
f i(si; s); si

�
for the other side of the isocline.

Evidently, the range of integration in second order vanishes on the isocline itself.

The ecological interpretation of this statement is intuitive: fewer and fewer mutants

s0

i
are advantageous while approaching the fixed point, until finally all possible mutants

are deleterious. In order to prove formally that this process gives rise to evolutionary

slowing down, we examine the coefficientsaj� defined above in the case of the adaptive

dynamics described by equation (4.7). For adaptation in a single species the results

obtained area0� = a1� = a2� = a3� = 0 whereasa4+ = �a4� < 0. Thus we are

confronted with slowing down of fourth order.

We conclude that evolutionarily stable fixed points of the adaptive dynamics are attained

at a rate that is algebraically slow in those traitssi whose isoclines are non-invadable at

the fixed point. In principle, the evolutionary slowing down thus can drastically increase

the length of evolutionary transients. Let us now briefly consider invadable isoclines.

Here, the evolutionary rateddtsi in the vicinity of the isoclines actually is increased by a

factor2, since here the integration range is doubling rather than vanishing. Compared to

the first order result, this amounts only to a quantitative but not to a qualitative change.

The phenomenon of evolutionary slowing down can be exemplified in the coevolutionary

predator-prey system. Figure 5b shows the algebraically slow dynamics taking place

in lieu of an exponentially fast approach towards a stable fixed point of the adaptive

dynamics. A double logarithmic plot in the inset confirms the predicted power law

s2(t)� ŝ2 / �t�1=3 and thus the fourth order of the evolutionary slowing down.

6 Extensions and Open Problems

In this section we discuss generalizations and limitations of our approach. We point out

how to extend the theoretical framework presented, in order to cover more complicated

ecological and evolutionary scenarios.

6.1 Polymorphic Coevolution

We have assumed in Section 2.1 that without mutations two or more trait valuessi

within a species cannot coexist indefinitely, only the single more advantageous trait

value surviving. Thisprinciple of mutual exclusioncan be proved for the case of

Lotka-Volterra population dynamics (Dieckmann 1994).

The theorem is as follows. Consider the population sizesni andn0i of a resident trait

value si and a sufficiently close mutant trait values0i respectively in an environment

defined by trait valuessj and population sizesnj with j = 1; . . . ; N 6= i. The dynamics

of the population sizes are assumed to be of Lotka-Volterra type. When the mutant

is absent we call the remaining dynamical system for the population sizes theresident
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system, when the resident is absent themutant system, and when both are present

the combined system. Provided that, first, the selection derivative@ 0

i
f i(si; s) does not

vanish, and that, second, the Lotka-Volterra interaction matrix is regular and varies

smoothly with s0

i
, there exists no fixed point of the combined system inRN+1

+
. It

can then be shown that the mutant will either go to fixation or to extinction. To our

knowledge there exists no proof of the principle of mutual exclusion for coevolutionary

communities not of Lotka-Volterra type, although even in such cases the principle has

been tacitly assumed (e.g. Rand et al. 1993).

We pointed out in Section 2.1 that the quasi-monomorphic feature of the populations

rests on two requirements, the principle of mutual exclusion and a time scale separation.

We can now investigate the conditions for and the consequences of a violation of these

requirements.

1. The principle of mutual exclusion may fail to hold for speciesi in the vicinity

of an inner evolutionarysi-isocline, since this isocline is close or identical to the

manifold given by@ 0

i
f i(si; s) = 0. Whether this failure actually happens, depends

on the class of the isocline as defined in Section 5.2. In particular, the population

will remain quasi-monomorphic, if the isocline is not mutually invadable. Metz et

al. (1994) have suggested that otherwise the population can become polymorphic

via a process of evolutionary branching.

2. As a second possibility, the time scale separation may be violated. Again, this can

occur for speciesi in the vicinity of an inner evolutionarysi-isocline, since here

the per capita growth rates of a resident trait value and a close mutant trait value

will differ only slightly. For this reason it may take a relatively long time until the

mutant replaces the former resident.

Both cases can best be treated within a polymorphic framework that allows for phe-

notypic distributionspi(si) describing the density distribution of trait valuessi in each

species’ population (Dieckmann 1994, Dieckmann et al. 1995).

6.2 Multi-trait Coevolution

So far we have restricted attention to the case that each speciesi possesses only a single

adaptive traitsi. To understand the significance of coevolutionary phenomena on the

adaptive dynamics this was sufficient.

However, in real ecosystems adaptive change not only simultaneously happens with

respect to multiple species but also with respect to multiple traits within species. For

instance, life-history traits like rates of reproduction and growth at given ages typically

undergo concurrent evolution (Stearns 1992). We allow multiple traits within species
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by turning si into a vectorsi = (sil) with a species indexi = 1; . . . ; N and a trait

index l = 1; . . . ; �i.

Moreover, allowing for multiple adaptive traits per species can be a prerequisite for

the reliability of the Markov assumption, introduced in Section 5.2; knowledge of all

the trait values at present ought to be sufficient to determine the potential of further

adaptive change in the immediate future.

A third reason for considering multiple traits in phenotypic coevolution is that the path

of evolution can be constrained. In addition to natural bounds on certain trait values

– e.g. fecundities or weights necessarily must be non-negative – which already ought

to be accounted for when considering only one trait per species, the set of accessible

trait values is further restricted byconstraintson the combinations of different trait

values. These constraints may depend on simple matters of physics – e.g. surface to

volume ratios cannot decrease beyond a certain threshold. Alternatively, the constraints

may be an outcome of developmental pathways of the organism – e.g. an organism that

matures at a small size has only a small amount of resources to give to reproduction.

Constraints may also follow from the mapping from genotype to phenotype – e.g. if

the same gene influences two traits, the trait values that result are not independent; this

effect is called pleiotropy (Falconer 1989). For a more detailed discussion of constraints

see Maynard Smith et al. (1985), Loeschcke (1987) or Stearns (1992). We allow for

such constraints as follows.

1. Constraints restrict the set of trait values accessible within each species to a subset

of bSi which we denote bybSi;c0 . The Cartesian product of all these sets is called
bSc0 = �

N
i=1

bSi;c0. The adaptive dynamics of theN-species community are then

confined to the subsetbSC of bS with bSC = bSc \
bSc0 where bSc denotes the region of

coexistence as defined in equation (2.2).

2. Due to pleiotropy the effects of mutations on different traits can be correlated. For

this reason we write the probability distribution for a change�si from a given trait

valuesi due to mutation as a single multivariate distributionMi(si;�si) rather than

as a product of�i separate distributionsMil(si;�sil).

Here we generalize the results obtained in the previous sections to match the extended

framework of multiple-trait coevolution. The results for the stochastic representation in

Section 3, in particular equations (3.1), (3.2) and (3.6), carry over without alteration.

Notice first that the delta functions in equation (3.2) now take vectors as arguments

such that the usual definition�(si) =
Q�i

l=1 �(sil) applies, and second that the muta-

tion distribution in equation (3.6) now is multivariate. In addition, the principle of

mutual exclusion is more likely to be violated in mult-trait coevolution, but resulting

polymorphisms will usually be of a transient type. The results for the deterministic
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approximation in Section 4 generalize as below. No modifications are required in equa-

tions (4.7) and (4.8). However, the integral in equation (4.7) now is multi-dimensional

with dsi =
Q�i

l=1 dsil, and consequently the rangeRi(s) of integration in (4.8) now

becomes a subspace of dimension�i instead of an interval. In generalizing equations

(4.12) and (4.13) we obtain

d

dt
si =

1

2
� �i(si) � �2i (si) � n̂i(s) � r

0

if i(si; s) (6.1)

as the first order result for the deterministic approximation of the multi-trait coevo-

lutionary dynamics inSC . Here r
0

if i(si; s) with r
0

i =
�
@ 0

i1; . . . ; @
0

i�i

�
denotes the

selection gradientfor speciesi, a vector being composed of simple selection derivatives

@ 0

ilf i(si; s) with @ 0

il = @=@s0

il for the traitsl = 1; . . . ; �i of speciesi. In the case of

multi-trait coevolution�2i is thevariance-covariance matrixof the multivariate mutation

distributionMi. The elements of this square matrix�2i =
�
�2i;ll0

�
are given by

�2i;ll0(si) =

Z
�sil ��sil0 �Mi(si;�si) d�si (6.2)

with l; l0 = 1; . . . ; �i.

Notice that finite off-diagonal elements in�2i (non-vanishing covariances) cause the

adaptive dynamics to take a suboptimal path, i.e. the direction of adaptive change is not

parallel to the selection gradient. Notice also that up to first order the inner evolutionary

isoclines of the adaptive system (6.1) for speciesi are now given by those manifolds

in SC where the selection gradientr0

if i(si; s) either vanishes or lies in the null space

of the variance-covariance matrix�2i . The location and type of boundary isoclines on

@SC is less easy to settle and phase portraits of the system (6.1) will prove useful in

this circumstance.

6.3 Coevolution under Nonequilibrium Population Dynamics

In this section we discuss the issue of coevolution under nonequilibrium population

dynamics. In relaxing the assumption of a fixed point attractor in population size

space made at the end of section 2.1 we now allow for arbitrary attractorsA that give

rise to periodic, quasi-periodic or chaotic population dynamics. We first outline some

mathematical concepts that have been considered in this context and then investigate

how these relate to the stochastic formalism developed in this paper.



32

To decide upon the initial increase of a rare mutants0

i
in an environment given by the

residentss the following constructs have been suggested

E1

�
s0

i; s
�
= lim

T!1

1

T
�

Z
T

0

efi�s0i; s; n(t)� dt ;
E2

�
s0i; s

�
= lim

T!1

1

T
� log

j�n(T )j

j�n(0)j
;

E3

�
s0i; s

�
=

Z
A(s)

efi�s0i; s; n� d�(n) :
(6.3)

The first quantityE1 is the time average of the per capita growth rateof the rare

mutant along a trajectoryn(t) that starts on the attractorA(s) of the resident system.

This construct immediately follows from our formal framework set out in Section 2.1; in

generalization of equation (2.7) we thus writef i(s
0

i
; s) = E1(s

0

i
; s). The second quantity

E2 (Metz et al. 1992) is theLyapunov exponentof the combined system along the

direction of the mutant’s population size for a point on the attractorA(s) of the resident

system. It is given by the average logarithmic growth rate of the distance between

two specific trajectories. The first trajectoryn(t) starts fromn(0) on the attractorA(s)

itself, the second trajectoryen(t) has initial conditionsen(0) = n(0)+�n(0) where�n(0)

denotes an initial displacement in the direction of the mutant’s population size. The

distance between these two trajectories is given byj�n(t)j with �n(t) = en(t)� n(t),

where the particular choice of the distance functionj. . .j does not affect the result. Note

that the mathematical definition of a Lyapunov exponent requires the time development

of en(t) to be evaluated according to the linearization of the dynamics of the combined

system along the attractorA(s) (Eckmann and Ruelle 1985). As a convenient alternative

for numerical estimations of Lyapunov exponents one might utilize the combined system

directly but then choose a small�n(0) and extend the average only over a finite time

interval (0; T ); nonetheless in order to cover the attractorA(s) sufficiently, several

repetitions of this procedure usually are necessary where each single repetition is

followed by a rescaling� ��n(T )! �n(0) with �� 1 (Baker and Gollub 1990). The

third quantityE3 (Rand et al. 1993) is calledinvasion exponentand in our case is simply

the phase average of the per capita growth rate of the mutant on the attractorA(s) of

the resident system weighted by the natural measured�(n) of this attractor. Taking the

natural measure rather than an arbitrary invariant measure is important when the attractor

A(s) is chaotic (Ott 1993). For practical applications this caveat however is immaterial

due to the noise inevitably associated with any numerical estimation (Schuster 1989).

In the literature, the condition for initial increase of the rare mutant is taken to be

Ek > 0 with k = 1; 2; 3 (e.g. Metz et al. 1992, Rand et al. 1993). The equivalence

of the three criteria can readily be established. First, the time averageE1 coincides

with the phase averageE3 (Ott 1993) – there can be exceptional initial conditions
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n(0) that do not satisfy this identity, but since the set of these has Lebesque measure

zero they are irrelevant for realistic systems. Second, the time averageE1 equals the

Lyapunov exponentE2. To show this we linearize the dynamics of the combined system

about the trajectoryn(t) and obtain d
dt
�n(t) = J(n(t)) � �n(t) whereJ(n) denotes

the Jacobian matrix of the dynamics of the combined system evaluated atn. From the

population dynamics of the combined system we get�ni(0) = 0 ) �ni(t) = 0

(the left hand side holds since the initial displacement betweenn(0) and en(0) is

only affecting the mutant’s population sizen0

i) as well asn0

i(0) = 0 ) n0

i(t) = 0

(the left hand side holds for the trajectoryn(t) since it starts on the attractor of the

resident system where the mutant is absent). From the first implication we obtain

j�n(t)j = j�n0

i(t)j and applying the second implication to the linearized dynamics

yields d
dt
�n0

i(t) = efi(s0

i; s; n)jn=n(t) � �n0

i(t). From these equations we conclude

j�n(T )j=j�n(0)j = exp
R T

0
efi(s0

i; s; n(t)) dt which completes the proof ofE1 = E2.

We investigate whether or not we recover the conditionE1 > 0 for the initial increase

of a rare mutant in the light of our stochastic approach. Already in the case of a

fixed point attractor in population size space we had to distinguish between the time

scale�a of adaptive change and the time scale�f � �a on which a mutant either goes

extinct or reaches fixation while the population dynamics of the combined system attain

its attractor. With population dynamics settling to a nonequilibrium attractorA(s),

an additional time scale�p for the motion on this attractor is introduced. We assume

�a � �f � �p. In this case the invasion of a successful mutant happens slowly compared

to the dynamics on the attractorA(s); this is typical for mutants whose trait valuess0

i

are sufficiently close to the resident trait valuesi. In generalizing equations (3.6) and

(4.12) we obtain for the probabilities per unit time in the stochastic representation

wi

�
s0

i; s
�
=

�i(si) � bi(si; s) � ni(s) �Mi

�
si; s

0

i � si
�
� b

�1

i

�
s0i; s

�
� (f i

�
s0i; s

�
)+

(6.4)

and for the adaptive dynamics the deterministic approximation in first order yields

d

dt
si =

1

2
� �i(si) � �

2
i (si) � b

�1

i (si; s) � bi(si; s) � ni(s) � @
0

i f i(si; s) : (6.5)

The construction of the higher order deterministic approximations for the adaptive

dynamics follows the same scheme as in Section 5.1 and is not repeated here. Note that

in result (6.5) the termb
�1

i (si; s) � bi(si; s) � ni(s) will differ more from ni(s) the larger

the variation in the resident population size of speciesi is along the attractorA(s).

We now turn to the invasion criteria. A rare mutants0i can successfully invade a

community given by the resident trait valuess provided that there is a positive transition

probability per unit time for the trait substitutionsi ! s0i, i.e.wi(s
0

i; s) > 0. We

easily draw the conclusion that our stochastic approach yields the criterionE1 > 0
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which is equivalent to those proposed previously. To see this, consider equation (6.4)

together with the definitions of(. . .)
+

and that off i(s
0

i
; s) = E1(s0

i
; s) in equation

(6.3). However, our analysis not only yields these criteria for the initial increase of

a rare mutant but provides us also with a full dynamical description of the adaptive

process. We emphasize that the results above readily generalize to cover the issue of

coevolution in slowly varying environments where the additional time dependence stems

from external influences rather than from internal interactions.

7 Conclusions

In this paper we have established the canonical equation (1.1) of adaptive dynamics

from the underlying stochastic ecological processes. In the course of this derivation

we revealed the implicit assumptions, on which this result is based. Moreover, our

approach allowed us to relax many of these assumptions and thus to provide generalized

descriptions of coevolutionary dynamics.

To conclude, we briefly summarize these generalizations.

1. To obtain a dynamics like equation (1.1) from a mutation-selection process certain

symmetry properties of the mutation distributions are needed, see Section 4.2. Both

our deterministic approximation in higher orders, see Section 5.1, and the stochastic

representation in general remove this assumption.

2. Being a deterministic description of the coevolutionary dynamics, the canonical

equation describes the mean path and thus does not cover the full richness of

dynamical effects that can occur in stochastic mutation-selection systems, see

e.g. the discussion in Section 4.3. We have provided a stochastic representation

in Sections 3.1 and 3.2 that accounts for these features. Two examples illustrating

the difference are given in Figures 4a and 4b.

3. We have recovered the canonical equation as an exact description of the coevo-

lutionary deterministic path, provided that the mutational steps are considered to

be infinitesimal. Although the canonical equation gives a good approximation for

small finite mutation variance, the approximation becomes inaccurate as the vari-

ance increases and consideration of higher order correction terms is recommended,

see the derivation in Section 5.1.

4. The canonical equation does not permit interdependencies between several traits

within one species. In Section 6.2 we could show how the stochastic approach

to the coevolutionary mutation-selection process in this case naturally leads to the

introduction of the variance-covariance matrix for the mutation distributions. The

latter can give rise to less direct pathways towards evolutionary attractors.

5. The scope of the canonical equation is confined to coevolutionary systems with

equilibrium population dynamics and a constant external environment. We have
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demonstrated in Section 6.3 that this limitation can be overcome such that more

general ecological scenarios may be tackled.

Such relaxation of the restrictions of the canonical equation are variations on a single

theme: In modelling complex systems, like those exhibiting coevolutionary dynamics,

one can always trade descriptive capacity for mathematical simplicity. The canonical

equation may indeed be sufficient for specific goals, but this depends on what assump-

tions can reasonably be made. We have shown in this paper that new and distinct

evolutionary phenomena emerge by removing any of these assumptions. Conversely, if

the generalizations summarized above are not to be made, it is important to be aware

of the evolutionary phenomena that are then sacrificed.
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