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Abstract

In this paper, we deal with the problem of searching the efficient frontier in Data
Envelopment Analysis (DEA). Our aim is to show that the free search approach
developed to make a search on the efficient frontier in multiple objective programming
can also be used in DEA. This kind of analysis is needed when among others a) a radial
projection is not acceptable, b) there are restrictions on some input and output values, or
c) a decision maker (DM) would like to find a decision making unit (DMU) with the
most preferred input and output values. The search can be applied to CCR/BCC-models,
input-oriented/output-oriented/combined models, and to the models with extra
constraints. To make a free search on the efficient frontier, we recommend the use of
Pareto Race (Korhonen and Wallenius [1988]) for this purpose. In Pareto Race, the DM
may simply control the search with some function keys. The information is displayed to
the DM as bar graphs and in numeric form. The search can be terminated at any time,
the DM wishes. A numerical example is used to illustrate the approach.

Keywords: Data Envelopment Analysis, Multiple Objective Programming, Efficient
Frontier, Free Search, Pareto Race
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Searching the Efficient Frontier
in Data Envelopment Analysis

Pekka Korhonen

1. Introduction
Data Envelopment Analysis (DEA), originally proposed by Charnes, Cooper and
Rhodes [1978 and 1979], has become one of the most widely used methods in
operations research/management science. It is easy to agree with Bouyssou [1997] that
“DEA can safely be considered as one of the recent "success stories" in OR...”

A reason for this success is that DEA is a task-oriented approach and focuses on an
important task: to evaluate performance of Decision Making Units (DMU). The analysis
is based on the evaluation of relative efficiency of comparable decision making units.
Based on information about existing data on the performance of the units, DEA forms
an empirical efficient surface. If a DMU lies on the surface, it is referred to as an
efficient unit, otherwise inefficient. DEA also provides efficiency scores and reference
units for inefficient DMUs. Reference units are hypothetical units on the efficient
surface, which can be regarded as target units for inefficient units. A reference unit is
traditionally found in DEA by projecting the inefficient DMU radially to the efficient
surface.

From a managerial point of view, there may be a need sometimes to have some
flexibility to choose a reference unit. The reference unit found for an inefficient unit
through radial projection dominates the inefficient unit, but it is not the only one on the
efficient frontier with that property. This is an important and often desirable property,
but why always choose one specific unit. Why not take into account the preferences of
the DM? There are several possibilities to incorporate preference information into the
analysis, for instance:

• to decide a priori a projection rule or

• to restrict acceptable input- and output-values, or

• to assist the DM to make a search on the efficient frontier and let him/her choose
the unit which he/she prefers the most.
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Not many papers have been written on the subject of incorporating preference
information into DEA. A few exceptions are Golany [1988], Thanassoulis and Dyson
[1992] and Zhu [1996]. A common feature in all these analyses is that first preference
information is gathered from the DM, and then this information is used to produce a
target unit for an inefficient unit on the efficient frontier.

In this paper, our purpose is provide the DM with an interactive method which allows
him/her to incorporate preference information into the efficient frontier analysis by
enabling him/her to make a free search on the efficient frontier. A requisite technique
has already been developed for Multiple Objective Linear Programming (MOLP)
models. Because DEA- and MOLP-models are  structurally similar, we apply this
technique to DEA problems as well.

The approach recommended is based on a so-called Reference Direction Approach
originally proposed by Korhonen and Laakso [1986]. Korhonen and Wallenius [1988]
developed from the original reference direction approach a dynamic version called
Pareto Race. Actually, Pareto Race is an interface which makes it possible to move
along the efficient surface and freely search various target units in DEA as well. We
also demonstrate and discuss various situations in which the approach might be useful
in DEA.

The rest of this paper is organized as follows. In Section 2 we discuss the use of the
reference direction approach for searching the efficient frontier in multiple objective
programming. In Section 3 we show how these considerations can be utilized in DEA-
models; Section 4 illustrates the procedure with a numerical example extracted from a
real application, and Section 5 concludes the paper.

2. The Multiple Objective Linear Model
Assume we have n DMUs each consuming m inputs and producing p outputs. Let X ∈

ℜ
m× n
+ and Y ∈ ℜ

p× n
+  be the matrices, consisting  of nonnegative elements, containing

the observed input and output measures for the DMUs. We further assume that there are
no duplicated units in the data set. We denote by xj (the jth column of X)  the vector of
inputs consumed by DMUj, and by xij the quantity of input i consumed by  DMUj. A
similar notation is used for outputs. Furthermore, we denote 1 = [1, ..., 1]T. Consider the
following Multiple Objective Linear Program (MOLP):

Max Yλ

       Min  Xλ
s.t. (2.1)

              λ ∈ Λ =  { λ  λ ∈ ℜ
n
+ and Aλ ≤  b},
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where matrix A ∈ ℜ
k×  n
  is of  full row rank k  and  vector b ∈ ℜ

k
 .

Model (2.1) - like any multiple criteria model - has no unique solution, in general. Its
"reasonable" solutions are called efficient solutions.

Definition 1. In (2.1), λ* ∈ Λ is an efficient solution iff there does not exist another λ ∈
Λ such that Yλ ≥ Yλ* and Xλ ≤ Xλ* and (Yλ, Xλ) ≠ (Yλ*, Xλ*)

Definition 2.  In (2.1),  λ* ∈  Λ is weakly efficient iff there does not exist another λ ∈ Λ
such that Yλ  >  Yλ* and Xλ  <  Xλ*.

Specifically, in the MOLP-literature (see, e.g., Steuer [1986]), the concept of efficiency
is used to refer to the solutions in the decision variable space ℜn (set Λ) and the concept
of dominance is used to refer to the efficient solutions in the criterion space ℜp+m (set T,
where T = { (y, x)  y = Yλ, x = Xλ, λ ∈ Λ}).

A possible and currently popular way to perform the search for solutions on the efficient
frontier of a MOLP-problem is to use the achievement (scalarizing) function suggested
by Wierzbicki [1980]. Following Wierzbicki, we call the method the Reference Point
Method. To characterize the efficient set of problem (2.1), we may use the following
formulation:

min s(g, u, w, δ ) = 
 

 min {max
      i∈P

 [ α i (gi - ui)/wi ] +   δ ∑
i∈ P

  
 α i(gi - ui)}

(2.2)

s.t. u =  (y, x) ∈ T,

where s is the ASF, w  >  0, w ∈ ℜp+m is a vector of weights, α i = 1, i=1,…,p and α i = -
1, i=p+1,…,p+m, δ  > 0 is “Non-Archimedean” (see for more details, Arnold et al. [1997])
and P = {1, 2, ..., m+p}. Vector g ∈ ℜp+m is a given point, the components of which are
called aspiration levels. Using (2.2), we may project any given (feasible or infeasible)
point g ∈ ℜp+m (called a reference point in MOLP-terminology) onto the set of efficient
solutions of (2.1). Varying the vector of aspiration levels, all efficient solutions of (2.1)
can be generated (Wierzbicki [1986]). We may also generate efficient solutions by
varying the weighting vector w. However, the changes of aspiration levels are easier to
handle, because they can be implemented as changes in the rhs-values in a linear
programming formulation (see, 2.3a,b).
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The reference point method is easy to implement. The minimization of the achievement
scalarizing function is an LP-problem.  In Joro, Korhonen and Wallenius [1995], we
have shown that the problem can be written in the following form:

Reference Point Model Primal

(REFP)

Reference Point Model Dual

(REFD)

max Z = σ  + ε (1Ts+ + 1Ts-)

s.t.                                              (2.3a)

           Yλ  - σ wy - s+ = gy

           Xλ + σ wx + s- = gx

                              λ ∈ Λ

                         s- , s+ ≥ 0

                               ε  > 0

         Λ = {λ λ ∈ ℜn
+ and Aλ ≤  b}

min      W = νTgx - µTgy

   + uTb

s.t.                                               (2.3b)

            -µTY    + νTX  + uTA ≥  0 T

              µT wy + νTwx            = 1

                                       µ, ν ≥ ε 1

                                          u  ≥  0

                                           ε  >  0

Vector  gy consists of aspiration levels for outputs and gx of aspiration levels for inputs

(g= 



gy

gx ). Vectors wy > 0 and  wy > 0 (w= 



wy

wx  ) are the weighting vectors for outputs

and inputs, respectively. Let’s denote the optimal value of the models Z* and W*.

The reference point approach makes it possible to "jump" on the efficient frontier. For

each given reference point g= 



gy

gx , the model (2.3a,b) finds a point on the efficient

frontier. The reference point approach is a basic technique to project any point (feasible
or infeasible) onto the efficient frontier, but to provide a tool for searching the efficient
frontier requires further developments of the reference point method.

Reflecting on our own bias, we recommend the use of  the VIG software to perform the
search on the efficient frontier. VIG implements Pareto Race (see, Figure 3), a dynamic
and visual free search type of interactive procedure for multiple objective linear
programming. It enables a DM to freely search any part of the efficient frontier by
controlling the speed and direction of motion. The objective function values are
represented in numeric form and as bar graphs on the computer screen. The theoretical
foundations of Pareto Race are based on the reference direction approach developed by
Korhonen and Laakso [1986]. In the reference direction approach, any direction r
specified by the DM is projected onto the efficient frontier:
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max σ  + ε (1Ts+ + 1Ts-)

s.t.                                                 (2.4)

           Yλ  - σ wy - s+ = gy + try

           Xλ + σ wx + s-

  = gx + trx

     λ ∈ Λ

                                 s- , s+ ≥ 0,

when t: 0 → ∞.

The solution of model (2.4) is an efficient path starting from the current solution and
traversing through the efficient frontier until it ends up at some corner point of the
efficient frontier as shown in Figure 1.

q

q

g

i

i

i+1

A Reference Direction

Nondominated Set

Feasible Region

Projection of the
Reference Direction

Figure 1. Illustration of the Reference Direction Approach

In the original reference direction approach the DM specified a direction, the model
generated an  efficient path, and the whole path at a time - actually the values of the
objective functions on this path – were displayed in a numeric and visual form to the DM
as illustrated in Korhonen and Laakso [1986]. Korhonen and Wallenius [1988] developed
a dynamic version, which made it possible dynamically and implicitly to vary the reference
direction during the process. This approach enables the DM to make a free search on the
nondominated frontier. The idea is illustrated in Figure 2.
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0

Nondominated Set

r o

Figure 2: Illustration of the Dynamic Version of the Reference Direction Approach

Pareto Race is the implementation of the dynamic version of the reference direction
approach as proposed by Korhonen and Wallenius [1988]. In Pareto Race, a reference
direction is determined by the system on the basis of preference information received
from the DM. By pressing number keys corresponding to the ordinal numbers of the
objectives, the DM expresses which objectives he/she would like to improve and how
strongly. In this way he/she implicitly specifies a reference direction. Figure 3 provides
the Pareto Race interface for the search, embedded in the VIG software (Korhonen and
Wallenius [1988]).

3. Search of the Efficiency Frontier in DEA
How can we utilize the considerations of Section 2? First, we show how all basic DEA-
models can be introduced from the models (2.3a,b). Let’s consider the primal models.
We refer to the unit under consideration by subscript ‘0’. Thus the different models for
measuring the efficiency of unit ‘0’ are obtained as shown in Table 1.

Each model 1-7 produces an efficient solution corresponding to the given g= 



gy

gx .

Models 1-6 performs a so-called radial projection whereas model 7 only consists of a

radial projection as a special case. Which weighting vector  w = 



wy

 wx  is used in model 7

determines which efficient solution is obtained. In some problems, it may be reasonable,
for instance,  to use a constant vector w for all units under consideration. To be precise,
we have to notice that the models (1-6) cannot be regarded as special cases of models

(2.3a,b), because in the reference points model it was assumed w = 



wy

 wx  > 0. However,

the presence of the term ε (1Ts+ + 1Ts-)  in  the objective function of model (2.3a)
according to a classical theorem by Geoffrion [1968] guarantees that all solutions of
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models are efficient, even if some components wi, i ∈  P,  were zeroes. This is a very
well known fact also in the DEA-community.

Table 1: Modifications of Model (2.3 a) for Different (Primal) DEA-Models

# Model Type wx gx wy gy Λ

1 Output-Oriented CCR-model

(Charnes et al. [1978])

0 x0 y0 0 ℜ
n
+

2 Input-Oriented CCR-model

(Charnes et al. [1978]).1)

x0 0 0 y0

ℜ
n
+

3 Output-Oriented BCC-model

(Banker et al. [1984])

0 x0 y0 0
{λ λ ∈ ℜ

n
+ and 1Tλ = 1}

4 Input-Oriented BCC-model

(Banker et al. [1984]) 1)

x0 0 0 y0

{λ λ ∈ ℜ
n
+ and 1Tλ = 1}

5 Combined CCR-model

(Joro et al. [1995])

x0 x0 y0 y0

ℜ
n
+

6 Combined BCC-model

(Joro et al. [1995])

x0 x0 y0 y0

{λ λ ∈ ℜ
n
+ and 1Tλ = 1}

7 General Combined model - x0 - y0 - 2)

We have now shown above that various CCR- and BCC-models (1-6), and further a
general  combined model (7), can be presented as a special case of the reference point
model. How about efficiency? Is efficiency defined in the same way in MOLP and
DEA? Let’s consider how the efficiency is defined in DEA:

A DMU is efficient iff Z* = W* = 1 and all slack variables s-, s+ equal zero; otherwise it
is inefficient (Charnes et al. 1994). All efficient DMUs lie on the efficient frontier,
which is defined as a subset of points of set T satisfying the efficiency condition above.
The definition of efficiency and the corresponding definition for weak efficiency, can be
given in the following equivalent form:

Definition 3.  A solution (Yλ*, Xλ*) = (y*, x*) of models 1-7 is efficient iff there does
not exist another (y, x) ∈ T such that y ≥ y*, x ≤ x*, and (y,  x) ≠ (y*, x*).

                                                
1) The input oriented models are usually in DEA solved as a minimization  problem by writing wx =- x0

and modifying the objective function accordingly.
2) In this general case, we have to assume that ei ∈ Λ, i =1,…, n, where ei is the ith unit vector in ℜn.
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Definition 4.  A point (y*, x*) ∈ T is weakly efficient iff there does not exist another (y,
x) ∈ T such that y > y* and x < x*.

As we can see Definitions 1 & 2 and Definitions 3 & 4 define efficiency in the same
way. The only difference is that in Definitions 1 & 2, the concept efficiency is used in a
variable space (ℜn) whereas Definitions 3 & 4 defines efficiency in the criterion space
(ℜp+m). In spite of a slight terminology difference, the efficient frontier for various DEA-
models can be characterized by an MOLP-model. It means that we may base the
efficient frontier search in DEA on accordingly modified model (2.4). If desired, we
may restrict the area to be searched on the efficient frontier by setting explicit
restrictions to input- and output-values.  Traditionally, in DEA the values of input- and
output-variables are restricted by setting bounds for the variables of the dual model
(2.3b). Which technique is more applicable depends on the problem under
consideration.

4. Numerical Illustrations
Let’s consider the following numerical example, in which the data in Table 2 are
extracted and modified from a real application. Four large super-markets A, B, C, and D
are evaluated on four criteria: two outputs (Sales, Profit) and two inputs (Working
Hours, Size). "Working Hours" refers to labor force available within a certain period
and "Size" is the total area of the super-market. (The super-markets are located in
Finland.)

Table 2: A Multiple Objective Model

A B C D

Sales (106 Fim) 225 79 66 99 max

Profit (106 Fim) 5.0 0.2 1.2 1.9 max

Working Hours (103 h) 127 50 48 69 min

Size (103 m2) 8.1 2.5 2.3 3.0 min

A managerial problem is to analyze the performance of those super-markets. Initially, a
standard DEA is performed by using a CCR-model. (In this example, there is no
difference between the CCR-models and BCC-models provided that the null-unit is
included in the analysis.) As a result of the analysis, we obtain that markets A, B, and D
are efficient and C inefficient. We focus next on the performance analysis of the
inefficient unit C. Let’s consider the results of different CCR-models: an output-
oriented (model 1), input-oriented (model 2), and combined model (model 5). The
solutions of the models are given in Tables 3.a-c.
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Table 3a: Efficiency Analysis of Unit C with the Output-Oriented CCR-Model (1)

A B C D Max (σ) Cx

λ-coefficients 0.0709 0.0924 0.0000 0.4981 1.0996 Ref.Unit

Sales 225 79 66 99 -66 72.58

Profit 5 0.2 1.2 1.9 -1.2 1.32

Work Hours 127 50 48 69 48.0 48.00

Size 8.1 2.5 2.3 3 2.3 2.30

Table 3b: Efficiency Analysis of Unit C with the Input-Oriented CCR-Model (2) 3)

A B C D Min (σ) Cy

λ-coefficients 0.0645 0.0841 0.0000 0.4530 0.9094 Ref.Unit

Sales 225 79 66 99 66.0 66.00

Profit 5 0.2 1.2 1.9 1.2 1.20

Work Hours 127 50 48 69 -48 43.65

Size 8.1 2.5 2.3 3 -2.3 2.09

Table 3c: Efficiency Analysis of Unit C with the Combined CCR-Model (5)

A B C D Max (σ) C

λ-coefficients 0.0676 0.0881 0.0000 0.4745 0.0475 Ref.Unit

Sales 225 79 66 99 -66 66.0 69.13

Profit 5 0.2 1.2 1.9 -1.2 1.2 1.26

Work Hours 127 50 48 69 48 48.0 45.72

Size 8.1 2.5 2.3 3 2.3 2.3 2.19

Each model will produce a different reference unit on the efficient frontier for C. In the
first model, the output values will projected radially onto the frontier subject to the
current levels of resources. In the second model the role of the input- and output-
variables have been changed.  In the last model, the projection is made by improving the
values of the output- and input-variables simultaneously. Of course, the DM may take
any of those reference units, or he/she may be willing to consider other possible values

                                                
3) The model is solved as a minimization problem as usually done in DEA
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as well. If he/she takes, for instance, the input values given, there is still a lot of
variation in the output values. The efficient frontier in this problem is trivial - one line.
The whole line can be obtained as a convex combination of the output values in
columns  I and IV in Table 4. In column III, we have the solution on the line resulted by
the output-oriented CCR-model in Table 3a. The DM has thus several alternatives to
choose the reference unit he/she prefers most. All solutions on the efficient line satisfy
the input constraints; they all use the resources less or equal to unit C. (In this example,
they use exactly the same amount, but it is not the case in general.) However, all
solutions on the efficient line do not dominate  the input- and output-values of C. The
value of “Profit” in column I is lower than the corresponding value of C. If the DM is
interested only in the values dominating those of C, he/she can consider the convex
combination of solutions in columns II and IV.

As we have seen, the DM has many options to emphasize various aspects in searching
for the most preferred unit to C. If for instance "Sales" is important, he/she can choose a
solution maximizing "Sales" (solution I in Table 4), but if he/she cannot accept a worse
value on “Profit” than on C, the solution in column II might be most preferable. In case,
“Profit” is important, the DM might be willing to use as a reference unit the solution in
column III.

Table 4: Characterizing All Efficient Solutions of the Output-Oriented CCR-Model in
Table 3a

I II III IV

Sales 73.61 72.74 72.58 72.40

Profit 0.55 1.20 1.32 1.45

Work Hours 48.00 48.000 48.00 48.00

Size 2.30 2.30 2.30 2.30

A 0.0599 0.0709 0.0826

B 0.6533 0.1799 0.0924

D 0.2222 0.4551 0.4981 0.5436

The above considerations are very easy to perform if we have only two criteria. The
efficient frontier is piecewise linear in two dimensions, and all efficient solutions can
always be displayed visually. (The efficient frontier of our example was exceptionally
simple.) The characterization of the efficient frontier can also be carried out in a
straightforward way e.g. by first identifying all extreme points and then using those
points for characterizing all efficient edges.

Generally, the efficient frontier cannot be characterized by enumerating all efficient
facets by means of the efficient extreme points. Even in quite small size problems, the
number of efficient points is huge. Actually, it is not necessary to approach the problem
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in this way. Even if we could characterize all efficient facets, the DM would need help
to evaluate solutions on different facets. Therefore, we recommend a free search on the
efficient frontier. Using Pareto Race the DM can freely move on the efficient frontier by
controlling  the speed and the direction of motion on the frontier as explained in Section
2.

Assume that the DM is willing to consider the reference units for C which do not
necessarily fulfill the input-constraints. Then the problem becomes four criterion
problems, because the DM has preferences over input values as well. Let’s assume the
DM will start from the solution in Table 3c, but is not fully satisfied with the solution.
He/she may search the neighborhood of the current solution by using Pareto Race
(Figure 3) and end up with the solution displayed in Figure 3. Pareto Race enables the
DM to search for any part of the efficient frontier.

Pareto Race

Goal   1 (max ): Sales  ==>                                             

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  69.5465                    

 Goal   2 (max ): Profit  ==>                                              
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  1.39094

 Goal   3 (min ): Working H     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  46.0137                                  

Goal   4 (min ): Size     ==>                            

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  2.21314

Bar:Accelerator  F1:Gears (B)  F3:Fix      num:Turn

  F5:Brakes         F2:Gears (F)  F4:Relax   F10:Exit                            

Figure 3: Searching for the Most Preferred Values for Inputs and Outputs

In Pareto Race the DM sees the objective function values on a display in numeric form
and as bar graphs, as he/she travels along the efficient frontier. The keyboard controls
include an accelerator, gears, brakes, and a steering mechanism. The search on the
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nondominated frontier is like driving a car. The DM can, e.g., increase/decrease the
speed, make a turn and brake at any moment he/she likes.

Technically, two parameters are used to control the motion on the nondominated frontier:
1) reference vector r (= direction) and 2) the scalar parameter t (= step size or speed). The
mechanism to change those parameters is as follows:

• When the DM wants to improve some objectives, change r in such a way that the
improvements can be seen in the values of the objectives in question.

• When the DM wants to "travel" faster, increase the step-size.

To implement those features, Pareto Race uses certain control mechanisms, which are
controlled by the following keys:

 (SPACE) BAR: An “Accelerator”

Proceed in the current direction at constant speed.

 

F1: ”Gears (Backward)”

Increase speed in the backward direction.

F2: ”Gears (Forward)”

Increase speed in the forward direction.

F3: “Fix”

Use the current value of objective i as the worst acceptable value.

F4: “Relax”

Relax the “bound” determined with key F3.

F5: ”Brakes”

Reduce speed.

F10: “Exit”

num: ”Turn”

Change the direction of motion by increasing the component of the reference
direction corresponding to the goal's ordinal number i ∈ [1, k] pressed by DM.
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5. Conclusion
We have shown that the approaches developed to search the efficient frontier in
Multiple Objective Linear Programming (MOLP) are useful in analyzing the efficiency
by using Data Envelopment Analysis (DEA). To characterize the efficient frontier of a
MOLP-problem, a widely used technique is to transform the problem into a single
objective problem by using an achievement scalarizing function as proposed by
Wierzbicki [1980]. This transformation leads to a so-called reference point model in
which the search on the efficient frontier is controlled by varying the aspiration levels of
the values of the objective functions. For each given aspiration level point, the
minimization of the achievement scalarizing function produces a point on the efficient
frontier. Because the reference point model and models used in DEA are similar, the
methods based on the reference point approach can be used in DEA as well. One of
those further developments is Pareto Race, a dynamic and visual free search type of
interactive procedure for multiple objective linear programming proposed by Korhonen
and Wallenius [1988]. The theoretical foundations of Pareto Race are based on the
reference direction approach developed by Korhonen and Laakso [1986]. The main idea
in the reference direction approach was to parameterize the achievement scalarizing
function

The search of the efficient frontier in DEA-models is desirable for instance, when the
DM would like to have more flexibility in determining a reference unit to an inefficient
unit than a radial projection principle provides. Sometimes a DM may be interested to
make a search on the efficient frontier just for finding the most preferred unit on the
frontier.
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