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Abstract

This paper presents a Bayesian nonparametric approach to survival analysis based on
arbitrarly right censored data. The first aim will be to show that the neutral to the right
process is the natural prior to use in this context. Secondly, the properties of a particular
neutral to the right process, the beta-Stacy process are examined. Finally, the connections
between some Bayesian bootstraps and the beta-Stacy process are investigated.
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Neutral to the Right Processes from a Predictive

Perspective: A Review and New Developments

Pietro Muliere
Stephen Walker

1 Introduction

This paper deals with survival analysis from incomplete observations, in particular right
censored data. We are interested in the predictive distribution for a future observation
given previous observations. We do this in a Bayesian nonparametric framework in which
we assign a prior distribution to the space of survival curves.

The aim of this paper is twofold:
i) to show that the neutral to the right process (Doksum, 1974) is the natural non-

parametric prior in the presence of right censored data;
ii) to discuss the properties of a particular neutral to the right process, the beta-Stacy

process.

Here we discuss aspects of a Bayesian nonparametric analysis of survival time data, where
we assume X1, X2, · · · is an infinite sequence of survival times, and we are witness to
X1, · · · , Xn.

The general predictive approach related to a sequence of random variables {Xi},
defined on a probability space (Ω,B, P ), involves the evaluation of the probability of an
event, dependent on the future realisations of some variables of the sequence, when the
outcome of a finite number of variables of the same sequence have been observed. The
main predicitive hypothesis will be the exchangeability of the sequence.

A.1 Exchangeability. Our fundamental assumption concerning the sequence is
the exchangeablility of the sequence of random variables X1, X2, · · ·, with each Xi defined
on Ω = (0,∞). From de Finetti’s representation theorem (de Finetti, 1937) there exists
a random distribution function F , conditionally on which X1, X2, · · · are i.i.d. from F .
That is, there exists a unique probability (or de Finetti) measure, defined on the space of
probability measures on Ω, such that the joint distribution of X1, · · · , Xn, for any n, can
be written as

P (X1 ∈ A1, · · · , Xn ∈ An) =
∫ { n∏

i=1

F (Ai)

}
µ(dF ),

where µ is the de Finetti (or prior) measure (Hewitt and Savage, 1955).

From a predictive point of view the problem under consideration, reduces to the
computation of the conditional probability

P (Xn+1 ∈ A|X1, X2, · · · , Xn)
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for some set A ∈ B. The assumption of exchangeability implies:

P (Xn+1 ∈ A|X1, X2, · · · , Xn) = E(F (A)|X1, X2, · · · , Xn).

Unfortunately, when de Finetti (1935) suggested the general predictive approach, the
nonparametric priors were not known. We had to wait for the papers of Freedman
(1963), Fabius (1964), and, in particular, the seminal papers of Ferguson (1973,1974) and
Doksum (1974).

A.2 Nonparametric analysis. If we want to make as few assumptions about the
form of the distribution function, then we can adopt a nonparametric approach. In a
Bayesian framework we are required to specify a prior distribution on the space of all
distribution functions defined on (0,∞).

The first Bayesian nonparametric approach to determine E(F (A)|X1, X2, · · · , Xn),
with censored data, was made by Susarla and Van Ryzin (1976), who used the Dirichlet
process as a prior for F . The standard nonparametric estimator of a survival curve from
censored data is the product limit estimator, introduced by Kaplan and Meier (1958).
The Susarla-Van Ryzin estimator reduces to this Kaplan-Meier estimator as the weight
of the prior information tends to zero. Their result was generalized to prior distributions
neutral to the right by Ferguson and Phadia (1979).

Many other classes of prior which yield tractable solutions have been used in inferential
problems regarding F. We mention: the extended gamma process (Dykstra and Laud,
1981), the beta process (Hjort, 1990) and the Polya trees (Muliere and Walker,1997a).

The paper is organized as follows: after some preliminaries (Section 2) we discuss
in Section 3 a functional predictive approach to the selection of the prior. In Section
4 a particular prior, the beta-Stacy process, is discussed. In Section 5, we present an
exchangeable neutral urn scheme and finally in section 6, we consider some Bayesian
bootstraps which arise in the limit as the weight of prior information goes to zero.

2 Preliminaries

Let B(α, β) for α, β > 0 represent the beta distribution. For the purposes of the paper
it is convenient to define G(α1, β1, · · · , αm, βm) for αj, βj > 0 to represent the generalised
Dirichlet distribution, introduced by Connor and Mosimann (1969). The density function
is given, up to a constant of proportionality, by

yα1−1
1 (1− y1)β1−1

×y
α2−1
2 (1− y1 − y2)β2−1

(1− y1)α2+β2−1

· · ·

×y
αm−1
m (1− y1 − · · · − ym−1 − ym)βm−1

(1− y1 − · · · − ym−1)αm+βm−1
I{(y1, · · · , ym) : yj ≥ 0,

m∑
j=1

yj ≤ 1}, (1)

where I denotes the indicator function. The usual Dirichlet distribution,
D(α1, · · · , αm, βm), with density proportional to

yα1−1
1 · · ·yαm−1

m (1− y1 − · · · − ym)βm−1I{(y1, · · · , ym) : yj ≥ 0,
m∑
j=1

yj ≤ 1}
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follows if βj−1 = βj + αj for all j = 2, · · · , m,

DEFINITION 2.1 C(α, β, ξ) with α, β > 0 and 0 < ξ ≤ 1 is said to be the beta-
Stacy distribution if the density function is given by

1

B(α, β)
yα−1 (ξ − y)β−1

ξα+β−1
I(0,ξ)(y),

where B(α, β) is the usual beta function.

Note that if Y ∼ C(α, β, ξ) then Y/ξ ∼ B(α, β) and the usual beta distribution
arises if ξ = 1. The name beta-Stacy is taken from the paper of Mihram and Hultquist
(1967).

The definition of a neutral to the right process (NTR) is given in the following:

DEFINITION 2.2 (Doksum, 1974) The random distribution function F is said neu-
tral to the right if for each k > 1 and t1 < t2 < · · · < tk there exists nonnegative
independent random variables V1, · · · , Vk such that

(F (t1), F (t2), · · · , F (tk)) =L

(
V1, 1− (1− V1)(1− V2), · · · , 1−

k∏
i=1

(1− Vi)
)
.

The equations
F (ti) = 1−

∏
j≤i

(1− Vj), i = 1, · · · , k

yield

F (ti)− F (ti−1) = Vi

i−1∏
j=1

(1− Vj)

and
F (ti)− F (ti−1)

1− F (ti−1)
= Vi.

F is NTR essentially means that the normalized increments

F (t1), [F (t2)− F (t1)]/[1− F (t1)], · · · , [F (tk)− F (tk−1]/[1− F (tk−1]

are independent for all t1 < · · · < tk.

The fundamental result for process neutral to the right is :

THEOREM 2.1 (Ferguson, 1974) If F is NTR and, given F , X1, X2, · · · , Xn is a
sample from F , then the posterior distribution for F is also neutral to the right.

Ferguson and Phadia (1979) extended this theorem to cover the case of censored
data.

3 A predictive approach

Our problem is to make inference about the unknown cumulative distribution function.
In the nonparametric framework the function F is itself the parameter and so we need
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to define a prior on the space of all distribution functions on (0,∞). It is a task to
adequately express our prior knowledge on such a large space. Our approach is to suggest
the form for the predictive bearing in mind the type of observation available.

A.3 Censored data. A number of individuals are observed from an entry time
until a particular event (such as death) occurs. Often, the exact time of death is not
known for all individuals; for some, it is only known that the event had not yet happened
at some specified time and in this case the observation is right censored. See Andersen et
al. (1993) for several examples. Formally the model considered is the following: consider
n individuals with survival times X1, X2, · · · , Xn. Each Xi corresponds either to the time
of death or it is only known that the time of death is greater than Xi. We represent the
data as

(X1, δ1), · · · , (Xn, δn)

where δi = 1 if death occurred and δ0 = 1 if censoring occurred. Whenever we now write
Xi, we mean (Xi, δi).

First, we will consider the discrete case when each Xi ∈ Ω = {1, 2, · · ·}. To de-
velop the theory we study the consequences of the following assumption concerning the
predictive:

P (Xn+1 = k|X1, · · · , Xn) = fk(n1, · · · , nk, mk), (2)

for some suitable fk, where nk =
∑

1≤i≤n I(Xi = k) and mk =
∑

1≤i≤n I(Xi > k). This
condition turns out to be an extension of Johnson’s sufficientness postulate (Zabell, 1982).

REMARK 3.1 In the 1920’s the English philosopher W.E. Johnson discovered a
characterisation of the Dirichlet distribution and process (Zabell, 1982). An appropriate
extension of Johnson’s sufficientness postulate to the case of recurrent Markov exchange-
able sequence is introduced by Zabell (1995). In the present note Johnson’s result is
extended to the case of a neutral to the right exchangeable sequence.

It is possible to show that the assumption of exchangeability, combined with (2),
implies a neutral to the right process prior for the sequence.

THEOREM 3.1 (Walker and Muliere, 1977b) An exchangeable sequence X1, X2, · · ·
with each Xi defined on Ω = {1, 2, · · ·} has a neutral to the right prior if, and only if, for
each n = 1, 2, · · · and k ∈ Ω,

P (Xn+1 = k|X1, · · · , Xn) = fk(n1, · · · , nk, mk), (3)

where nk =
∑

1≤i≤n I(Xi = k) and mk =
∑

1≤i≤n I(Xi > k).

REMARK 3.2. The expression (2) has an intuitive justification for censored or
truncated data. Nevertheless in practical applications the condition (2) on the predictive
may or may not be an adequate description of our state of knowledge. Consequently
it is argued that the neutral to the right prior seems inappropriate in that the funda-
mental assumption concerning the sequence (aside from that of exchangeability), when
(2) is hard to justify. Why should an observation > k not matter where it occurs (as
far as P (Xn+1 = k|X1, · · · , Xn) is concerned) but which is not the case for observation< k.

In order to make the theorem useful in applications, we need to specify the form
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of the function fk. In this respect, we present the general construction of the NTR prior,
assuming exchangeability and the form of the prediction.

If F is from a NTR process prior on Ω = {1, 2, · · ·} then, by construction, if Fk denotes
the random mass assigned to {1, 2, · · · , k}, then:

Fk = 1−
k∏
j=1

(1− Vj) (4)

where the Vj are mutually independent random variables defined on (0, 1). Let
E(1− Vj) = qj . It is easy to verify that the random measure F defined by (4) is almost
surely a random probability distribution on Ω if, and only if,

∏∞
i=1 qj = 0.

COROLLARY 3.1 An exchangeable sequence X1, X2, · · ·, with each Xi defined on
the space Ω = {1, 2, · · ·}, has a neutral to the right prior if, and only if,

P (Xn+1 = k|X1, · · · , Xn) =
E
{
V nk+1
k (1− Vk)mk

∏
j<k V

nj
j (1− Vj)mj+1

}
E
{
V nk
k (1− Vk)mk

∏
j<k V

nj
j (1− Vj)mj

} , (5)

where nk =
∑

1≤i≤n I(Xi = k) and mk =
∑

1≤i≤n I(Xi > k).

Proof. If the exchangeable sequence has neutral to the right prior, then the condi-
tion (5) is surely satisfied. In order to prove the sufficiency of the condition (5), define
T1 = V1 and for k = 2, 3, · · · define Tk = Vk(1 − Vk−1) · · ·(1 − V1) so that (5) can be
written as

E{Tnk+1
k

∏
j 6=k T

nj
j }

E{Tnkk
∏
j 6=k T

nj
j }

,

using mk + nk = mk−1 with m0 = n, leading to

P (X1 = k1, · · · , Xn = kn) = E

{∏
k

Tnkk

}
. (6)

Clearly T = (T1, T2, · · ·) represents a random draw from a neutral to the right process
prior provided we have

∑
k Tk = 1 a.s., which is satisfied if

∏
k{1 − EVk} = 0. We have

shown, (6), that given T , the Xis are i.i.d. and P (X1 = k|T ) = Tk where T is from a
neutral to the right process: by construction,

Tk = Fk − Fk−1 (7)

F0 = 0, completing the proof.

Corollary 3.1 suggests the form for fk, given by

fk(n1, · · · , nk, mk) = gk(nk, mk)
∏
j<k

(1− gj(nj , mj)),

where

gk(nk, mk) =
E
(
V nk+1
k (1− Vk)mk

)
E
(
V nkk (1− Vk)mk

) .

For tractability, it is obvious that we will need the distribution of Vks. The most convenient
distribution for Vks is the beta distributions, say Vk ∼ B(αk, βk). This is the subject of
Section 4.



– 6 –

Up to now, we have assumed the Xis are uncensored. Here we discuss the predictive
in the presence of right censoring, assumed to be noninformative. The data can be sum-
marized as {nk, mk}∞k=1, where the nk and mk have been defined, as in Theorem 3.1, for
example. Here we note that the predictive (5) is a function of {nj , mj} for all j ≤ k and
can therefore ‘cope’ with censored observations — no more work is required on our part.

4 The beta-Stacy process

In this section we discuss the NTR process when the Vks are independent B(αk, βk)
random variables, and we call this the beta-Stacy process. Our motivation for working
with beta-Stacy process stems from the fact that this process encapsulates virtually all
the NTR processes mentioned in the literature.

The discrete case. First, we notice the conjugacy property of such a choice. From (5) we see
that P (X1 = k) = E(Vk) and it is easy to show that P (Xn+1 = k|X1, · · · , Xn) = E(V ∗k ),
where V ∗k ∼ B(αk + nk, βk +mk), giving

P (Xn+1 = k|X1, · · · , Xn) =
αk + nk

βk + αk + nk +mk

k−1∏
j=1

βj +mj

βj + αj + nj +mj
. (8)

It is also of interest to point out that if

Y1 ∼ C(α1, β1, 1),

Y2|Y1 ∼ C(α2, β2, 1− Y1),

· · ·

Yk|Yk−1, · · · , Y1 ∼ C(αk, βk, 1− Fk−1), (9)

where Fk =
∑k
j=1 Yj, then F defined by the countable sequence of r.v. Yk is from a

beta-Stacy process and, for any m > 1,

L(Y1, · · · , Ym) = G(α1, β1, · · · , αm, βm).

If we put some constraints on the parameters of the beta distribution it is possible
to obtain different processes belonging the class of NTR. Observe that the Dirichlet
process arises when we constrain

βj =
∑
k>j

αk

 ∞∑
j=1

αj <∞

 .
Under this condition, and with no censored observations, (5) becomes:

P (Xn+1 = k|X1, · · · , Xn) =
αk + nk∑∞
j=1 αj + n

(10)

since αk + βk = βk−1 , nk + mk = mk−1 and n1 + m1 = n. Expression (10) is identified
as a sequence of predictive probabilities obtained from a Polya-urn scheme, and as such,
characterizes the Dirichlet process (Blackwell and MacQueen, 1973). We do not under-
stand why the constraint βj =

∑
k>j αk is appropriate, other than providing a simple form
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for the predictive. It is obvious that the simplification of (8) into (10) fails if censored
observations are present, and in this respect the Dirichlet process is not a natural prior in
the presence of censoring.

To see this we note that if X1, · · · , Xn, with each Xi ∈ {tk : k ≥ 1}, is an i.i.d. sample,
possibly with right censoring (with Xi being the censoring time if applicable), from an
unknown F , defined by the countable sequence of random variables {Yk} in (9), then the
likelihood function, assuming that there are no censoring times or exact observations for
t > tL, is given by

l(y1, y2, · · · , yL|data) ∝ yn1
1 · · ·y

nL
L (1− y1)r1 · · · (1− y1 − · · · − yL)rL × I,

where nk is the number of exact observations at tk, rk is the number of censoring times at
tk (X > tk), I is the indicator function given in (1) and n = n1 + · · ·+ nL + r1 + · · ·+ rL.

The generalized Dirichlet distribution is clearly seen to be a conjugate prior, the
Dirichlet distribution is not. We can repeat our result from the predictive approach using
the likelihood and prior:

THEOREM 4.1 (Walker and Muliere, 1977a) Let X1, · · · , Xn, with each Xi ∈ {tk : k ≥ 1},
be an i.i.d. sample, possibly with right censoring, with an unknown F . If F is from a
discrete time beta-Stacy process with parameters {αk, βk} and jumps at {tk}, then, given
X1, · · · , Xn, the posterior distribution for F is also a discrete time beta-Stacy process with
jumps at {tk} and parameters {α∗k, β∗k} where

α∗k = αk + nk and β∗k = βk +mk (11)

and mk is the sum of the number of exact observations in {tj : j > k} and censored
observations in {tj : j ≥ k}; that is, mk =

∑
j>k nj +

∑
j≥k rj.

REMARK 4.1. We have seen that the Dirichlet process is not conjugate with re-
spect right censored data whereas the beta-Stacy is. If the prior is a Dirichlet process
then the posterior, given right censored data, is a beta-Stacy process.

Bernoulli Trips. We can also understand the beta-Stacy process in terms of an ex-
changeable process. We introduce a simple concept and method for modeling multiple
state processes based on an exchangeable sampling scheme (Bernoulli trip), suggested by
Walker (1996). A Bernoulli trip is a reinforced random walk (Coppersmith and Diaconis,
1987,1988; Pemantle, 1988) on a tree which characterizes the space for which a prior is
required. An observation in this space corresponds to an unique path or branch of the
tree. The path corresponding to this observation is reinforced; that is, the probability of a
future observation following this path is increased; thus, after n observations, a maximum
of n paths have been reinforced.

To construct the Bernoulli trip, we define a sequence Z1, Z2, · · · of independet random
variables defined on (0, 1) such that, for all j = 1, 2, · · ·, and r, s > 0

E(Zrj (1− Zj)s)

exists. Let Y1, Y2, · · · be independent Bernoulli random variables such that:

P (Yj = 1) =
E(Z

rj+1
j (1− Zj)sj)

E(Z
rj
j (1− Zj)sj )

.
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where sj =
∑∞
k>j rk and

∑∞
j=1 rj <∞. Note that

P (Yj = 0) = 1− P (Yj = 1) =
E(Z

rj
j (1− Zj)sj+1)

E(Z
rj
j (1− Zj)sj )

.

A Bernoulli trip along the positive integers involves sampling the Yj in turn, starting at
j = 1. The trip is completed, at the integer X , whenever the event

EX = {Y1 = 0, · · · , YX−1 = 0, YX = 1}

occurs. Along the trip whenever Yj = 0 the current sj is replaced by sj + 1 and whenever
Yj = 1 the current rj is replaced by rj + 1. A second trip on completion of the first
trip, and so on, involves returning to j = 1 and repeating the scheme (always keeping the
updated {rj, sj}). After the nth trip let the updated parameters be {rj(n), sj(n)} so that,
in particular,

nj(n) = rj(n)− rj
is the number of trips completed at j and

mj(n) = sj(n)− sj

is the number of trips completed at integers greater than j; that is,

mj(n) =
∑
k>j

nk(n).

A Bernoulli trip is censored at X if only {Y1 = 0, · · · , YX−1} are sampled and
{YX , YX+1, · · ·} are not sampled. Therefore, it is only known that the particular trip
in question is completed somewhere > X . The censoring occurs at random and indepen-
dently of the Yjs, so that the updating mechanism for such a trip is given by

sj → sj + 1 for j = 1, · · · , X.

Then X1 characterises the first walk, X2 the second walk, and so on. We can write the
joint probability of the first n walks following particular paths. From this it is possible
to show (Walker, 1996) that X1, X2, · · · , Xn are exchangeable random variables for all n,
and the exchangeable process, X1, X2, · · ·, has a neutral to the right process prior. In
particular, taking rj = 0 and Zj ∼ B(αj , βj) for αj , βj > 0:

P (Yj = 1) =
αj

αj + βj

and

P (Yj = 1|X1, X2, · · · , Xn) =
αj + nj

αj + βj + nj +mj
.

Therefore, for any n,

P (Xn+1 = k|X1, · · · , Xn) =
αk + nk

βk + αk + nk +mk

k−1∏
j=1

βj +mj

βj + αj + nj +mj
. (12)

which characterizes the discrete time version of the beta-Stacy process. These trips can
be extended to modeling multiple state processes in an obvious way (Walker, 1996).

The continuous case. It is possible to define the continuous time beta-Stacy process using
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Lévy theory (Lévy , 1936). It is well known (Doksum, 1974) that a random distribution
function F on the real line is NTR if it can be expressed as F (t) = 1 − exp[−Z(t)],
where Z is a Lévy process satisfying Z(0) = 0 a.s. and limt→∞Z(t) =∞ a.s. Let α be a
continuous measure and β a positive function: F is a beta-Stacy process, with parameters
α and β, if the Lévy measure for Z is given by

dNt(v) =
dv

1− e−v
∫ t

0
exp [− vβ(s)]dα(s).

It can be shown that F is almost surely a random probability measure under the condition∫
dα(s)/β(s) = +∞. The beta-Stacy process generalizes the Dirichlet process, which is

obtained when α is a finite measure and β(s) = α(s,∞). Compare this constraint with
the discrete constraint. The simple homogeneous process (Ferguson and Phadia, 1979)
arises when β is constant.

REMARK 4.2. The beta-Stacy is closely related with the beta process (Hjort,1990).
With the beta process the statistician is required to consider hazard rates and cumulative
hazards when constructing the prior. The beta-Stacy only requires considerations on the
distribution of the observations.

The predictive version of (12) in the continuous framework simply involves replac-
ing the product with a product integral (Gill and Johansen, 1990):

P (Xn+1 > t|X1, · · · , Xn) =
∏
[0,t]

(
1− dα(s) + dN(s)

β(s) + Y (s)

)
,

where N(s) =
∑
i I(Xi ≤ s, δi = 1) and Y (s) =

∑
i I(Xi ≥ s). The Kaplan-Meier

estimator is obtained when α(.), β(.) = 0.
Here we provide the theory for using a general Z Lévy process for modeling a cumu-

lative distribution function; that is, taking F (t) = 1 − exp[−Z(t)]. We assume the Lévy
measure to be of the type

dNt(v) = dv

∫ t

0
K(v, s)ds

and
∫
vdNt(v) < ∞ and

∫
v2dNt(v) < ∞ which ensure that E[F (t)] and var[F (t)] both

exist. We also assume that there are no fixed points of discontinuity in the prior process.

THEOREM 4.2 (Walker and Muliere, 1997a). Let Z be a Lévy process with
Z(0) = 0 and limt→∞Z(t) =∞. The posterior Lévy process is given by

Z∗(t) =
∑

Xi≤t,δi=1

SXi + Z∗c (t),

where the SX are independent jump variables with density function

fx(v) ∝ [1− exp(−v)]N{x} exp[−vY (x)]K(v, x)

and Z∗c is a Lévy process with Lévy measure

dN∗t (v) = dv

∫ t

0
exp[−vY (s)]K(v, s)ds.

Here (Xi, δi) is the observed data (δi = 1 indicating an exact observation) and
Y (s) =

∑
i I(Xi > s).
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Consequently, the Bayes estimator for the cumulative distribution function, with
respect to a quadratic loss function, which coincides with the predictive distribution
P (Xn+1 > t|X1, · · · , Xn), is given by

∑
Xi≤t,δi=1

E[exp(−SXi)] + exp

(
−
∫ ∞

0
(1− exp(−v))dN∗t (v)

)
.

5 Exchangeable neutral urn scheme

Various schemes have been introduced in the literature for constructing prior distributions
on the spaces of probability measures. The Polya urn scheme is, perhaps, the simplest
and most concrete way ( see: Blackwell and MacQueen ,1973; Mauldin,Sudderth and
Williams,1992). In this section exchangeable neutral urn schemes are introduced. Let
{θ1, θ2, · · · , θN} represent a finite sample space and consider a sequence of random variables
X = {X1, X2, · · ·} with each Xj ∈ {θ1, θ2, · · · , θN}. Also introduce the dummy space
{φ1, · · · , φN−1}, which, again, represents a finite sample space.

Let V1, V2, · · · , be mutually independent random variables, defined on (0, 1), such that,
for all α, β,≥ 0 , E(V αk (1− Vk)β) exists. Then define, for all α, β,≥ 0,

λk(α, β) = E(V αk (1− Vk)β).

Take N urns, and in urn k = 1, 2, · · · , N − 1, put the elements θk and φk in the ratio
λk(αk + 1, βk) to λk(αk, βk + 1), where the constraint on {αk, βk} is that βk =

∑
l>k αl.

The urn N has only the element θN .
Generate a sequence, X = (X1, X2, · · · , ), from {θ1, θ2, · · · , θN} by starting at urn

k = 1. Sample the urn; if θ1 is taken then this is the required first sample from the
scheme, that is, X1 = θ1. Replace α1 by α1 + 1. If φ1 is taken then replace β1 by β1 + 1
and go to the next urn. Repeat the procedure until θk, which is then the required first
sample; that is, X1 = θk, is taken from urn k. Note this happens with probability 1 at
the Nth urn (if it is reached).

To obtain the next sample, X2, and so on, return to the first urn, keeping the new
urns, and repeat the procedure, noting that whenever θk is sampled then replace αk by
αk + 1, and take θk as the required sample, and whenever φk is sampled then replace βk
by βk + 1, and move on the next urn.

It is easy to show (Muliere and Walker, 1997a) that the sequence X = (X1, X2, · · ·) is
exchangeable, and the predictive probabilities at the (m+1)th iteration of the scheme are
given by:

P (Xm+1 = k|X1, X2, · · · , Xm) =
λk(αk + nk + 1, βk +mk)

λk(αk + nk, βk +mk)

k−1∏
j=1

λk(αj + nj, βj +mj + 1)

λk(αj + nj, βj +mj)

(13)
where nk =

∑m
l=1 I(Xl = θk) and mk =

∑
l>k nl.

REMARK 5.1 Specifying the distribution of the V1, V2, · · · we obtain different pre-
dictive distributions and different schemes. If Vk ∼ B(rk, sk), where sk =

∑
l>k rl and

αk = βk = 0, the exchangeable neutral scheme is the Polya-urn scheme, with the prior urn
containing rk amounts of θk. The Polya-urn scheme on {1, 2, · · · , N} can now be thought
of an exchangeable neutral scheme with a constraint on the composition of the prior urns.
Without the condition sk =

∑
l>k rl, we obtain the generalised Polya-urn scheme.
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6 Bayesian bootstraps

The bootstrap resampling plan introduced by Efron (1979), has a Bayesian counterpart;
the Bayesian bootstrap, BB (Rubin, 1981). Both resampling plans are asymptotically
equivalent (Lo, 1987; Weng, 1989) and first order equivalent from a predictive point of
view (Muliere and Secchi, 1996).

A Bayesian bootstrap for a finite population, FPBB, was introduced by Lo (1988),
followed by a censored data Bayesian bootstrap, CDBB, in Lo (1993). Other bootstraps
for censored data, include those of Reid (1981), Efron (1981) and Wells and Tiwari (1994).
Efron’s bootstrap and the CDBB are first order asymptotically equivalent (Lo, 1993), but
Akritas (1986) showed that Reid’s bootstrap is not asymptotically equivalent to that of
Efron.

A finite population censored data Bayesian bootstrap, FCBB, was introduced by
Muliere and Walker (1977b). The FCBB method is defined in terms of the generalised
Polya-urn scheme (Walker and Muliere, 1977a).

The BB simulates (discrete) random probability distributions based on the observed
data. If X1, X2, · · · , Xn are (uncensored) observations, then a Bayesian bootstrap simula-
tion is given by:

FBB =
n∑
i=1

WiδXi , (14)

where
L(W1,W2, · · · ,Wn) = D(1, 1, · · · , 1).

The CDBB is obtained via simulation from a discrete time beta-Stacy process with pa-
rameters (nj , mj); that is, with α and β taken to be identically zero. The FPBB simulates
a randon probability distribution FFPBB. If the population size is N and the sample size
is n, (n < N), then the FPBB samples the missing m = N − n observations using a
Polya-urn scheme: that is,

FFPBB = N−1(nFn +mFm) (15)

where Fn is the empirical distribution of the observations and Fm is the random probability
distribution

Fm = m−1
n+m∑
i=n+1

δEi

and En+1, · · · , En+m are taken from a Polya-urn scheme where X1, X2, · · · , Xn are the
observed data. Explicitly, this involves taking

P (En+1 = Xi) = ni/n

and

P (En+m = Xi|En+1, · · · , En+m−1) =
ni +

∑m−1
i=1 I(En+1 = Xi)

n +m− 1
.

REMARK 6.1 L(FFPBB)→ L(FBB) as m→∞, with n fixed.

A finite population censored data Bayesian bootstrap involves taking

FFCBB = N−1(nFn +mFm)
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where now Fn is the Kaplan-Meier nonparametric estimator of the survival distribution
and En+1, · · · , En+m are taken from a generalized Polya-urn scheme based on uncensored
observations X1 < X2 < · · ·< Xk for some k ≤ n . Explicitly, this involves taking

P (En+1 = Xi) =
ni

ni +mi

i−1∏
l=1

ml

nl +ml

and P (En+m = Xi|En+1, · · · , En+m+1) =

ni +
∑m−1
j=1 I(En+j = Xi)

ni +mi +
∑m−1
j=1 I(En+j ≥ Xi)

i−1∏
l=1

ml +
∑m−1
j=1 I(En+j > Xl)

nl +ml +
∑m−1
j=1 I(En+j ≥ Xl)

.

REMARK 6.2
L(FFCBB)→ L(FCDBB) as m→∞ (n fixed)

and
L(FFCBB) = L(FFPBB) no censoring.

REMARK 6.3 The FPBB is defined by a Multinomial Dirichlet (MD) point pro-
cess (Lo,1988). The FCBB is defined by a Multinomial Generalized Dirichlet (MGD)
process. This MGD process in a limit is to be a beta-Stacy process.
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