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Abstract

A tritrophic food chain chemostat model composed of a prey with Monod type nutri-
ent uptake, a Holling type II predator and a Holling type II exploited superpredator
is considered in this paper. The bifurcations of the model show that dynamic com-
plexity first increases and then decreases with the nutrient supplied to the bottom
of the food chain. Extensive simulations prove that the same holds for food yield,
i.e., there exists an optimum nutrient supply which maximizes mean food yield.
Finally, a comparative analysis of the results points out that the optimum nutrient
supply practically coincides with the nutrient supply separating chaotic dynamics
from high-frequency cyclic dynamics. This reinforces the idea, already known for
simpler models, that food yield maximization requires that the system behaves on
the edge of chaos.
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Food Chains in the Chemostat:

Relationships Between Mean Yield

and Complex Dynamics

Alessandra Gragnani
Oscar De Feo
Sergio Rinaldi

1 Introduction

Aim of this paper is to investigate, through bifurcation analysis (Guckenheimer and
Holmes, 1983), the relationships between dynamic complexity and mean yield of
exploited food chains. This topic was first investigated by Rosenzweig in his famous
paper on the paradox of enrichment (Rosenzweig, 1971), where he says “Man must
be very careful in attempting to enrich an ecosystem in order to increase its food
yield. There is a real chance that such activity may result in decimation of the
food species that are wanted in greater abundance”. Rosenzweig’s analysis is based
on a ditrophic food chain model composed of a logistic prey x1 and a predator x2

with saturating functional response. Enrichment is performed by increasing the prey
carrying capacity K while harvest is exerted at constant effort so that mean food
yield is proportional to mean predator abundance x2.

Indeed, it has been shown (May, 1972; Gilpin, 1972) that for low prey carrying
capacities such food chains settle to a positive equilibrium, while for higher carrying
capacities the asymptotic regime is cyclic. The critical value K∗ of the carrying
capacity separating stationary from cyclic regimes corresponds to a supercritical
Hopf bifurcation (Sarkar et al., 1991). In other words, the positive equilibrium loses
stability when the carrying capacity is increased and when it becomes unstable, the
attractor becomes a stable limit cycle. Moreover, it is easy to derive analytically
that for K < K∗ predator biomass at equilibrium increases with carrying capacity.
Finally, it can be proved (De Feo and Rinaldi, 1997) that if prey time response is
remarkably smaller than predator time response, the mean value of predator biomass
for K > K∗ is lower than the equilibrium value for K = K∗. Thus, in conclusion, the
mean yield associated to the attractor of a ditrophic food chain first increases and
then decreases with prey carrying capacity and reaches its maximum for K = K∗,
i.e., when the dynamic behavior becomes cyclic. The above results suggest the use
of the following simple operating rules if one is interested in maximizing mean yield

• if a ditrophic food chain is stationary, then increase nutrient supply

• if a ditrophic food chain is cyclic, then decrease nutrient supply
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The systematic use of these rules should slowly push exploited ditrophic food chains
to behave on the edge of their most complex dynamic regime, namely the cyclic
regime.

Recently, the study of the relationships between dynamic complexity and mean
yield has been extended to tritrophic food chains composed of a logistic prey x1, a
Holling type II predator x2 and a Holling type II exploited superpredator x3, i.e.,
the so-called Rosenzweig-MacArthur tritrophic food chain. Such food chains have
a very rich behavior, covering the whole spectrum of dynamic regimes, including
chaos (Hogeweg and Hesper, 1978; Scheffer, 1991; Hastings and Powell, 1991; Mc-
Cann and Yodzis, 1994; Abrams and Roth, 1994). Detailed bifurcation analysis
performed by different authors (Klebanoff and Hastings, 1994; McCann and Yo-
dzis, 1995; Kuznetsov and Rinaldi, 1996) show that stationary, cyclic and chaotic
coexistence is possible. Moreover, food chains with time responses increasing from
bottom to top have cyclic regimes which are either low-frequency or high-frequency
regimes (Muratori and Rinaldi, 1992). The geometry of the corresponding limit
cycles is shown in Fig. 1. The low-frequency limit cycles (Fig. 1a) are characterized
by large and slow variations of the superpredator and by high-frequency bursts of
the prey and predator communities. By contrast, high-frequency limit cycles (Fig.
1b) are characterized by almost steady superpredator populations. In conclusion,
Rosenzweig-MacArthur food chains can be grouped into five classes (those for which
coexistence is not possible and those for which coexistence is stationary, cyclic at
low-frequency, cyclic at high-frequency, and chaotic) and the boundaries of such
classes in parameter space can be explicitly produced through numerical bifurca-
tion analysis. In general, the region of chaotic coexistence in any two-dimensional
parameter space is a relatively narrow fractal band delimited on one side by the
region of low-frequency cyclic coexistence and on the other side by the region of
high-frequency cyclic coexistence (Kuznetsov and Rinaldi, 1996). Consistently, on
one side the strange attractor resembles the low-frequency limit cycle shown in Fig.
1a and is called “teacup” attractor (Hastings and Powell, 1991), while on the other
side the strange attractor looks like the high-frequency limit cycle shown in Fig. 1b
and is called “cut teacup” attractor.

The influence of prey carrying capacity on superpredator mean abundance x3

has also been investigated through simulation (Abrams and Roth, 1994a,b) and the
results suggest that in many circumstances x3 first increases and then decreases
with prey carrying capacity. It is therefore possible to simply classify food chains
in under- and over-supplied food chains (De Feo and Rinaldi, 1997). The first ones
are those in which a small increase of prey carrying capacity gives rise to a small
increase of mean abundance of the top trophic level. Viceversa, over-supplied food
chains are those that can be marginally improved through impoverishment.

Although, in principle, one should not expect any particular relationship between
the two above classifications of food chains, it has been recently shown (De Feo
and Rinaldi, 1997), that a very strong relationship exists, namely high-frequency
cyclic food chains are over-supplied, while all other food chains are under-supplied.
The most intriguing implication of this discovery is that food chains with maximum
mean yield are on the edge of their most complex behavior, namely a chaotic regime.
Obviously, this conclusion generalizes the above described findings on ditrophic food
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Figure 1: Low-frequency (a) and high-frequency (b) limit cycles of Rosenzweig-
MacArthur tritrophic food chain (x1 = prey, x2 = predator, x3 = superpredator).

chains. Consistently, one can generalize the two operating rules mentioned above in
the following way:

(i) if a tritrophic food chain is stationary, cyclic at low-frequency or chaotic, then
increase nutrient supply

(ii) if a tritrophic food chain is cyclic at high-frequency, then decrease nutrient
supply

It is important to notice that these rules allow one to take a decision about en-
riching or impoverishing an exploited food chain even in the absence of informations
on system parameters. Moreover, the systematic application of these rules should
slowly improve mean food yield and gradually transform food chains with simple
behavior into chaotic or almost chaotic food chains.

Since all the above results have been derived by analyzing food chain models in
which the prey is logistic, it is of interest to determine if such results hold also in the
case the prey feeds on a limiting nutrient x0 available in a pool. For this reason, the
Rosenzweig-MacArthur tritrophic food chain is complemented by an extra differen-
tial equation for the nutrient. Such an equation is simply the balance of the various
flows regulating the nutrient concentration, namely inflow and outflow rates, nutri-
ent recycling due to decomposition of dead individuals of the three populations and
nutrient uptake rate of the prey population. Assuming that the nutrient uptake per
unit of prey is a Monod function of the nutrient, the model turns out to be a natural
extension of the prey-predator chemostat model proposed by Canale (1969, 1970)
and later used in many studies of protozoan predation on bacteria and of aquatic
ecosystems (e.g., Canale et al., 1973; Jost et al., 1973; Drake and Tsuchiya, 1976;
Bader et al., 1976). Such a ditrophic food chain model has been deeply investigated
(Butler et al., 1983; Cunningham and Nisbet, 1983; Waltman, 1983) and the result
is that for sufficiently low inflow and outflow rates the dynamics observed in the
chemostat are the same as those predicted by the Rosenzweig-MacArthur ditrophic
food chain, i.e., for any parameter setting there is only one attractor which is either
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an equilibrium or a limit cycle. By contrast, for too high inflow and outflow rates
prey and, hence, predator cannot survive because they are simply washed out from
the chemostat. The dynamics of Canale’s chemostat model have been also studied in
the case of periodically varying parameters (Kot et al., 1992; Pavlou and Kevrekidis,
1992) and shown to be equivalent (except for washout) to those of the periodically
forced Rosenzweig-MacArthur model (Kuznetsov et al., 1992; Rinaldi et al., 1993;
Gragnani and Rinaldi, 1995).

Aim of this paper is to study the dynamics of tritrophic food chains embed-
ded in the chemostat and to show, once more, that such dynamics are equivalent
(except for washout phenomena) to those of the Rosenzweig-MacArthur tritrophic
food chain. This will technically be accomplished by comparing the bifurcation dia-
grams of the two models and, in particular, their codimension-2 bifurcation points.
Moreover, it will be shown that the relationship between dynamic complexity and
mean yield pointed out for Rosenzweig-MacArthur food chains holds also in the case
of a tritrophic food chain embedded in a chemostat. This is the most important
contribution of the paper. Theoretically, it shows that the equivalence between the
two models is really profound; practically it suggests interesting operating rules for
the management of exploited aquatic ecosystems.

2 The models

The Rosenzweig-MacArthur model of tritrophic food chains is the following

dx1

dt
= x1

[
r

(
1− x1

K

)
− a2x2

b2 + x1

]
dx2

dt
= x2

[
e2

a2x1

b2 + x1
− a3x3

b3 + x2
− d2

]
(1)

dx3

dt
= x3

[
e3

a3x2

b3 + x2
− d3

]
where x1, x2, and x3 are prey, predator and superpredator biomass, r and K are
prey growth rate and carrying capacity, and ai, bi, ei, and di, i = 2, 3, are maximum
predation rate, half saturation constant, efficiency, and death rate of predator (i = 2)
and superpredator (i = 3). If the superpredator is exploited, its mortality d3 is the
sum of basic mortality and harvesting effort, so that food yield is proportional to
superpredator biomass. Given a food chain, it is always possible, at least in principle,
to enrich it or impoverish it by increasing or decreasing the supply of nutrients to
the bottom of the chain. This can be realized through various actions which very
often influence only the prey carrying capacity K (Oksanen et al., 1981; Abrams,
1993) but can also influence the prey growth rate (De Feo and Rinaldi, 1997).

As already said, tritrophic food chains embedded in a chemostat can be described
by adding to the variables x1, x2, and x3 an extra state variable x0 denoting the
concentration of the nutrient in the chemostat. The corresponding model, from now
on called Canale’s model, is the following

dx0

dt
= D(xi − x0)−

a1x0

b1 + x0
x1
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dx1

dt
= x1

[
e1

a1x0

b1 + x0

− a2x2

b2 + x1

− d1 − ε1D
]

(2)

dx2

dt
= x2

[
e2

a2x1

b2 + x1
− a3x3

b3 + x2
− d2 − ε2D

]
dx3

dt
= x3

[
e3

a3x2

b3 + x2

− d3 − ε3D
]

where D is the constant inflow rate (equal to outflow rate), xi is the constant con-
centration of the nutrient in the inflow, a1x0/(b1+x0) is the nutrient uptake per unit
prey, and εiD, i = 1, 2, 3, is the washout rate of the i-th population. If the super-
predator is exploited, its mortality rate d3 comprises also the harvesting effort and
again food yield is proportional to superpredator biomass. Moreover, enrichment
can be performed by increasing the inflow rate D and/or the nutrient concentration
xi of the inflow.

The parameters controlling the enrichment, namely (K, r) for model (1) and
(xi, D) for model (2), are the parameters with respect to which bifurcation analysis
will be performed. All other parameters will be kept fixed at specified reference
values. For model (1) these are: a2 = 5/3, b2 = 1/3, e2 = 1, d2 = 0.4, a3 =
0.05, b3 = 0.5, e3 = 1, d3 = 0.01, while for model (2) they are a1 = 1.25, b1 =
8, e1 = 0.4, d1 = 0.01, ε1 = 1, a2 = 0.33, b2 = 9, e2 = 0.6, d2 = 0.001, ε2 =
0.8, a3 = 0.021, b3 = 15.19, e3 = 0.9, d3 = 0.0001, ε3 = 0.1. The reference
parameter values selected for model (1) have already been used by many authors
(Hastings and Powell, 1991; Klebanoff and Hastings, 1994; Abrams and Roth, 1994a;
Kuznetsov and Rinaldi, 1996; De Feo and Rinaldi, 1997, 1998). The reference
parameter values selected for model (2) are a complement of those used by some
authors for ditrophic food chains (Cunningham and Nisbet, 1983; Kot et al., 1992)
and are not too different from those used by Kooi et al. (1997) and Boer et al.
(1997) for tritrophic food chains. Notice that in both parameter settings death
and predation rates are decreasing with the trophic level, indicating that the time
responses increase from bottom to top.

It is important to notice that the chemostat models considered in the literature
are very often a special case of model (2), namely that corresponding to

εi = 1, di = 0 i = 1, 2, 3 (3)

Under these circumstances it is straightforward to verify that the variable

X(t) = x0(t) +
x1(t)

e1

+
x2(t)

e1e2

+
x3(t)

e1e2e3

− xi

obeys the differential equation

dX(t)

dt
= −DX(t)

and therefore tends asymptotically to zero. This implies that the asymptotic modes
of behavior of such a chemostat can be studied by eliminating one state variable,
say the nutrient x0(t), which can be computed for large values of t from the other
state variables with the formula

x0(t) = xi −
x1(t)

e1

− x2(t)

e1e2

− x3(t)

e1e2e3

. (4)
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In conclusion, under assumptions (3) the asymptotic behavior of the fourth order
chemostat model (2) can be analyzed by studying a reduced third order chemostat
model. One could therefore naturally expect that such a reduced model has strong
similarities with the Rosenzweig-MacArthur model (1) which is also a third order
model. Nevertheless, conditions (3) are questionable at least for three reasons. First,
because in many food chains (for example, phytoplankton - zooplankton - fish) the
individuals of the highest trophic levels have the capability of resisting to washout,
so that εi < 1, at least for i = 3. Second, because the assumption di = 0, supported
by the observation that basic death rate is negligeable with respect to washout
rate D, would limit the use of model (2) to aquatic ecosystems with relatively high
inflow and outflow rates. Third, because condition d3 = 0 is in conflict with the
assumption that the food chain is exploited by harvesting the superpredator. For all
these reasons, the reference parameter values of the chemostat model do not satisfy
conditions (3) and the analysis is performed directly on model (2) and not on a
reduced order model. Thus, one cannot argue that the strong similarities that will
be shown to exist between models (1) and (2) could be simply discovered through a
suitable transformation like eq. (4).

3 Bifurcation analysis and complex dynamics

The bifurcations of models (1) and (2) must be computed in order to make a sound
comparative analysis. The study is performed by varying two control parameters,
namely K and r for model (1) and xi and D for model (2). The choice of these
control parameters is dictated by the aim of the study which focuses on the role of
enrichment. All other parameters are kept constant at the reference values men-
tioned in the previous section. The analysis of the equilibria of models (1) and
(2) and of their local bifurcations has been carried out analytically or by means
of specialized software for algebraic manipulation. By contrast, the analysis of the
limit cycles and their local bifurcations has been performed numerically by means
of AUTO (Doedel and Kenévez, 1986). Finally, the analysis of global bifurcations
(mainly homoclinic bifurcations) has been carried out by means of a continuation
method described in Champneys and Kuznetsov (1994). Details on the methodology
are not reported here because they are already available in the literature (Kuznetsov
and Rinaldi, 1996; De Feo and Rinaldi, 1997).

The results of the analysis are shown in Fig. 2, where two bifurcation diagrams
are reported, the first concerning model (1) and the second model (2).

The symbols identifying each bifurcation curve have the following meaning:

TE : transcritical of equilibria
FE : fold of equilibria
Hp : planar Hopf
H− : supercritical Hopf
H+ : subcritical Hopf
TC : transcritical of cycles
FC : fold of cycles

The continuous lines refer to catastrophic bifurcations of attractors, and the dashed
ones refer to non-catastrophic bifurcations of attractors or to bifurcations of saddles
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and repellors. When a continuous line is crossed, the attractor changes macroscop-
ically. By contrast, when a dashed line is crossed, there is no discontinuity in the
attractor and the dynamic regime changes smoothly.

The two diagrams are not complete since some curves produced with AUTO (in
particular, flip and fold bifurcation curves forming the boundary of the region of
chaotic coexistence) have not been drawn for simplicity. Readers interested in more
details on the Rosenzweig-MacArthur model can refer to Kuznetsov and Rinaldi
(1996) for the bifurcations delimiting the region of chaotic coexistence and to De
Feo and Rinaldi (1998) for some results on homoclinic bifurcations, while readers
interested in Canale’s model can refer to Kooi et al. (1997) and Boer et al. (1997)
where a bifurcation diagram similar to that of Fig. 2b is presented for a different
parameter setting and discussed with emphasis on global bifurcations.

In order to recognize that the two bifurcation diagrams of Fig. 2 are similar
one to each other, one should concentrate on their codimension-2 bifurcation points,
which are the points where two or more bifurcation curves merge (Kuznetsov, 1995).
These points are sometimes called organizing centers, because they determine the
structure of the entire bifurcation diagram.

In Fig. 2a, there are four organizing centers (see points 1, 2, 3, 4), while in Fig.
2b the organizing centers are five (see points 1, 2, 3, 4′, 4′′). In both diagrams point 1
is a cusp where two fold bifurcation curves of limit cycles FC merge. Thus point 1 is
the same codimension-2 bifurcation point for the two models. The reader can easily
check that the same is true for points 2 and 3. By contrast, point 4 in Fig. 2a is split
into two points, namely 4′ and 4′′, in Fig. 2b, since the bifurcation curves merging
in point 4 are exactly those merging in points 4′ and 4′′. Thus, in conclusion, the
structure of the two bifurcation diagrams is the same.

The similarity of the two models can be more clearly verified by extracting
from Fig. 2 the regions of stationary, cyclic and chaotic coexistence of the three
populations. This can be done by looking only at the bifurcations of the most
significant attractor, namely that which has the highest mean yield. In other words,
all bifurcation curves of Fig. 2 dealing with saddles, repellors or other attractors
that coexist with the main one in some small regions of parameter space have been
disregarded, thus producing the two diagrams of Fig. 3. Such a figure gives a good
idea of the influence of the two control parameters on the dynamics of the two food
chain models. When r is low in the Rosenzweig-MacArthur model and when D is
high in Canale’s model, the superpredator goes extinct so that food yield is zero.
In the remaining regions, going from the left to the right, i.e., enriching, one finds
stationary coexistence, cyclic coexistence at low frequency, chaotic coexistence and,
finally, cyclic coexistence at high-frequency. The chaotic region is a rather narrow
band delimited by a regular curve on the right side and by a fractal set produced
by a very complex bifurcation structure on the left side. Strange attractors close to
this border are teacup strange attractors similar to the limit cycle shown in Fig. 1a.
By contrast, strange attractors close to the opposite border are cut teacup strange
attractors and resemble the high-frequency limit cycle shown in Fig. 1b. This is
evident in Fig. 4 where the attractors corresponding to points A,B,C,D of Fig. 3b
are shown.

In conclusion, one can say that both tritrophic food chain models produce the



– 9 –

nutrient concentration of the inflow xi

(b)

th
ro

ug
h-

flo
w

D

(a)

prey carrying capacity K

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

pr
ey

 g
ro

w
th

 ra
te

r

0 100 200 300 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

in
flo

w
 ra

te
D . . ..

A B C D

cyclic
(high frequency)

cyclic
(low frequency)

stationary

chaotic

superpredator extinction

stationary

(high frequency)
cyclic

cyclic

chaotic

(low frequency)

superpredator
extinction

superpredator
extinction

. .

Figure 3: Regions of prey, predator and superpredator coexistence characterized by
different dynamic regimes: (a) Rosenzweig-MacArthur model, (b) Canale’s model
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Figure 4: Four attractors of Canale’s model: (a) low-frequency limit cycle; (b)
teacup strange attractor; (c) cut teacup strange attractor; (d) high-frequency limit
cycle. The attractors correspond to the parameters values (xi, D) indicated in Fig.
3b with points A,B,C,D.

same dynamics and the same scenarios when a parameter is varied. In particular, for
a continuous enrichment of the food chain, the complexity of the dynamic behaviour
first increases, from stationary to cyclic and, finally, to chaotic coexistence and then
decreases, from chaotic to cyclic coexistence. Thus, the region of chaotic coexistence
is embedded in the region of cyclic coexistence and such a cyclic coexistence is at
low-frequency on one side and at high-frequency on the other.

4 Mean yield

This section is fully devoted to Canale’s model and, in particular, to mean food
yield and its dependence on flow rate D and concentration xi of the inflow of the
chemostat. As already said, the mean superpredator abundance x3 will be considered
as an indicator of food yield. Since the function x3(xi, D) cannot be determined
analytically, the value of x3 has been computed numerically on a fine grid of about
10,000 points in the control space (xi, D). A special program based on spectral
analysis was used to compute x3 when the regime of coexistence was chaotic. Finally,
the results of these computations were interpolated to produce the graph of the
function x3(xi, D) shown in Fig. 5. Obviously, food yield is zero in the regions of
superpredator extinction (see Fig. 3b), while it is first increasing and then decreasing
with the concentration of the inflow xi, meaning that there is an optimum nutrient
supply that maximizes mean food yield.

But this is not the most interesting result. Indeed, sharper conclusions can be
derived by carefully analyzing the figures obtained so far. In fact, if the crest of
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Figure 5: The graph of the function (x3 (xi, D) describing the dependence of mean
superpredator abundance x3 upon concentration xi and flow rate D of nutrient
inflow.

the surface of Fig. 5 (i.e., the line on which x3 is maximum with respect to xi)
is projected on the plane (xi, D), the sets of under- and over-supplied food chains
in the control space are obtained. Then, if such sets are superimposed to Fig. 3b,
a surprisingly simple result, illustrated in Fig. 6, emerges: stationary, cyclic at
low-frequency and chaotic food chains are under-supplied, while food chains cycling
at high-frequency are over-supplied. This is exactly the same property holding in
Rosenzweig-MacArthur tritrophic food chains (De Feo and Rinaldi, 1997). Thus,
once more, the conclusion is that the two tritrophic food chain models (1) and (2)
are qualitatively equivalent.

The above property supports the two simple operating rules mentioned in the
introduction. These rules could be used, even empirically, to guide any adjustment
process aimed at improving food yield and, in principle, their systematic application
should slowly push the food chain to behave on the edge of chaos.

5 Conclusion

The dynamics of two tritrophic food chain models (Rosenzweig-MacArthur model
and Canale’s model) have been studied through bifurcation analysis with the aim of
proving that the two models are qualitatively similar. The results show, in partic-
ular, that dynamic complexity first increases and then decreases with enrichment.
More precisely, if the nutrient supplied to the bottom of the food chain is increased,
the attractor is first an equilibrium, then a low-frequency limit cycle and finally a
chaotic attractor, but if nutrient is further increased, the chaotic attractor becomes
a high-frequency limit cycle.
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Figure 6: The region of under-supplied food chains (in gray) and the regions of
coexistence (see Fig. 3).

Then, the dependence of the mean abundance of the superpredator upon the
nutrient supplied to the bottom of the food chain has been established through
systematic and detailed simulations. The results show that in both models mean
abundance of the superpredator first increases and then decreases with enrichment.
This means that in exploited food chains, where the mean food production is propor-
tional to the mean abundance of the superpredator, there exists an optimum nutrient
supply. Finally, it has been verified that the optimum nutrient supply practically
coincides with the nutrient supply separating chaotic dynamics from high-frequency
cyclic dynamics.

All these results imply that one should enrich food chains which are stationary,
cyclic at low-frequency or chaotic and impoverish food chains which are cyclic at
high-frequency, if the aim is the maximization of mean food yield. If these operating
rules were systematically applied, the food chain would sooner or later behave on
the edge of chaos. This is in line with the general principle “optimality implies
chaos” which has been advocated in other areas of biology, like brain activity (Rapp
et al., 1985), heart beating (West and Goldbeter, 1987), metapopulations (Allen et
al., 1993), and evolution (Ferrière and Gatto, 1993; Kauffman, 1993).

It is fair to say that the enthusiasm for the principle “optimality implies chaos”
should be counterbalanced by the consciousness that the principle holds only under
specific assumptions. For example, in the case of tritrophic food chains it can be
verified, by repeating for different parameter settings the analysis presented in this
paper, that the principle holds when the superpredator has slower dynamics than the
two other populations. In the case of extremely diversified dynamics the principle
can actually be formally proved through the methods of singular perturbation theory.
The proof is not reported here because already available in the paper devoted to
Rosenzweig-MacArthur food chains (De Feo and Rinaldi, 1997).
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The results obtained so far for tritrophic food chains are definitely stimulating in
view of their potential applications. Along this line, it would be interesting to know
if more realistic ecosystems, like the plankton-fish food chain, satisfy the principle
“optimality implies chaos”, because this might have relevant consequences in the
management of natural aquatic ecosystems as well as in aquaculture. Moreover, the
same type of analysis carried out here for superpredator mean abundance, could
be repeated for other indicators, in order to detect, for example, if there are strict
relationships also between primary productivity and dynamic complexity. All these
problems deserve further attention.
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