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The Adaptive Dynamics Network at
IASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.

Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability

to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.

Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.

These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.

A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.

The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

We present a model for the evolutionary dynamics of seed size when seedlings from
large seeds are better competitors than seedlings from small seeds and there is a trade-
off between seed size and seed number. We first consider two limiting cases where seed
size has either no effect on the competitive ability of seedlings, or where seedlings from
larger seeds always win from seedlings from smaller seeds if together in the same
germination site. In the first case there is a single evolutionary optimal seed size
excluding all other, whereas in the second case there is an evolutionarily stable seed
polymorphism with a continuous variation of seed sizes where plants with small (but
numerous seeds) survive by exploiting sites that by chance remain unoccupied by plants
with larger (but less numerous) seeds. We investigate how these two cases connect to
one another via intermediate levels of competitive asymmetry. We find that strong
competitive asymmetry and high resource levels favor coexistence of plants with
different seed sizes when seed and seedling survival is moderately low but large seeds
have a substantial precompetitive advantage over smaller seeds. Assuming mutation-
limited evolution and assuming that single mutations have only a small phenotypic
effect, an initially monomorphic population with a single seed size will reach the final
evolutionarily stable polymorphic state through a series of discrete evolutionary
branching events. At each branching event, a given lineage already present in the
population divides into two daughter lines, each with its own seed size. If
precompetitive seed and seedling survival is high for small and large seeds alike,
evolutionary branching may be followed by extinction of one or more lineages
(including mass-extinction), and thus not necessarily gives rise to evolutionarily stable
seed polymorphisms. Various results presented here are model-independent and point
the way to a more general evolutionary bifurcation theory describing how the number
and stability properties of evolutionary equilibria can change as a consequence of
changes in model parameters.

Keywords: Seed size evolution, seedling competition, frequency-dependent selection,
adaptive dynamics, evolutionary branching, extinction, evolutionary bifurcation theory.
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Evolutionary Dynamics of Seed Size
and Seedling Competitive Ability

S.A.H. Geritz
E. van der Meijden
JA.J. Meftz

Intfroduction

One of the most fundamental life-history trade-offs is between the size and the number
of offspring. With a given amount of resources only a limited number of offspring of
finite size can be produced. The more one particular offspring gets, the less will be
available for the others, so that the number of offspring can be increased only at the cost
of decreasing average offspring size. Offspring size, however, tends to be positively
correlated with offspring survival or future offspring fecundity in such various
organisms as, for example, crustaceans (Parish and Pitelka, 1962; Jones, 1978), birds
(Perrins, 1965), amphibians (Arnold, 1983), human beings (Schluter, 1988), and plants
(Stanton, 1984; Winn, 1988; Mogie ef al., 1990; Bell et al., 1991; Cipollini and Styles,
1991; Houssard and Escarré, 1991; Jurado and Westoby, 1992; Osunkoya ef al., 1994).
Smith and Fretwell (1974) formulated a model for the optimal balance between the size
and the number of offspring. In their model, the fitness, W, of a reproducing individual
with a total amount of R resources and offspring of size m, is given by

W(m) = f(m)% (1)

where f(m) is the expected reproductive yield per offspring of size m, and R/m is the
total number of offspring produced. Independently of what f{m) exactly looks like, there
is always a single (globally) optimal offspring size that maximizes fitness. The optimal
size, m,,, coincides with the point of contact where a straight line through the origin
touches the graph of f(m) (Figure 1a), and is independent of the amount of resources
available. Thus, according to the Smith-Fretwell (1974) model, parental fitness is
maximized by investing equally in all offspring, so that any variation in offspring size
should be explained as a constraint on the parent's capability to produce offspring of
uniform size rather than as an adaptation.

Different shapes of f{m) correspond to different species or different
environments. The Smith-Fretwell (1974) model thus could explain variation in
offspring size between species and between different habitats of the same species.
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Figure 1. (a) Optimization of offspring size in the Smith-Fretwell (1974) model. The optimal offspring
size, mqy, coincides with the point of contact where the graph of f{m) is touched by a straight line through
the origin. (b) Evolutionarily stable seed size distribution in the model of Geritz (1995). The ESS includes
all seed sizes between the Smith-Fretwell optimum, e, and my,y, which is given the intersection of the
graph of f{x) with the main diagonal. The smallest seeds that still produce viable seedlings have size m,,.

Within the context of seed size and seed number strategies in plants, however, the
model has been criticized for its incapability to explain seed size variation within plant
populations of the same species and within individual plants. Although seed size
traditionally has been considered a remarkably constant characteristic relative to other
features such as plant height or seed number (Harper et al., 1970), seed size variation
among, as well as within individual plants of a single population is nevertheless
common and widespread (Michaels ef al., 1988; Westoby ef al., 1992). To account for
this variation as a result of natural selection (rather than as a constraint), various
alternative models have been proposed that include such factors as temporal variation in
offspring environment (Venable, 1985; McGinley et al., 1987), spatial variation in
offspring environment (McGinley et al., 1987; Garcid-Dorado, 1990), variation in the
availability of resources during the offspring-provisioning period (Lalonde, 1991),
variation of the genetic quality of the offspring (Temme, 1986), multiple resources
(McGinley and Charnov, 1987), generalized size-number trade-offs and parental
resource status (Venable 1992), seedling competition (Geritz, 1995; Rees and Westoby,
1997), variation in pollination success (Sakai, 1995; Sakai and Sakai, 1995), or seed
predation (Geritz 1997). In this paper we investigate how different degrees of
competitive asymmetry due to differences in seed size can affect the evolution of seed
size variation.

The constancy of seed size in the Smith-Fretwell (1974) model is a consequence
of the assumption that for any given environment the reproductive yield per seed is a
fixed function of seed size that simultaneously takes account of all biotic and abiotic
factors affecting the survival and expected fecundity of the offspring. This, however, no
longer holds when seed size influences the outcome of competition among the
seedlings. In various species, seed size has been shown experimentally to affect the
competitive ability of seedlings in favor of larger seeds (Black, 1958; Stanton, 1985;
Wulft, 1986b). Presumably this is due to large seeds having more reserves and a larger
embryo than small seeds (Fenner, 1983; Wulff, 1986a), thus giving seedlings from large
seeds a head-start in competition. The expected reproductive yield per offspring then not
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Figure 2. (a) Precompetitive seed and seedling survival, f{m), for different values of SR representing
different types of environments. (b) Seedling competitive ability, c(m), for different values of aR
representing different levels of competitive asymmetry.

only depends on a plant's own seed size but on that of its competitors as well. Seedling
competition, therefore, may lead to frequency-dependent selection, in which case
simple, direct fitness maximization like in the model of Smith and Fretwell (1974) is no
longer possible and a game-theoretical approach (Maynard Smith 1982) should be used
instead.

To investigate the evolutionary consequences of seedling competition, we use an
extension of the Smith-Fretwell (1974) model based on a competition model for annual
plants without a seed bank as described by Geritz et al. (1988) and Geritz (1995). In the
model seeds are dispersed randomly into a large number of discrete germination sites
such that the number of seeds landing in any one site is Poisson-distributed. During
dispersal, germination and early seedling growth, the offspring first undergo a period of
frequency-independent selection due to predation, burial, desiccation and so forth. The
survival probability for seeds of size m during this period of frequency-independent
selection is denoted by f{(m), and is assumed to be given by

(m) =max{0,1-2[éxp(~pm)} )

(Figure 2a). Different values of f correspond to different habitat types: high values of S
are typical for open, moist conditions that favor seedling establishment for both small
and large seeds (Gross and Werner, 1982; Gross, 1984; Stanton, 1984; Wulff, 1986a),
whereas low values of f correspond to shaded conditions under perennial vegetation or
litter where seedling establishment is low and where large seeds have a significant
precompetitive advantage relative to smaller seeds (Grime and Jeffrey, 1965; Haskins
and Gorz, 1975; Gross and Werner, 1982; Gross, 1984; Winn, 1985). In the limit for f =
oo, all seeds survive and produce established plants, irrespectively of their size
(Figure 2a).

As f(m) takes account of all frequency-independent fitness aspects of seed size, it
has essentially the same meaning as in the model of Smith-Fretwell (1974). Additional,
non-selective precompetitive mortality due to seed landings outside of suitable
germination sites, trampling or flooding, and so forth, independently of seed size, can be
accounted for by a lower total amount of available resources per germination site.



Seedlings that survive the initial phase of frequency-independent selection
compete for the locally available resources within a germination site. The individual
seedlings may have different expected future fecundities depending on the amount of
resources obtained. The total amount of available resources per germination site is
denoted by R. We assume that in a site with a total number of k£ competitors with,
respectively, seeds of sizes m;,...,my, the fraction of R gained by an individual seedling
with seed size m; (i = 1,...,k) is given by

c(my)+-+c(m,)

where c(m) is a measure of the competitive ability of a seedling with seed size m.
Alternatively, Equation (3) can be interpreted as the probability of establishment when
there is room for only one established plant per germination site, so that competition
affects survival rather than fecundity. The two interpretations are mathematically
equivalent, however, and give exactly the same demographic and evolutionary
outcomes. Models using Equation (3) are called lottery competition models or safe-site
models (for other examples of lottery competition and safe-site models, see, e.g.,
Chesson and Warner, 1981; Fagerstrom and Agren, 1979; Agren and Fagerstrom, 1984;
Geritz et al., 1988; Geritz, 1995).

For various species it has been shown empirically that an increase in seed size
gives a disproportionate large increase in an individual’s total reproductive output
(Stanton, 1985; Wulff, 1986b). Presumably this is due to differences in relative growth
rates during competition when large seedlings have better access to light and nutrients
than small seedlings as a consequence of shading and a more extended root system
(Ford, 1975; Weiner, 1990). Small initial differences in seedling size resulting from
differences in seed size thus tend to become enlarged during competition, giving a
disproportionately competitive advantage to large seeds. In other words, seedling
competitive ability is likely to be a convex and increasing function of seed size. We here
assume that c¢(m) is given by

c(m) = explam) )

(Figure 2b), where a is equal to the proportional increase in competitive ability due to an
increase in seed size. The parameter a determines the level of competitive asymmetry: if
o 1s zero, seed size has no effect on the competitive ability of seedlings, and all
seedlings in a given germination site get the same amount of resources irrespective of
their seed size (i.e., symmetric competition). Differences in fitness between plants with
different seed sizes are then due only to differences in precompetitive seed and seedling
survival, f{m), so that we effectively recover the Smith-Fretwell (1974) model. Thus,
with symmetric competition, we always find a single optimal seed size excluding all
other seed sizes (cf. Figure 1a).

As a increases, however, the competitive advantage of large seeds increases. In
the limit for a approaching infinity, only the single seedling from the largest seed
present in a given germination site obtains resources, while all other seedlings in the
same site get none at all and thus fail to reproduce (i.e., extremely asymmetric
competition). With extremely asymmetric competition there is no longer a single,



optimal seed size, because a population with a single seed size can always be invaded by
plants with slightly larger seeds or by plants with sufficiently smaller but (due to the
size-number trade-off) more numerous seeds (Geritz et al., 1988). Instead, there is an
evolutionarily stable seed polymorphism with a continuum seed sizes (Figure 1b). Plants
with small seeds survive because they are better colonizers (due to their larger seed
number) which enables them to exploit sites that by chance remain unoccupied by the
larger (but less numerous) seeds of their competitors (Geritz, 1995).

In this paper we investigate the evolution of seed size and seedling competitive
ability for intermediate levels of competitive asymmetry (a), different types of
precompetitive environment (f5), and different amounts of resources available per
germination size (R). We explore how the two extreme outcomes of the model (i.e., a
single optimal seed size with symmetric competition on the one hand, and a continuum
of coexisting seed sizes with extremely asymmetric competition on the other) are
connected to one another via intermediate levels of competitive asymmetry. At
intermediate levels of competitive asymmetry the model is very hard to analyze
algebraically, and we therefore resort to numerical analyses instead. To this end we
assume that each individual plant produces seeds of one size only, and that the offspring
always have the same seed size as the mother plant. In the Discussion we shall argue
how the results can be interpreted in the context of a more realistic reproductive biology.
A population with various coexisting plant types, each with its own particular seed size,
is assumed to be always a protected polymorphism in the sense that each plant type
present is protected against extinction by an annual per capita growth rate that is larger
than one when rare. Moreover, we assume that phenotypic mutations in seed size occur
only very infrequently, and only one at a time, so that the resident population has
reached its demographic equilibrium before the next mutant comes along. We also
assume that the resident population is large enough that we can ignore demographic
stochasticity. Finally, we assume that the effect of a single mutation on seed size is
small but finite so that evolution proceeds by small but discrete individual steps. We
analyze the model within the context of a theoretical framework for modeling
evolutionary dynamics developed by Metz ef al. (1996) and Geritz et al. (1997a,b).

Evolutionarily Singular Strategies
Resident population dynamics and mutant’s fitness

Consider a resident population with » different plant types, each with its own seed size
denoted by m; (i = 1....,n), and let N, denote the density in year ¢ of plants with seed
size m; expressed as the average number of established plants per germination site. The
fraction of resources obtained per seedling with seed size m; in a germination site
together with £;.,....k, seedlings with, respectively, seeds of sizes m;,..., m, is given by

c(mi) (4)

c(m)+kc(m)+---+k,c(m,)

(cf. Equation 3). Modeling a trade-off between seed size and seed number in the same
way as in the model of Smith and Fretwell (1974), and taking into account that only a
fraction f(m;) of all seeds of size m; survive the precompetitive phase and eventually



become established plants, the number of established offspring produced by a plant with
seed size m; in a germination site together with 4,....k, other plants with seeds of sizes
my,..., My is

iH c(m,)
f(m’)m, EF?(m,')+lqc'(1111)+“'“Lknc(mn)E N

Assuming Poisson-distributed seed numbers per germination site, the numbers of
competing seedlings per germination site, ki,...,k,, are also Poisson-distributed with
expectations N, ;,...,N,;, so that the expected number of established offspring per plant
with seed size m; is given by

f(m,)%%im w o 70 D o S

k,,ZO c(m)+kc(m)+---+k c(m)) !k H

1

By rescaling seed size as the fraction of the available resources per germination site (i.e.,
using m;/R instead of m; as a relative measure of seed size) it can be seen from
Equations (2), (4), and (6) that the outcome of the model will depend only on the two
products R and SR instead of each parameter individually.

At demographic equilibrium the expected per capita number of established
offspring (Equation 6) is equal to one for all plant types present in the population. In a
monomorphic resident population with only seeds of size m, there is a single, positive
and asymptotically stable equilibrium density whenever fim)R/m > 1 (Geritz et al.,
1988). The equilibrium depends on the resident’s seed size and hence will be denoted by
N(m). If fim)R/m < 1, the per capita number of established offspring is too low to
maintain a positive population density.

Next, consider a mutant plant with seed size m' in a monomorphic resident
population at its equilibrium with seed size m. During the early phase of invasion when
the mutant is still rare, the probability of two or more mutant seeds landing in the same
germination site is negligible. Mutant seedlings, therefore, initially compete only with
resident seedlings and not among themselves. For the mutant’s per capita number of
established offspring, that is, its fitness, denoted by W, (m'), we thus find

n — ' i - c(m') (N(m))( -N(m)
VI//n(m)_f(m)m,%c(m,)_i_k@(m) Kl e (7)

(cf. Equation 6). Notice that W,,(m') is equal to the mutant’s fitness, f{m")R/m', as in the
Smith-Fretwell (1974) model (cf. Equation 1) times a correction factor that takes
account of the effects of competition. Other authors also use the logarithmic growth rate,
that is, In(W,,(m")), as a measure of the mutant’s fitness (see, e.g., Metz ef al., 1996;
Geritz et al., 1997a,b; Meszéna et al., 1997).

If W,(m") <1, the mutant dies out. If W,,(m'") > 1, the mutant may spread (but
need not always do so, because of the possibility of random extinction due to drift when
there are still only very few copies of the mutant around). If the mutant spreads and in
addition we have W,,(m) < 1 (so that the resident cannot recover once rare itself), then
the mutant will eventually replace the resident and take over the population. We shall
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Figure 3. (a) Pairwise invasibility plot for aR = 6 and SR = 25. Shaded regions indicate where W,,(m') > 1.
(b) Area of coexistence for the same parameter values. The shaded regions indicate combinations of m
and m' that can mutually invade, and hence can coexists as a protected dimorphism.

refer to this as a substitution. If, however, the mutant spreads but in addition W,,(m) > 1
(so that the resident is protected against extinction and cannot be replaced), then the
population necessarily becomes dimorphic with both the resident and the mutant living
together. We shall refer to this as mutual invasibility of the two seed sizes.

Evolutionarily stable singular strategies

Figure 3a shows a so-called pairwise invasibility plot for aR = 6, SR = 25. In this graph
we indicate for what combinations of resident and mutant seed sizes W,,(m') is larger or
smaller than one. (For other examples of pairwise invasibility plots, see, e.g., Van
Tienderen and De Jong, 1986; Metz ef al., 1992; Kisdi and Meszéna, 1993, 1995.) To
see what mutants can spread in a given resident population we look along a vertical line
through the point on the m-axis representing the resident’s seed size. The parts of this
line inside a region for which W, (m'") > 1 (shaded regions) correspond to potentially
invading mutants, and the parts of the line inside a region for which W, (m'") < 1
(unshaded regions) correspond to mutants that cannot invade. With small evolutionary
steps we need only to consider combinations of seed sizes inside a narrow region along
the main diagonal. As residents are selectively neutral among themselves, on the main
diagonal (where the mutant and the resident have the same seed size) W,(m') is
necessarily equal to one. Intersections of the diagonal with other lines on which W, (m")
= 1 correspond to so-called evolutionarily singular strategies (Metz et al., 1996; Geritz
et al., 1997a,b). On the diagonal of the pairwise invasibility plot at a singular strategy,
the mutant’s fitness as a function of its own seed size attains either a local maximum or
a local minimum. Algebraically, therefore, a singular strategy is characterized by

oW, (m" 0O ~0 8)
E om'’ Hz,:m '



In Figure 3a there are three evolutionarily singular strategies, namely, m*, m,*,
and ms*. Looking along a vertical line through m*, it can be seen that no nearby
mutants can invade a resident population in which all plants have seed size m,*. In other
words, m* is a (locally) evolutionarily stable strategy, or ESS (Maynard Smith, 1982).
On the diagonal of the pairwise invasibility plot at an evolutionarily stable singular
strategy, the mutant’s fitness as a function of its own seed size has a (local) maximum.
An evolutionarily stable singular strategy is therefore algebraically characterized by
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(Maynard Smith, 1982). Notice that m;* is not a global ESS, because mutants further
away (i.e., between m' = 0.29R and m' = 0.95R) in fact could invade if only they
happened to appear. Assuming sufficiently small evolutionary steps, however, these
seed sizes cannot be generated by a single mutation of m;*, and can therefore be
ignored. Neither m,* nor ms;* is (locally) evolutionarily stable, because both can be
invaded by any (nearby) mutant (Figure 3a).

Convergence stable singular strategies

Figure 3b shows what combinations of resident and mutant seed sizes can coexist as a
protected dimorphism (shaded regions). The figure was obtained by first taking the
mirror image of Figure 3a along its main diagonal (which gives all combinations of seed
sizes for which W,,(m) > 1), and putting it on top of the original. The overlapping parts
of the shaded regions in the mirror image and in its original correspond to seed sizes for
which both W, (m") > 1 and W,,(m) > 1 at the same time and hence can coexist as a
protected dimorphism. The set of possible protected dimorphisms (Figure 3b) we shall
refer to as the area of coexistence. The area of coexistence reaches the diagonal only at
the singular strategies m;*, m,*, and ms* (Figure 3b). Mutual invasibility and hence
coexistence of two almost identical seed sizes can therefore only occur when the
population is very close to a singular strategy and nowhere else. In other words, with
small evolutionary steps (in which case mutants are always very similar to their resident
progenitor) any mutant that can spread in a given resident population will always replace
the resident, that is, as long as the population stays away from the singular strategies.

Starting with a resident population with a seed size smaller than m,*, it can be
seen from Figure 3a that mutants with slightly larger seeds can invade (and subsequently
replace the resident), whereas mutants with smaller seeds cannot. Similarly, a resident
population on the other side of m;* can be invaded (and replaced) only by mutants with
smaller seeds. In other words, with small evolutionary steps, m;* is an evolutionary
attractor in the sense that an initially monomorphic population will gradually evolve
towards m;*. Evolutionary attractors in the above sense are called convergence stable
(Eshel, 1983; Christiansen, 1991). At a convergence stable singular strategy, the slope of
the mutant’s fitness as a function of its own strategy, that is, the local fitness gradient,
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changes its sign from positive on the left side of the attractor to negative on the other
side (Figure 3a), and therefore is a locally decreasing function of seed size. A
convergence stable singular strategy is thus algebraically characterized by
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(Eshel, 1983). Equivalent conditions have been used by Metz et al. (1996) and Geritz et
al. (1997a,b). From Figure 3a it can also be seen that m,* lacks convergence stability
(and thus is an evolutionary repeller from which an initially monomorphic resident
population tends to evolve away), whereas m;*, again, is convergence stable. Once a
population has come sufficiently close to a convergence stable singular strategy, sooner
or later a mutant may come along that no longer can replace the resident (Figure 3b), so
that the population becomes dimorphic. The significance of dimorphisms near a singular
strategy is discussed below.

Evolutionary branching

Evolutionary stability and convergence stability are fully independent properties that can
occur in any combination (Eshel and Motro, 1981; Eshel, 1983; Taylor, 1989;
Christiansen, 1991; Abrams et al., 1993; Eshel et al., 1997). The evolutionary
significance of protected dimorphisms arising nearby a singular strategy depends on the
particular combination of the two types of stability. If a singular strategy is both
convergence stable and evolutionarily stable, like in the case of m;* in Figure 3a, only
mutants with a seed size in between the two resident seed sizes can invade, so that with
each successive invasion the dimorphism is replaced by either a monomorphism or a
dimorphism that is even closer to the singular strategy than before (Metz et al., 1996;
Geritz et al., 1997a,b). In the long run, therefore, any nearby dimorphism effectively
disappears again as the population continues to converge to the singular strategy through
a series of alternating monomorphic and dimorphic population states. A singular
strategy that is both evolutionarily stable and convergence stable is called a continuously
stable strategy, or CSS (Eshel and Motro, 1981; Eshel, 1983), and represents a possible
final, monomorphic stop of the evolutionary process. In the case of m,*, however, which
is an evolutionary repeller, the population most probably will evolve away before it has
a chance of becoming dimorphic. Its main significance is that it separates the domains of
attraction of m;* and ms*.

The case of ms*, which is convergence stable but not evolutionarily stable,
stands out in particular. For a monomorphic population it acts as an evolutionary
attractor. At the singular strategy, however, the mutant’s fitness as a function of its own
strategy has a local minimum. As soon as the population reaches the singular strategy
and becomes dimorphic, it undergoes disruptive selection, forcing the two resident seed
sizes to evolve further and further apart with each successive invasion (Metz et al.,
1996; Geritz et al., 1997a,b; Eshel et al. 1997). This process of phenotypic divergence
in an initially monomorphic resident population we call evolutionary branching, and a
singular strategy that is convergence stable but at the same time lacks evolutionary
stability we call an evolutionary branching point.
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Figure 4. Two simulated evolutionary trees with different initial seed sizes for aR = 6 and SR = 25.
(a) The population starting left of the repeller m;* reaches the evolutionarily stable seed size m;* at
time #. (b) The population that starts on the right side of m,* evolves to the branching point ms* and
undergoes disruptive selection at time #,. The population reaches a dimorphic evolutionarily stable state at
time #5.

Figure 4 shows the results of numerical simulations of the evolutionary process
using the per capita number of established offspring given in Equation (6) to calculate
the change in plant density from one generation to the next in a population with an
arbitrary number of different plant types. Starting with a monomorphic population at the
beginning of the simulation (i.e., » = 1), new mutants are generated with a low
probability per offspring produced by a small but random mutation from types already
present. With each new mutation an extra equation for the mutant’s population density
is added to the system (i.e., n is increased by one). New mutants are introduced initially
at a very low frequency, but may increase or decrease during subsequent generations.
When the frequency of a given type falls below a certain predefined threshold, it is
considered to have gone extinct and is removed from the population.

The simulations confirm the predictions of the theory: depending on the initial
seed size, the population either evolves towards m* (Figure 4a), or evolves first
towards m;* where it undergoes evolutionary branching and eventually becomes
distinctively dimorphic (Figure 4b). Neither the precise density at which new mutants
are introduced or are eliminated from the population, nor the exact frequency and the
magnitude of mutations qualitatively affect the outcomes of the simulations. Moreover,
in the simulations new mutants often come along before the resident population has
reached its equilibrium and before inferior mutants have been eliminated, which
demonstrates that the assumptions of separate time scales for selection and mutation,
and of a polymorphism always being a protected polymorphism, are not very critical.
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Figure 5. Pairwise invasibility plots for different values of aR and SR. In each plot the scale of the axis
runs from zero to R.

Changes in number and stability properties of evolutionary
singular strategies

The number and the stability properties of the singular strategies depend on the values
of aR and pR. Figure 5 shows pairwise invasibility plots for various combinations of
different parameter values. We first consider the row with SR = 25. At low values of aR,
there is only a single, convergence stable and globally evolutionarily stable singular
strategy (Figure 5; aR = 4.5, SR = 25). At higher values of aR, the singular strategy loses
its global evolutionary stability and becomes a local ESS (aR = 5.0, SR = 25). As aR
increases further, two new singular strategies (i.e., a repeller and a branching point)
appear when the curved line defined by W, (m") = 1 first touches and then intersects the
main diagonal at two additional points (aR = 5.5, 6.0 and 6.5, SR = 25). In a similar but
reversed process at still higher values of aR, the lower two intersection points with the
main diagonal move closer together and finally merge and annihilate one another, so
that in the end only the branching point remains (aR = 7.0, SR = 25). Just before the two
singularities meet and disappear, however, the ESS first loses its evolutionary stability
and becomes a branching point (Figure 6).

At higher values of SR, increasing o.R may lead to the simultaneous appearance
of the repeller and the branching point before the ESS loses its global stability (e.g.,
Figure 5; aR = 5.5, fR = 45). The ESS then is globally evolutionarily stable but only
locally convergence stable, which is possible because of the independence of
evolutionary stability and convergence stability. At lower values of SR, the ESS may
lose its global and local evolutionary stability without the appearance of additional
singular strategies (e.g., Figure 5; aR = 5.0, JR=15 and aR = 5.5, fR = 15).

Figure 7a shows how the number and stability properties of the singular
strategies change as aR and SR vary continuously. The figure was produced using
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Figure 6. Detail of pairwise invasibility plots for (a) aR = 6.754, (b) aR = 6.763, (c) aR = 6.766 and
(d) aR = 6.769 and fixed SR = 25. The ESS in (a) must first lose its evolutionary stability in (b) before it
collides with the repeller in (c), resulting in their mutual annihilation in (d). (Scales of the axis between
0.13Rto 0.15R.)

Equations (8), (9) and (11) to numerically identify and characterize singular strategies in
terms of their stability properties. For parameter values inside the hatched region the
precompetitive seed and seedling survival is too low for maintaining a positive
population density, that is, f(m)R/m is always smaller than one. The seed size that
maximizes fitness in the Smith-Fretwell (1974) model is then optimal in the sense that it
minimizes the rate of population decline. For parameter values above the hatched
region, but left of the dotted line, there is a single, convergence stable and globally
evolutionarily stable singular strategy. On the other side of the dotted line the ESS has
lost its global character and has become only a local ESS. The thin solid line indicates
where the ESS loses its evolutionary stability altogether and turns into a branching
point. Only at point “P” where the dotted line and the thin solid line touch one another,
the ESS loses both its global and local evolutionary stability at the same time and turns
directly into a branching point.

Inside the wedge-shaped domain formed by the thick solid lines there are three
singular strategies. The left edge of the wedge indicates where the repeller and the
branching point first appear when in the pairwise invasibility plot the curve on which
W.(m") is equal to one touches and then intersects the main diagonal at two additional
points. The right edge indicates where the repeller and the former ESS merge and
disappear together. In classical bifurcation theory, the mutual annihilation of two
singularities or the simultaneous appearance of two singularities as a consequence of
changing model parameters is called a fold bifurcation. The tip of the wedge-shaped
domain where the two fold bifurcations meet and cancel one another is a so-called cusp-
bifurcation point (see, e.g., Kuznetsov, 1995). The significance of point “Q” is
discussed later.

Figure 7b gives a horizontal cross-section through the wedge-shaped domain in
Figure 7a for SR = 35, showing the actual values of the singular strategies as functions
of aR. The thick solid line indicates ESSes, the thin solid line branching points, and the
thin dashed line evolutionary repellers for different values of aR. The change from a
global ESS into a local ESS is indicated by point “S”. The change from a local ESS into
a branching point occurs just before the lower part of the curve bends up and connects to
the repeller, but the resolution of the figure is too low to show this clearly. The two
folds lie exactly in between the left and right edge of the wedge-shaped domain in
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Figure 7. (a) Number and stability properties of the singular strategies as a function of aR and SR. (b) The
actual values of the singular strategies for fixed PR = 35, and (c) SR = 5. (See text for further explanation.)

Figure 7a. As R decreases, the sides of the double fold becomes narrower, until at the
cusp point only a vertical inflection point remains. Figure 7¢ is a cross-section at fR =5
illustrating that for values of SR below the wedge-shaped domain in Figure 7a the fold
has completely disappeared and stretched out into a smooth, continuous line.

Evolutionarily Singular Coalitions
Resident population dynamics and mutant’s fitness

To see what happens after evolutionary branching when the population has become
distinctively dimorphic, we consider a resident population with two plant types with
seed sizes m; and m,. The full dynamics of the population follows from Equation (6)
with n = 2. Coexistence of two plant types is possible only if m; and m, are inside the
area of coexistence (cf. Figure 3b). Geritz ef al. (1988) showed that if coexistence is
possible, then there is a single, asymptotically stable population dynamical equilibrium
with both types present at positive densities. The average number of established plants
per germination site at the equilibrium depends on m; and m,, and will be denoted by
respectively Ny(my,m,) and N,(m,m,). At the boundary of the area of coexistence where
Wi(my) =1 or W,,(m;) = 1, the equilibrium density of respectively m, and m; becomes
Zero.

The fitness, W1 ,o(m'), of an initially rare mutant with seed size m' in a resident
population with seed sizes m; and m, at its equilibrium is derived in a similar way as in
the case of a monomorphic population, and is found to be

Wy, (M) = (12)
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(cf. Equation 7). The mutant can invade if W, ,o(m") > 1, and dies out if W, ,,n(m") < 1.
We shall without loss of generality assume that it was m, that mutated. After the mutant
has invaded, the population dynamics can in essence follow four possible patterns. The
most common pattern (i) is that the mutant just ousts the resident to which it is most
similar, that is, its progenitor m;. We shall call this a simple substitution. Apart from
substitutions there are three other patterns that are relatively more rare, but that do occur
regularly in the course of the evolutionary trajectories, and are moreover essential in
determining the shape of those trajectories. In pattern (ii) all three types coexist until the
occurrence of the next successful mutant, which for m' close to m, is only possible near
the so-called evolutionary isocline for m; (to be discussed in the next paragraph). Pattern
(iii) occurs only when the population is near the boundary of the area of coexistence
where the frequency of m, becomes zero and the combination of m' and m, falls just
outside the area of coexistence. In this case the mutant replaces both former resident
types, so that the population becomes monomorphic again. We shall refer to this as an
extinction event. Finally, in pattern (iv) m, dies out while m' and m, remain, which is
only possible at the confluence of the conditions that we gave for patterns (ii) and (iii).
Although trajectories containing pattern (iv) have but a negligible small probability to
occur, and have moreover never been observed for the present model, the possibility
cannot a priori be excluded.

Isoclines and evolutionarily singular coalitions

Since by assumption mutations occur only one at a time, a single evolutionary step
inside the area of coexistence is always either horizontal or vertical depending on which
particular resident produces the next successfully invading mutant first. With small
evolutionary steps, the direction of a possible change in m;, (i = 1, 2) is given by the sign
of the local fitness gradient,
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(cf. Equation 10). The fitness gradients of m; and m, together define the so-called
invasion cone, that is, the set of admissible evolutionary change given the present state
of the resident population (Matessi and Di Pasquale, 1996). Figure 8 shows the area of
coexistence for aR = 6 and SR = 25 with the invasion cones indicated by arrows. Lines
inside the area of coexistence on which the local fitness gradient for m, is zero we refer
to as the evolutionary isocline for m;, or simply the m;-isocline. In a resident population
on the m;-isocline, the mutant’s fitness as a function of its own seed size has either a
local maximum for m' = m;, that is, if

|EzI/Vm m (m’) D
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or a local minimum if the reverse is true. Parts of the isoclines corresponding to local
fitness maxima are indicated by thick solid lines, whereas parts corresponding to fitness
minima by thin lines (Figure 8).
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Figure 8. Area of coexistence with isoclines and invasion cones for R = 6 and PR = 25. Thick lines
correspond to local fitness maxima for the mutant, whereas thin lines correspond to local fitness minima.
The monomorphic singular strategies are denoted by m, *, m,* and ms*.

As long as the population stays well inside the area of coexistence and away
from isoclines, we always have pattern (i), that is, a successfully invading mutant will
just oust the resident to which it is most similar after which the population remains
dimorphic. Close to an isocline, however, we may also have pattern (ii), that is, the
mutant and both former resident types may coexist so that the population becomes
trimorphic, at least till the next successful mutant comes along. To understand this we
can do a thought experiment in which m, is fixed and does not evolve. The
corresponding point on the m;-isocline then can be considered as a singular strategy for
m; in a population in which m;, is now merely an environmental parameter. This means
that we can study the fate of m;-mutants near the isocline in the same manner as we
studied the fate of mutants near a singular strategy in a monomorphic resident
population. We thus find that mutual invasibility of a mutant and its resident progenitor
in a dimorphic resident population is only possible in the neighbourhood of isoclines.
Evolutionary branching may occur if the isocline corresponds to a local fitness
minimum, but is unlikely to persevere if evolution in the other resident type moves the
population away from the vicinity of the isocline. Near the intersection of two isoclines
where directional selection has ceased for both resident types at the same time, however,
mutual invasibility will lead to evolutionary branching if at the point of intersection
either or both isoclines correspond to local fitness minima.

The points of intersection of isoclines are so-called evolutionarily singular
coalitions (Metz et al., 1995; Geritz et al., 1997a,b). Due to the diagonal symmetry of
the area of coexistence, singular coalitions always occur in reciprocal pairs, one on each
side of the diagonal (Figure 8). Both represent the same population, that is, with the
same seed sizes, but with a different order of numbering the resident strategies. A
singular coalition is evolutionarily stable (i.e., no mutant can invade) if at the point of
intersection both isoclines correspond to local fitness maxima (Vincent and Brown,
1988). Generalization of convergence stability is less straightforward because of the
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Figure 9. (a) Area of coexistence with isoclines and invasion cones for aR = 9.5 and SR = 35, and
(b) simulated evolutionary tree. At time ¢, the population reaches the branching point, m*, and undergoes
evolutionary branching. At time ¢, the dimorphic population reaches the dimorphic singularity where it for
a second time undergoes disruptive selection. At #; the population reaches an evolutionarily stable
trimorphism.

higher degree of freedom of evolutionary change in populations with two or more
resident strategies. Unlike convergence in monomorphic populations, convergence at
higher levels of polymorphism may depend on the relative mutation rates and step sizes
of the different resident strategies (Abrams et al., 1993). Unambiguous examples of
convergence in dimorphic populations, however, can sometimes be constructed
graphically using the invasion cones (Matessi and Di Pasquale, 1996). Like in the
monomorphic case, evolutionary stability and convergence stability of dimorphic
singular coalitions are fully independent properties that can occur in any combination. A
singular coalition that is convergence stable but not evolutionarily stable for at least one
of the resident types gives rise to disruptive selection and further branching of the
evolutionary tree.

For aR = 6 and SR = 25 there is a single evolutionarily singular coalition
(Figure 8). It can be seen from the invasion cones that the singular coalition will be
reached from most places inside the area of coexistence, and therefore is convergence
stable. In particular, an initially monomorphic population that enters the area of
coexistence near the point (m5;*, m;*) inevitably will end up near the singular coalition.
The singular coalition is evolutionarily stable, because at the point of intersection both
isoclines represent local fitness maxima. The singular coalition thus represents a final
stop of the evolutionary process. The corresponding simulated evolutionary tree is given
in Figure 4b.

Figure 9a gives the area of coexistence with isoclines and invasion cones for
oR =9.5 and SR = 35. Now there are three different evolutionarily singular coalitions
(we consider the singularities on either side of the main diagonal as identical). None of
these is evolutionarily stable, because at each intersection point one or both isoclines
correspond to fitness minima. From the invasion cones it can be seen that the middle of
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Figure 10. (a) Number and stability properties of the dimorphic singular coalitions as a function of aR and
PR. (b) The actual values of the dimorphic singularities as functions of aR for fixed R = 35, and
(c) BR =5. The thin dotted curves in (b) and (c) indicate the monomorphic singularities. (See text for
further explanation.)

the three singular coalitions is an evolutionary repeller, whereas the other two are
convergence stable. For an initially monomorphic population that undergoes
evolutionary branching and enters the area of coexistence near the point, (m*,m*), the
probability of reaching the attractor furthest away from the diagonal is negligibly small,
as it would require mutations to occur systematically much more frequently in one
resident strategy than in the other. Instead, the population evolves towards the singular
coalition that is closest to the diagonal. Lacking evolutionary stability, the population
then for a second time undergoes disruptive selection and evolutionary branching. The
corresponding simulated evolutionary tree is given in Figure 9b. A dimorphic
evolutionary attractor that lacks evolutionary stability we shall refer to as a dimorphic
branching point.

Change in number and stability properties of evolutionary
singular codlitions

Figure 10a shows how the number and stability properties of the singular coalitions in a
dimorphic resident population depend on @R and SR. Dimorphic singularities do not
exist for parameter values inside the hatched region. The border of this region exactly
coincides with the boundary between local and global stability of the monomorphic ESS
(dotted line in Figure 7a). In the Appendix we show that this is not a coincidence and
explain why this should be so. For a population settled at the monomorphic ESS, loss of
global evolutionary stability has no consequences if evolution proceeds by small steps
only, and the potentially invading mutants are too dissimilar from the resident type to be
generated by a single mutation. The new dimorphism, therefore, may remain
unreachable until the monomorphic ESS loses also its local evolutionary stability and
becomes a branching point at some higher value of aR. Only at point “P” where the
monomorphic ESS loses its global and local evolutionary stability and turns into a
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branching point all at the same time (Figure 7a), the dimorphic singularity appears just
when the ESS becomes a branching point.

For parameter values between the hatched region and the heavy dotted line, there
is a single convergence stable and globally evolutionarily stable dimorphic singular
coalition. On the other side of the dotted line, the dimorphism has lost its global
evolutionary stability but retains its local evolutionary stability. (The dotted line also
corresponds to the first occurrence of an evolutionarily stable trimorphism.) The thin
solid line indicates where the smaller seed size of the dimorphism loses its evolutionary
stability and becomes a local fitness minimum that may give rise to evolutionary
branching. At point “T” where the dotted line and the thin solid line touch one another,
the population loses both its global and local evolutionary stability simultaneously. At
the hatched line (which partly lies inside the wedge-shaped domain formed by the thick
solid lines, and which smoothly connects to the right edge of the wedge at point “U”),
the larger seed size of the coalition loses its evolutionary stability. Disruptive selection
and the ensuing evolutionary branching thus may occur in either the left or the right
branch of the evolutionary tree, or both, depending on the exact values of aR and SR.

The left edge of the wedge-shaped domain corresponds to a fold bifurcation that
gives rise to two new singularities when the isoclines first touch and then intersect one
another at two additional points. The two new singularities thus formed are respectively
a convergence stable but evolutionarily unstable singular coalition and an evolutionary
repeller. Inside the parameter range shown, the lack of evolutionary stability of the new
attractor is due to the smaller seed size representing a local fitness minimum. The larger
seed size of the attractor can also turn into a fitness minimum, but only so at much
higher values of SR outside the range shown in the figure. The light dotted line inside
the wedge (which smoothly connects to the right edge of the wedge at point “U”’) shows
where the larger seed size of the repeller becomes a fitness minimum. The smaller seed
size of the repeller always corresponds to a fitness minimum. The right edge of the
wedge indicates a fold bifurcation where the repeller and the former evolutionarily
stable singular coalition merge and disappear.

Figure 10b is a horizontal cross-section through the wedge-shaped domain at
SR =35 showing the actual values of the dimorphic singular coalitions as functions of
oR. For the sake of comparison, the monomorphic singular strategies have been
indicated by a thin dotted line (cf. Figure 7b). The more heavy curves denote the
dimorphic singular coalitions. The lower curve indicates the smaller seed size of the
coalition , and the upper curve the larger seed size. Thick solid lines correspond to local
fitness maxima, thin solid lines to local fitness minima, and the dashed lines indicate
evolutionary repellers. A singular coalition is evolutionarily stable only where both
curves are thick and solid. The double fold lies exactly in between the edges of the
wedge-shaped domain in Figure 10a. The flatness of the fold in the upper curve is
directly related to the fact that the isocline for the larger seed size is almost a straight
line parallel to the horizontal axis of the coexistence plot (cf. Figure 9a). As aR
decreases towards point “S” where the dimorphism becomes extinct and the
monomorphic singularity changes from a local ESS on the right side of “S” into a global
ESS on the left, the frequency of the larger seed size of the dimorphism gradually
becomes zero whereas the smaller seed size converges to the monomorphic ESS



19

indicated by the thin dotted line (Figure 10b). In cross-sections through Figure 10a
below point “P”, however, it is always the smaller seed size that goes extinct while the
larger seed size connects to the monomorphic ESS (Figure 10c). In cross-sections
exactly through point “P” where the monomorphic singularity loses both its global and
its local evolutionary stability and becomes a branching point all at the same time, both
seed sizes of the dimorphism connect to the monomorphism.

Generalization to higher levels of polymorphism

Graphical analyses using pairwise invasibility plots and isoclines is no longer possible
for resident populations with three or more coexisting phenotypes. Generalization of the
algebraic approach to higher levels of polymorphisms (including the problems with
convergence stability) is straightforward (Metz et al., 1995; Geritz et al., 1997a). The
fitness, W, nn(m’), of an initially rare mutant with seed size m' in a resident
population with seed sizes my,...,m, at its demographic equilibrium directly follows
from Equation (12) but with » resident types instead of two. Demographic stability and
uniqueness of the resident population equilibrium was verified by simulation of the
resident population dynamics using Equation (6). With small evolutionary steps, the
direction of evolutionary change in each resident seed size is given by the sign of the
corresponding local fitness gradient (cf. Equation 13). The isoclines, where the local
fitness gradient is zero, are no longer lines but (n-1)-dimensional manifolds. An
evolutionarily singular coalition is a protected polymorphism such that the local fitness
gradient is zero for all resident types at the same time (i.e., where all isoclines intersect),
and can be found using standard numerical methods for solving systems of nonlinear
equations. A singular coalition is evolutionarily stable if at the singular coalition the
mutant’s fitness as a function of its own strategy has a local maximum at each of the
resident strategies (cf. Equation 14).

Figure 11 shows that changes in the number and stability properties of the
singular coalitions due to changes in aR and SR exhibit similar patterns at all levels of
polymorphism. Loss of global evolutionary stability always coincides with the
emergence of an evolutionarily stable singularity at a higher level of polymorphism
(dotted lines in Figure 11). For parameter values inside the regions numbered “I”
through “VI” (separated from one another by the dotted lines) there exist globally
evolutionarily stable singular strategies or singular coalitions with, respectively, one up
to six different coexisting seed sizes. (Higher levels of polymorphism occur at larger
values of aR.) On crossing the border between two such regions from the left to the
right, the globally evolutionarily stable singular strategy or coalition on the left side
loses its global stability and becomes only locally evolutionarily stable. At the same
time a new globally evolutionarily stable singular coalition appears consisting of one
more resident type (see Appendix). Local evolutionary stability, however, can be lost in
various ways, depending on which of the resident seed sizes of the coalition turns into a
local fitness minimum first (not shown in Figure 11, but see Figure 10a for loss of local
evolutionary stability of dimorphic singularities). At each level of polymorphism there is
a wedge-shaped parameter region the edges of which correspond to a fold bifurcation
where two singularities simultaneously appear or disappear (thick solid lines in
Figure 11). The left edge of each wedge has a vertical asymptote, while the right edge
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Figure 11. Different levels of evolutionarily stable polymorphisms inside the regions “I” through “VI”
separated by the dotted lines. Thick lines indicate fold bifurcations for singularities with one through four
seed types present. Notice the different vertical scale compared to Figures 7a and 10a. (See text for
further explanation.)

converges to a straight line with a positive slope that is the same for all levels of
polymorphism. Inside the hatched region near the bottom of the Figure 11, there are no
evolutionary singularities.

Extinction of evolutionary branches

For parameter combinations inside the dotted region in Figure 11 (which is formed by
the intersection at point “Q” of the left most wedge shaped domain and region “I”),
there are three monomorphic singularities (i.e., an ESS, a repeller and a branching point)
but no singularities with two or more coexisting seed types. Figure 12a shows the area
of coexistence with isoclines and invasion cones for aR = 6 and SR = 100, which is well
inside this parameter region. Since the isoclines inside the area of coexistence do not
intersect, there are no dimorphic singularities. An initially monomorphic population
starting inside the domain of attraction of the branching point, m3;*, will undergo
evolutionary branching and will enter the area of coexistence near the point (m3*,m;*).
There being no dimorphic singularity, however, the population evolves along the thick
isocline until it reaches the edge of the area of coexistence. Near the edge, the next
successful mutant will move the population outside the area of coexistence, so that the
population falls back again to a monomorphic condition close to, and inside the domain
of attraction of the ESS m;*. This corresponds to the extinction of one of the branches
of the evolutionary tree and was described as invasion pattern (iii) at the beginning of
this main section. The corresponding simulated evolutionary tree is given in Figure 12b.
(N.B., extinctions are also possible for parameter combinations inside a narrow strip
along the outside of the right edge of the dotted region in Figure 11, but is too narrow to
be seen. For parameter values inside this strip there actually does exist a dimorphic
evolutionarily stable singular coalition, but it lies inside a part of the area of coexistence
that is unconnected to the part entered by the population during branching, and therefore
cannot be reached.)
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Figure 12. (a) Area of coexistence with isoclines and invasion cones for aR = 6 and SR = 100, and
(b) corresponding simulated evolutionary tree. The initially monomorphic population starting inside the
domain of attraction of m;* undergoes evolutionary branching and enters the area of coexistence at time
t;. The population reaches the edge of the area of coexistence and falls back to a monomorphic state
somewhere inside the domain of attraction of m, * at time ¢,.

Extinction is also possible at a higher level of polymorphism. For example, for
parameter combinations inside the cross-hatched region in Figure 11 (which is formed
by the intersection at point “W” of the second wedge shaped domain and region “II”),
there are in addition to the three monomorphic singular strategies also a dimorphic
evolutionarily stable singular coalition, a dimorphic attractor lacking evolutionary
stability (i.e., a dimorphic branching point) and a dimorphic repeller separating the two.
There are no singularities with three or more coexisting resident types, however. An
initially monomorphic population starting inside the domain of attraction of the
branching point will undergo evolutionary branching twice, that is, at the monomorphic
branching point, and next inside the area of coexistence near the dimorphic branching
point. The dimorphic evolutionarily stable singular coalition is virtually unreachable
because of the repeller in between (cf. Figure 9a). As there are no trimorphic
singularities, the population inevitably will fall back again to a dimorphic condition as it
reaches the edge of the volume of protected trimorphisms. The new dimorphic coalition,
however, is on the other side of the repeller and inside the domain of attraction of the
evolutionarily stable dimorphism. A corresponding example of a simulated evolutionary
tree for aR = 9.2 and SR = 150 is given in Figure 13a.

As PSR increases, there are more and more parts of the parameter space
corresponding to different extinction patterns, including cascades of extinctions where a
population may drop several levels of polymorphism in succession within a very short
time (i.e., ‘mass-extinctions). For example, at aR = 9 and SR = 925 (which is outside the
parameter range shown in Figure 11, however), the right edge of region “I” enters the
second wedge-shaped domain (not shown), thus forming a parameter region inside the
cross-hatched region in which the dimorphic evolutionarily stable singular coalition is
missing. After two rounds of evolutionary branching and one extinction event, the
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Figure 13. Simulated trees with different extinction patterns for (a) aR = 9.2 and SR = 150 giving rise to
one branch that goes extinct, and (b) aR = 9.04 and SR = 1100 with two extinct branches.

population will leave the volume of protected trimorphisms and finds itself inside the
area of coexistence again, but on the other side of the repeller. However, unlike the
previous example, there now is no evolutionarily stable dimorphic coalition, nor can the
population return to the former attractor because of the repeller in between. Instead, the
population will evolve to the edge of the area of coexistence where it will fall back to a
monomorphic condition inside the domain of attraction of the monomorphic ESS. The
population thus experiences two branching and two extinction events. The
corresponding simulated evolutionary tree for aR = 9.04 and SR = 1100 is given in
Figure 13b.

Conclusions and Discussion

In this paper we investigated how competitive asymmetry due to differences in seed size
affects the evolution of seed size under a number of different circumstances. We found
that strong competitive asymmetry (o), high resource levels (R) and intermediate
harshness of the precompetitive environment () favor the evolution of variation in seed
size.

Varying competitive asymmetry while the amount of resources per germination
site and the precompetitive environment remain constant amounts to moving along a
horizontal line through the parameter space in Figure 11. If competitive asymmetry is
weak, seedlings from large seeds have but a small competitive advantage compared to
seedlings from smaller seeds. Consequently, differences in fitness are mainly due to
differences in survival during the precompetitive phase of frequency-independent
selection rather than to competition, so that, like in the model of Smith and Fretwell
(1974), there is only a single evolutionarily stable seed size. As competitive asymmetry
increases, evolutionarily stable seed size polymorphisms with progressively larger
numbers of different seed sizes become possible. Each such new polymorphism first
appears when the former one loses its global evolutionary stability, that is, when it can
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be invaded by mutants sufficiently different from the types already present in the
population. Local evolutionary stability is not lost, however, until at some higher degree
of competitive asymmetry mutants arbitrarily nearby can also invade. Thus, if only
mutants with small phenotypic effect are possible, various evolutionarily stable
strategies or coalitions can coexist at the same parameter values. In the limit of
extremely asymmetric competition when only the seedling from the single largest seed
present in a given site obtains resources while other seedlings from smaller seeds get
none, there is an evolutionarily stable seed polymorphism with a contintuous range of
seed sizes (Geritz, 1995). Strong competitive asymmetry favors coexistence of
alternative strategies, because the competitive advantage of plants with large seeds is
sufficiently strong to compensate for their lower per capita seed number, while plants
with small seeds have sufficiently many seeds to exploit sites that by chance remain
unoccupied by the larger seeds of their superior competitors.

Increasing or decreasing the total amount of resources per germination site while
the competitive asymmetry and the precompetitive environment remain constant
amounts to moving up or down along a straight line through the origin in Figure 11. The
slope of this line is equal to the ratio B:a. A large ratio corresponds to large seeds having
either only a minor precompetitive advantage relative to most smaller seeds except for
the smallest (large B; cf. Figure 2a), or a small advantage during competiton (small o) or
both. Varying the amount of resources has very much the same effect as changing the
competitive asymmetry: If resources are scarce, the population density is too low for
competition to be a significant evolutionary factor. Consequently, frequency-
independent selection during the precompetitive phase dominates, so that there is only a
single evolutionarily stable seed size. As the amount of resources increases,
evolutionarily stable polymorphisms with progressively larger numbers of coexisting
seed sizes become possible. However, if the slope of the line is sufficiently steep (i.e.,
steeper than the asymptotic slope of the right edge of the wedge-shaped domain in
Figure 6), then the monomorphic ESS retains its (local) evolutionary stability and exists
next to higher levels of evolutionarily stable seed polymorphism irrespectively of the
amount of resources.

Changing only the precompetitive environment while the competitive asymmetry
and the amount of resources per germination site remain constant amounts to moving
along a vertical line in Figure 11. The highest possible level of evolutionarily stable seed
polymorphism is reached at intermediate types of the precompetitive environment when
seedling establishment is moderately low but large seeds have a significant
precompetitive advantage compared to smaller seeds. If seedling establishment becomes
too low, however, surviving the precompetitive phase of frequency-independent
selection determines the outcome of evolution, so that we only find a single
evolutionarily stable seed size. If, on the other hand, seedling establishment is high for
small and large seeds alike, small seeds tend to be favored, because small seeds can be
produced in larger numbers and no longer have a precompetitive disadvantage compared
to larger seeds.

Assuming mutation-limited evolution and small evolutionary steps, an initially
monomorphic population can reach an evolutionarily stable dimorphism only by means
of evolutionary branching during which the population undergoes disruptive selection
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and gives rise to two subsequently phenotypically diverging daughter lineages each with
its own seed size. Higher levels of polymorphism are reached through a series of
successive branching events interspersed by stretches of directional selection.
Evolutionary branching occurs only near evolutionary singularities that are convergence
stable but lack evolutionary stability, called branching points (Metz ef al., 1995; Geritz
et al., 1997a,b). When more than one evolutionarily stable outcome is possible, it
depends on the initial resident seed sizes to which the population will actually evolve
(cf. Figure 4). If precompetitive survival of seeds and seedlings is high for both small
and large seeds (large ), evolutionary branching can be followed by the extinction of
one or more lineages (including the possibility of mass-extinction). In the long run,
therefore, evolutionary branching does not always lead to higher levels of seed
polymorphisms (cf. Figures 12b and 13).

Whereas the branching points determine the number of branches of the
evolutionary tree, other factors may have an effect on the precise shape of the
evolutionary tree. First, at a branching point (like at any evolutionary singularity), the
local fitness gradient is zero, so that fitness differences of nearby mutants are necessarily
very small. Advantageous mutants can therefore spread only slowly and remain rare for
relatively long periods. While rare, they are a poor source of new mutants necessary for
further evolution of the population, and have moreover a high probability of becoming
extinct due to genetic drift. Evolutionary branching, therefore, is a slow process relative
to evolution during the stretches of directional selection (Figures 4b and 9b). Genetic
drift was not accounted for in the present simulations of the evolutionary tree, so that the
difference between the two phases is less pronounced than it would have been in
stochastic individual-based simulations. Second, small seeds can be produced in larger
numbers and plants with small seeds tend to reach higher densities than plants with
larger seeds. Consequently, with a constant mutation probability per offspring produced,
the total mutation frequency increases as seeds become smaller, so that evolution
accelerates towards smaller seed sizes (Figures 4b and 9b). Third, in Figure 9a, the
dimorphic population evolves along the isocline of the larger seed size, so that the shape
of the isocline determines the shape of the evolutionary trajectory. The relative
constancy of the rightmost branch of the evolutionary tree in Figure 9b is therefore due
to the isocline being almost a straight line perpendicular to the corresponding axis.

Below we consider the significance of some of the model assumptions. Under
the present assumptions where all offspring have the same seed size as the mother, the
model only applies to apomictic species or to species that are strictly selfing. In order to
apply the results more generally to outbreeding species as well, we must assume that
there occurs no hybridization between the different branches of the evolutionary tree, so
that different lineages breed true. Geritz et al. (1997) argue that if hybrid offspring have
intermediate phenotypes, then evolutionary branching may favor the evolution of
reproductive isolation, because during branching intermediate phenotypes have low
fitness. Specific models support this view (Kisdi and Geritz, in prep.; Doebeli and
Dieckmann, in prep.).

In the model, each plant type produces seeds of one size only. Thus, by
assumption, any variation in seed size in a population is due to differences between
plants rather than within plants. The evolutionarily stable outcomes of the model,
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however, can be interpreted more generally as the result of different plant types
producing seeds of one specific size each, or of one plant type producing seeds of
different sizes in the corresponding frequencies, or any combination of these two
(Geritz, 1995). The corresponding evolutionary dynamics (as opposed to the final
evolutionary outcomes) will generally not be the same, however. The adaptive growth
and branching of the evolutionary tree modeled here, therefore, applies only if each
plant type has its own specific seed size.

Although the model was formulated for annual plants and for germination sites
all with the same amount of resources, Geritz (1995) showed that with extremely
asymmetric competition the same results hold for perennials if R is replaced by the
expected total amount of resources that becomes available in a site during a plant’s
lifetime (also, see Geritz et al. 1988), and for varying amounts of resources among
different sites if R is replaced by its population average. The arguments developed there
directly generalize to intermediate degrees of competitive asymmetry.

In order to compare predicted evolutionarily stable seed size distributions with
observed seed size distributions in real plant populations, competitive asymmetry should
somehow be measured. First, notice from Equation (3) that the ratio of the competitive
abilities of the various plants inside a given germination site is equal to the ratio of the
resources each individual plant obtains. This is due to the denominator of Equation (3)
being the same for all plants present in a given site. We thus have

Inc,—lnc, =InR, —InR,, (15)

where ¢, ¢, and Ry, R, are respectively the competitive abilities and the amount of
resources obtained by two arbitrary plants chosen from the same germination site.
Second, notice from Equation (4) that the competitive asymmetry, o, is equal to the
proportional increase in competitive ability due to an increase in seed size or,
equivalently,

_dlnc
o= .
dm

Combining Equations (15) and (16), it follows that competitive asymmetry can be
estimated by
o =F IR (17)

my, —m,

(16)

where m; and m, denote the size of the respective seeds from which the two plants have
emerged. The quantities R, and R, can in turn be estimated by the total per capita seed
weight or by the total plant dry weight. The estimated competitive asymmetry should be
approximately the same for any two plants selected from the same germination site, and
should moreover be independent of both the local plant density (i.e., the number of
competitors inside the germination site) and the local amount of resources. Notice that
o, describes the potential competitive advantage of a larger seed size independently of
the actual competition intensity, and differs in this respect from other frequently used
measures of plant competition intensity or hierarchy in plant size induced by
competition (Benjamin, 1988; Grace, 1995).
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We are not aware of any empirical data that directly supports the particular
functional form relating seed size to competitive ability. The reason why we have used
the form given in Equation (4) is that it has the desired property that plants from larger
seeds are better competitors and have a disproportionately large advantage over plants
from smaller seeds (Stanton, 1985; Wulff, 1986b). A less realistic property, however,
may be that in the model competitive asymmetry could become arbitrarily large for
sufficiently large differences in seed size. In reality, relative germination date and plant
spacing, which were not included in the model, also affect plant competition (Black and
Wilkinson, 1963; Ross and Harper, 1972; Ford and Diggle, 1981; Howell, 1981), and
may effectively set an upper limit to the maximum possible degree of competitive
asymmetry due to differences in seed size.

If competition is asymmetric, an initial advantage of one individual over its
neighbors is accentuated during subsequent growth, so that the distribution of resources
among different plants becomes increasingly uneven towards the end of the season. If
the growing season is short, individual differences will be small, while if it is long,
differences will be more pronounced. The potential advantage of a larger seed size thus
may depend on the length of the growing season. Season length decreases with global
latitude, which implies that competitive asymmetry is likely to be stronger near the
tropics than at higher latitudes. Since in the model strong competitive asymmetry favors
the coexistence of plants with different seed sizes, we hypothesize that on a global scale
seed size variation should decrease with latitude such that near the arctic only small
seeds remain. Likewise, the model predicts a systematic decline of seed size variation
from the base towards the top of a mountain. Moreover, a change in season length due
to a change in climate may cause competitive asymmetry to vary on a geological time-
scale. Thus, during periods of global warming the model predicts an increase in seed
size variation, while during periods of glaciation we expect less variation.

Most models of competitive asymmetry in plants address the issue of self-
thinning and the emerging size-hierarchy in plant populations (Aikman and Watkinson,
1980; Ford and Diggle, 1981; Benjamin, 1988; Bonan, 1988), or the issue of
biodiversity and limiting similarity (Fagerstrom and Agren 1979; Tilman 1994; Abrams
1996). In an evolutionary context, Rees and Westoby (1997) consider the possibility
of evolutionarily stable coalitions of plants with different seed sizes depending on the
strength of competitive asymmetry. Although in their model they use a different
approach and do not explicitly consider long-term evolutionary dynamics, their results
are largely consistent with ours. Matsuda and Abrams (1994) argue that strong
competitive asymmetry within a species can lead to runaway evolution to self-
extinction. Because large trait values have an associated cost (such as, e.g., a lower per
capita seed number in the present model), runaway evolution is likely to result in
smaller populations. Although in deterministic models populations may never actually
reach zero density, in reality they may become sufficiently small that eventually
stochastic factors cause their extinction. In the present model we assume populations to
be always large enough for demographic stochasticity to be negligible. However, with
very strong competitive asymmetry (large o), this assumption may no longer be
attainable. At a high degrees of competitive asymmetry, seed size must first become
very large (with corresponding low seed numbers and low population density) before it
could undergo evolutionary branching (cf. Figure 7b,c). Demographic stochasticity then
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can no longer be ignored and may drive the population to extinction before it reaches the
branching point. Self-extinction may in turn lead to taxon cycles if, on a larger time-
scale, the habitat is periodically recolonized by seeds produced -elsewhere.
Recolonization then is most probably due to small seeds, because they are produced in
larger numbers, and tend to have a higher dispersibility. (For related examples of taxon
cycles, see, e.g., Maynard Smith and Brown, 1986; Taper and Case, 1992; Abrams and
Matsuda, 1994; Matsuda and Abrams, 1994.) Evolutionary cycles found by Law et al.
(1997) in a model with competitive asymmetry are of a different type and are driven by
differences in competitive asymmetry within species, and are not possible in the present
model.

Various results presented here are model-independent and point the way to a
more general evolutionary bifurcation theory describing how the number and stability
properties of evolutionary singularities change as a consequence of changes in model
parameters. Such evolutionary bifurcation theory differs from classical bifurcation
theory (e.g., Kuznetsov, 1995) in that more than one stability concept is involved, that
is, evolutionary stability and convergence stability. Geritz et al. (1997a,b) also consider
two additional stability concepts concerning the invading capability of the singular
strategy and the possibility of nearby polymorphisms. Bifurcation of evolutionary
singularities, therefore, may yield both novel and potentially more complex patterns
than in the classical theory. For example, we showed that singular strategies can
annihilate one another (or, equivalently, can simultaneously appear if the parameter is
changed in the opposite direction) either as a pair of a non-ESS repeller and a branching
point, or as a pair of a convergence stable ESS and an ESS that lacks convergence
stability. The first possibility is illustrated for the present model in Figure 6, and shows
that an ESS necessarily must lose its evolutionary stability before it can disappear by
merging with an evolutionary repeller. The second possibility (which does not occur in
the model) arises if the pattern of shading in Figure 6 is reversed. Moreover, in the
Appendix we show that isoclines connect to the boundary of the set of protected
polymorphisms only at specific places, and that as a consequence there is an intimate
relation between evolutionary singularities on different levels of polymorphism. For
example, in the present model loss of global evolutionary stability always coincides with
the emergence of an evolutionarily stable singularity on a higher level of polymorphism.
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Appendix

Isoclines and their connection to the boundary of the area of
coexistence

Isoclines connect to the boundary of the area of coexistence only at specific places
(Metz et al., 1996). These places depend on the positions of the monomorphic
singularities and on the shape of the area of coexistence. Moreover, the direction of the
fitness gradient on either side of the isocline close to its connection to the boundary, and
also whether the isocline corresponds to a local fitness maximum or fitness minimum,
too, follow from the monomorphic singularities and the shape of the area of coexistence.
As a consequence, there is an intimate relationship between monomorphic and
dimorphic singularities that can be used to understand various outcomes of the present
model. The theory given below applies more generally, however, and is not just
confined to the present model. Moreover, similar arguments apply to higher levels of
polymorpisms as well, although a graphical representation becomes troublesome.

Figure 14 shows the area of coexistence for aR = 6 and SR = 25 with the m,-
isoclines and arrows that indicate the direction of evolution in m;. (We here only
consider the m;-isocline, because the m;,-isocline is obtained by simply taking the mirror
image of the m-isocline along the main diagonal.) The boundary of the area of
coexistence is made up of two curves defined by W,,(m,) =1 or W,,(m;) = 1. The m,-
isocline connects to segments of the boundary defined by W, (m,) = 1 at any point that
is vertically above a singular strategy on m-axis (Figure 14; solid circles). The reason
for this can be seen intuitively as follows. Inside the area of coexistence m, is protected
against extinction by an annual growth rate that is larger than one when m, happens to
be rare. On the boundary where W,,(m,) = 1 this is no longer the case, so that if we
approach the boundary from the inside of the area of coexistence, the frequency of m, at
the demographic equilibrium gradually dwindles to zero. Near the boundary, therefore,
the effect of m, on the evolution of m; is negligible, and the direction of evolution in m;,
must be the same as if the population were monomorphic. In particular, if m; coincides
with a singular strategy in a monomorphic population, then any point on the boundary
vertically above m; will also have a fitness gradient that is zero and thus must lie on the
my-isocline (Figure 14; solid circles). Moreover, if m; is evolutionarily stable or lacks
evolutionary stability, then on the boundary the isocline corresponds also to,
respectively, a local fitness maximum (Figure 14; points “q” and “r”) or a local fitness
minimum (Figure 14; points “0”, “p”, “t” and “u”).

The m;-isocline connects to segments of the boundary defined by W,,,(m;) =1 at
any point where the boundary has a horizontal tangent (Figure 14; open circles). The
reason for this can be seen intuitively as follows. For a population virtually on the
boundary of the area of coexistence, only mutants of m; further into the interior of the
area of coexistence can invade, whereas mutations directed towards the outside cannot.
In other words, along the boundary, the local fitness gradient with respect to m; points to
the inside of the area of coexistence. At each point where the boundary has a horizontal
tangent, therefore, the fitness gradient changes direction, so that the point of contact
with the tangent must lie on the m,-isocline (Figure 14; open circles). If at the point of
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Figure 14. Connections of the mj-isocline to the boundary of the area of coexistence for aR = 6 and
PR =25. The monomorphic ESS, repeller and branching point are denoted by, respectively, m;*, m,* and
ms *,

contact the boundary is locally convex, the fitness gradient points towards the isocline
(Figure 14; point “v”). Moreover, since any change in m; at the point of contact brings
the population outside the area of coexistence, no mutant can invade, and hence the
isocline corresponds to a fitness maximum with respect to mutations in m,. If the
boundary of the area of coexistence at the point of contact is locally concave, however,
then the fitness gradient points away from the isocline (Figure 14; point “s”). Moreover,
any change in m; at the point of contact brings the population inside the area of
coexistence, so that any mutant could invade, and the isocline thus represents a local
fitness minimum with respect to mutations in m;.

Loss of global evolutionary stability and the emergence of
new singularities

An ESS loses its global evolutionary stability when in the pairwise invasibility plot the
set of potential invading mutants extends above the point on the horizontal axis
representing the ESS (e.g., Figure 5; aR = 5.0, SR = 25). For a population already settled
at the ESS this has no consequences if evolution proceeds by small steps only and the
potentially invading mutants are too dissimilar from the resident type to be generated by
a single mutation. However, if the extension of the set of potentially invading mutants
also leads to an extension of the area of coexistence, then a new, evolutionarily stable
dimorphic singularity appears at the very same moment the ESS loses it global
evolutionary stability. This is a direct consequence of the way isoclines are connected to
the boundary of the area of coexistence. Similar arguments apply to higher levels of
polymorphism although a graphical representation may no longer be possible.

Figure 15 shows the area of coexistence with isoclines and invasion cones
before, during and after the ESS, m*, loses its global evolutionary stability at,
respectively, aR = 4.40, 4.45 and 4.50, and for fixed SR = 15. When the ESS is still
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Figure 15. Loss of global evolutionary stability of an ESS and the simultaneous appearance of an
evolutionarily stable and convergence stable dimorphic singularity. (a) aR = 4.40, (b) aR = 4.45 and
(¢) aR = 4.50 and fixed SR = 15. The ESS is denoted by m*.

globally evolutionarily stable (Figure 15a), the isoclines do not intersect, and hence
there are no dimorphic singularities. The m,-isocline connects points “q” and “r” where
the boundary of the area of coexistence has horizontal tangents. Its mirror image, the m,-
isocline, connects points “0” and “p”. When the ESS is about to lose its global
evolutionary stability (Figure 15b), point “0” has moved to a position directly above the
ESS, and therefore now also coincides with a point on the m;-isocline. At this stage,
however, the m;-isocline exists in a collapsed state consisting only of one point on the
boundary. Moreover, as point “o0” belongs to both the m;-isocline and the m;,-isocline, it
also represents a dimorphic singularity. Once the ESS has lost its global evolutionary
stability (Figure 15¢), there are two points (“s” and “t”) on the boundary of the area of
coexistence that lie directly above the ESS. The m;-isocline is therefore no longer a
single point, but has expanded into a curve with endpoints “s” and “t”, while at the same
time the dimorphic singularity has moved from the boundary into the interior of the area
of coexistence. During the initial phase just after the ESS has lost its global evolutionary
stability, the dimorphic singularity is necessarily evolutionarily stable, because both the
my-isocline (which inherits its stability properties from the ESS) and the m,-isocline in
the neighborhood of its endpoint “0” (where the area of coexistence is locally convex)

correspond to fitness maxima.

The dimorphic singularity in its primordial stage on the boundary of the area of
coexistence when the ESS is just about to lose its global evolutionary stability
(Figure 15b) consist of two seed types, the smaller of which has the same seed size as
the ESS, while the other represents the first of mutants that can invade the ESS at
slightly higher values of aR, but has still a zero frequency itself. This explains why in
Figure 10b it is the lower and not the upper branch of the dimorphism that connects to
the thin dotted line representing the monomorphic singularities. For values of SR below
point “P” in Figure 10a, the situation is the reverse, because then the first of mutants
that can invade the ESS has a seed size smaller than that of the ESS (Figure 10c). Only
at point “P” itself where the ESS loses its global and local evolutionary stability at the
same time, the first mutants to invade are on either side and arbitrarily close to the
former ESS, so that in its primordial stage both seed sizes of the dimorphic singularity
coincide with the monomorphic singularity.



31

References

Abrams, P. A. (1996) Limits to the similarity of competitors under hierarchical lottery
competition. American Naturalist 148, 211-219.

Abrams, P. A., and Matsuda, H. (1994) The evolution of traits that determine ability in
competitive contests. Evolutionary Ecology 8, 667-686.

Abrams, P. A., Matsuda, H. and Harada, Y. (1993) Evolutionary unstable fitness
maxima and stable fitness minima of continuous traits. Evolutionary Ecology 7,
465-487.

Agren, G. I. and Fagerstrom, T. (1984) Limiting dissimilarities in plants: Randomness
prevents exclusion of species with similar competitive abilities. Oikos 43, 369-
375.

Aikman, D. P. and Watkinson, A. R. (1980) A model for growth and self-thinning in
even-aged monocultures of plants. Annals of Botany 45, 419-427.

Arnold, S. (1983) Sexual selection: The interface of theory and empiricism. In: P.
Bateson (ed.) Mate choice, pp. 67-107, Cambridge University Press, Cambridge.

Bell, G., Lechowicz, M. J. and Schoen, D. J. (1991) The ecology and genetics of fitness
in forest plants. III. Environmental variance in natural populations of Impatiens
pallida. Journal of Ecology 79, 697-713.

Benjamin, L. R. (1988) A single equation to quantify the hierarchy in plant size induced
by competition within monocultures. Annals of Botany 62, 199-214.

Black, J. N. (1958) Competition of plants of different initial seed sizes in swards of
subterranean clover (Trifolium subterraneum L.) with particular reference to leaf
area and the light microclimate. Australian Journal of Agricultural Research 9,
299-318.

Black, J. N. and Wilkinson, G. N. (1963) The role of time of emergence in determining
the growth of individual plants in swards of subterranean clover (Trifolium
subterraneum L..). Australian Journal of Agricultural Research 14, 628-638.

Bonan, G. B. (1988) The size structure of theoretical plant populations: Spatial patterns
and neighborhood effects. Ecology 69, 1721-1730.

Christiansen, F. B. (1991) On conditions for evolutionary stability for a continuously
varying character. American Naturalist 138, 37-50.

Cipollini, M. L. and Stiles, E.W. (1991) Seed predation by the bean weevil
Acanthoscelides obtectus on Phaseolus species: consequences for seed size, early
growth and reproduction. Oikos 60, 205-214.

Eshel, 1. (1983) Evolutionary and continuous stability. Journal of Theoretical Biology
103, 99-111.

Eshel, I. and Motro, U. (1981) Kin selection and strong evolutionary stability of mutual
help. Theoretical Population Biology 19, 420-433.



32

Eshel, 1., Motro, U. and Sansone, E. (1997) Continuous stability and evolutionary
convergence. Journal of Theoretical Biology 185, 333-343.

Fagerstrom, T. and Agren, G. I. (1979) Theory for coexistence of species differing in
regeneration properties. Oikos 33, 1-10.

Fenner, M. (1983) Relationships between seed weight, ash content and seedling growth
in twenty-four species of Compositae. New Phytologist 95, 697-706.

Ford, E. D. (1975) Competition and stand structure in some even-aged plant
monocultures. Journal of Ecology 63, 311-333.

Ford, E. D. and Diggle, P. J. (1981) Competition for light in a plant monoculture
modeled as a spatial stochastic process. Annals of Botany 48, 481-500.

Garcia-Dorado, A. (1990) Some evolutionary properties of parental investment per
offspring in a heterogeneous environment. Journal of Theoretical Biology 147,
101-114.

Geritz, S. A. H. (1995) Evolutionarily stable seed polymorphism and small-scale spatial
variation in seedling density. American Naturalist 146, 685-707.

Geritz, S. A. H. (1997) Coevolution of seed size and seed predation. Evolutionary
Ecology (in press).

Geritz, S. A. H., Kisdi, E., Meszéna, G. and Metz, J. A. J. (1997a) Evolutionarily
singular strategies and the adaptive growth and branching of the evolutionary tree.
Evolutionary Ecology (in press).

Geritz, S. A. H., Metz, J. A. J., Kisdi, E. and Meszéna, G. (1997b) The dynamics of
adaptation and evolutionary branching. Physical Review Letters 78, 2024-2027.

Geritz, S. A. H., Metz, J. A. J., Klinkhamer, P. G. L. and De Jong, T. J. (1988)
Competition in safe-sites. Theoretical Population Biology 33, 161-180.

Grace, J. B. (1995) On the measurement of plant competition intensity. Ecology 76,
305-308.

Grime, J. P. and Jeffrey, D. W. (1965) Seedling establishment in vertical gradients of
sunlight. Journal of Ecology 53, 621-642.

Gross, K. L. (1984) Effects of seed size and growth form on seedling establishment of
six monocarpic perennial plants. Journal of Ecology 72, 369-387.

Gross, K. L. and Werner, P. A. (1982) Colonizing abilities of “biennial” plant species in
relation to ground cover: implications for their distributions in a successional sere.
Ecology 63, 921-931.

Harper, J. L., Lovell, P. H. and Moore, K. G. (1970) The shapes and sizes of seeds.
Annual Review of Ecology and Systematics 1, 327-356.

Haskins, F. A. and Gorz, H. J. (1975) Influence of seed size, planting depth, and
companion crop on emergence and vigor of seedlings in sweetclover. Agronomy
Journal 67, 652-654.



33

Houssard, C. and Escarré, J. (1991) The effects of seed weight on growth and
competitive ability of Rumex acetosella from two successional old-fields.
Oecologia 86, 236-242.

Howell, N. (1981) The effect of seed size and relative emergence time on fitness in a
natural population of Impatiens capensis Meerb. (Balsaminaceae). American
Midland Naturalist 105, 312-320.

Jones, M. B. (1978) Aspects of the biology of the big-handed crab, Heterozius
rohendifrons (Decapoda: Brachyura), from Kaikoura, New Zealand. New Zealand
Journal of Zoology 5, 783-794.

Jurado, E. and Westoby, M. (1992) Seedling growth in relation to seed size among
species of arid Australia. Journal of Ecology 80, 407-416.

Kisdi, E. and Meszéna, G. (1993) Density-dependent life history evolution in fluctuating
environments. In: C. W. Clark, and J. Yoshimura (eds.). Adaptation in a stochastic
environment. Lecture Notes in Biomathematics 98, 26-62.

Kisdi, E. and Meszéna, G. (1995) Life history with lottery competition in a stochastic
environment: ESSs which do not prevail. Theoretical Population Biology 47, 191-
221.

Kuznetsov, Y. A. (1995) Ellements of applied bifurcation theory. Springer-Verlag New
York, Inc.

Lalonde, R. G. (1991) Optimal offspring provisioning when resources are not
predictable. American Naturalist 138, 680-686.

Law, R., Marrow, P. and Dieckmann, U. (1997) On evolution under asymmetric
competition. Evolutionary Ecology 11, 485-501.

Matessi, C. and Di Pasquale, C. (1996) Long term evolution of multi-locus traits.
Journal of Mathematical Biology 34, 613-653.

Matsuda, H. and Abrams, P. A. (1994) Runaway evolution to self-extinction under
asymmetric competition. Evolution 48, 1764-1772.

Maynard Smith, J. (1982) Evolution and the theory of games, Cambridge University
Press, Cambridge.

Maynard Smith, J. and Brown, R. L. W. (1986) Competition and body size. Theoretical
Population Biology 30, 166-179.

McGinley, M. A. and Charnov, E. L. (1988) Multiple resources and the optimal balance
between size and number of offspring. Evolutionary Ecology 2, 77-84.

McGinley, M. A., Temme, D. H. and Geber, M. A. (1987) Parental investment in
offspring in variable environments: Theoretical and empirical considerations.
American Naturalist 130, 370-398.

Meszéna, G., Czibula, 1. and Geritz, S. A. H. (1997) Adaptive dynamics in a two-patch
environment: A toy model for allopatric and parapatric speciation. J. Biol. Sys. (in
press).



34

Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A. and Van Heerwaarden, J.
S. (1996) Adaptive dynamics: A geometrical study of the consequences of nearly
faithful reproduction. In: S. J. van Strien and S. M. Verduyn Lunel (eds.).
Stochastic and spatial structures of dynamical systems. North Holland, Elsevier.
pp. 183-231.

Metz, J. A. J., Nisbet, R. and Geritz, S. A. H. (1992) How should we define ‘fitness’ for
general ecological scenarios? Trends in Ecology and Evolution 7, 198-202

Michaels, H. J., Benner, B., Hartgerink, A. P., Lee, T. D. and Rice, S. (1988) Seed size
variation: magnitude, distribution, and ecological correlates, Evolutionary Ecology
2, 157-166.

Mogie, M., Latham, J. R. and Warman, E. A. (1990) Genotype-independent aspects of
seed ecology in Taraxacum. Oikos 59, 175-182.

Osunkoya, O.0., Ash, J. E., Hopkins, M. S. and Graham, A. W. (1994) Influence of
seed size and seedling ecological attributes on shade-tolerance of rain-forest tree
species in northern Queensland. Journal of Ecology 82, 149-163.

Paris, O. H. and Pitelka, F. A. (1962) Population characteristics of the terrestrial isopod
Armadillidium vulgare in California grassland. Ecology 43, 229-248.

Rees, M., and Westoby, M. (1997) Game-theortical evolution of seed mass in multi-
species ecological models. Oikos 78, 116-126.

Perrins, C. M. (1965) Population fluctuations and clutch size in the great tit, Parus major
L. Journal of Animal Ecology 34, 601-647.

Ross, M. A. and Harper, J. L. (1972) Occupation of biological space during seedling
establishment. Journal of Ecology 60, 77-88.

Sakai, S. (1995) A model for seed size variation among plants. Evolutionary Ecology 9,
495-507.

Sakai, S. and Sakai, A. (1995) Flower size-dependent variation in seed size: Theory and
a test. American Naturalist 145, 918-934.

Schluter, D. (1988) Estimating the form of natural selection on a quantitative trait.
Evolution 42, 849-861.

Smith, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number
of offspring. American Naturalist 108, 499-506.

Stanton, M. L. (1984) Seed variation in wild radish: effect of seed size on components
of seedling and adult fitness. Ecology 65, 1105-1112.

Stanton, M. L. (1985) Seed size and emergence time within a stand of wild radish
(Raphanus raphanistrum L.): the establishment of a fitness hierarchy. Oecologia
67, 524-531.

Taper, M. L. and Case, T. J. (1992) Models of character displacement and the
theoretical robustness of taxon cycles. Evolution 46, 317-333.

Taylor, P. D. (1989) Evolutionary stability in one-parameter models under weak
selection. Theoretical Population Biology 36, 125-143.



35

Temme, D. H. (1986) Seed size variability: A consequence of variable genetic quality
among offspring? Evolution 40, 414-417.

Tilman, D. (1994) Competition and biodiversity in spatially structured habitats. Ecology
75, 2-16.

Van Tienderen, P. and De Jong, G. (1986) Sex ratio under the haystack model:
Polymorphism may occur. Journal of Theoretical Biology 122, 69-81.

Venable, D. L. (1985) The evolutionary ecology of seed heteromorphism. American
Naturalist 126, 577-595.

Vincent, T. L. and Brown, J. S. (1988) The evolution of ESS theory. Annual Review of
Ecology and Systematics 19, 423-443.

Weiner, J. (1990) Asymmetric competition in plant populations. Trends in Ecology and
Evolution 5, 360-364.

Westoby, M., Jurado, E. and Leishman, M. (1992) Comparative evolutionary ecology of
seed size, Trends in Ecology and Evolution 7, 368-372.

Winn, A. A. (1985) Effects of seed size and germination site on seedling emergence of
Prunella vulgaris in four habitats. Journal of Ecology 73, 831-840.

Winn, A. A. (1988) Ecological and evolutionary consequences of seed size in Prunella
vulgaris. Ecology 69,1537-1544.

Wulff, R. D. (1986a) Seed size variation in Desmodium paniculatum. II. Effects on
seedling growth and physiological performance. Journal of Ecology 74, 99-114.

Wulff, R. D. (1986b) Seed size variation in Desmodium paniculatum. III. Effects on
reproductive yield and competitive ability. Journal of Ecology 74, 115-121.




