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Abstract

Birth-and-death processes or, equivalently, �nite Markov chains with three-diagonal

transition matrices proved to be adequate models for processes in physics [12], bi-

ology [4,5], sociology [13] and economics [1,3,10]. The analysis in this case quite

often relies on the stationary distribution of the chain. Representing it as a Gibbs

distribution, we study its limit behavior as the number of states increases.

We show that the limit nests on the set of global minima of the limit Gibbs

potential. If the set consists of a �nite number k of singletons ai where the second

derivatives �i of the potential are positive, the limit distribution assigns probability

1=
p
�iPk

j=1 1=
p
�j

to ai. When at some points the second derivative is zero, the limit distribution

nests only on them, we describe it explicitly. If the set of minima consists of a
�nite number of singletons and intervals, the limit distribution concentrates only on
intervals. We obtain a formula for it.

Key Words: birth-and-death process, stationary distribution, Gibbs distribution,
global minimum.
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1 Motivation and Formulation of the Problem

Imagine a population whose evolution is governed by a Markov chain. We shall be

dealing with a time-homogeneous Markov chain �tN ; t � 0, assuming a �nite number

of values 0; 1; : : : ; N � 1, the states of the population. Let

p
(N)
i = Pf�t+1N = i+ 1j�tN = ig; q

(N)
i = Pf�t+1N = i� 1j�tN = ig;

r
(N)
i = Pf�t+1N = ij�tN = ig;

where p
(N)
i + q

(N)
i + r

(N)
i = 1 for every i. Thus, the probability transition matrix is

three-diagonal. Such random processes are called birth-and-death processes [8, p.
50]. Indeed, the transition from i to i+1 can be interpreted as birth (emergence) of
one more object (say, an economic agent) of a certain type. While the transition from
i to i�1 means death (disappearance) of such an object. Set � tN = �tN=N; t � 0. This

chain nests on [0; 1). If �tN describes the evolution through time of the absolute value,
for example, the number of agents who have adopted a certain technology, then � tN
captures the dynamic of the relative quantity corresponding to this value, say, the
proportion (share) of agents who have adopted this technology. In applications
people look at what happens to the population in the long run, that is, as time goes
to in�nity. Thus we have to turn to the stationary distribution DN of the chains. It

exists and is uniquely de�ned by the following relations (see [8, p. 51])

DN = fd(N)
i ; i = 0; 1; : : : ; N � 1g; d

(N)
i = lim

t!1
Pf�tN = ig =

lim
t!1

Pf� tN = i=Ng; d
(N)
i = d

(N)
0

iY
j=1

p
(N)
j�1

q
(N)
j

; i = 1; 2; : : : ; N � 1;

d
(N)
0 =

�
1 +

N�1X
i=1

iY
j=1

p
(N)
j�1

q
(N)
j

��1

if p
(N)
i�1 > 0 and q

(N)
i > 0 for 1 � i � N � 1. Quite often it is important to know the

behavior of the stationary distribution as N increases. At this point one can set

�N(x) =

(
d
(N)
i for i

N
� x < i+1

N
; 0 � i � N � 2;

d
(N)
N�1 for 1� 1=N � x � 1;
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and to look at the limit behavior of �N(�) as N !1 (see, for example, [9]). More

conventionally, one represents �N(�) as a Gibbs distribution, that is,

�N(i=n) = d
(N)
0 exp[�N�N (i=N)] (1.1)

with �N (�) called the Gibbs potential (see [1], p. 57),

�N (x) =

8>>>>><
>>>>>:

0 for 0 � x < 1=N;

� 1
N

Pi
j=1 ln

p
(N)
j�1

q
(N)
j

for i
N
� x < i+1

N
; 1 � i � N � 2;

� 1
N

PN�1
j=1 ln

p
(N)
j�1

q
(N)
j

for 1 � 1=N � x � 1:

Throughout the paper we assume that for every N there is a unique stationary

distribution DN of the chain � tN ; t � 0, and we are looking at its limit as N !1.

Conceptually we are interested in the limit behavior (in the sense of distributions)

when �rst time goes to in�nity and then the size of the system N also increases

without bound.

Consider an intuition which is (with di�erent degrees of rigour) behind the anal-
ysis in many of applied papers on this issue. Set �� tN = � t+1N � � tN . Then

E(�� tN j� tN = i=N) =
1

N
(p

(N)
i � q

(N)
i );

E
h
(�� tN)

2j� tN = i=N
i
=

1

N2
(p

(N)
i + q

(N)
i ):

Let p
(N)
i = fN (i=N) and q

(N)
i = gN (i=N). For u � 0 de�ne a step-function

xMN (u) = �M+i
N if

i

N
� u <

i+ 1

N
;

where M is a positive integer, so xMN (0) = �MN . Let there exist Lipschitz functions
f(�) and g(�) such that

lim
N!1

sup
x2[0;1]

h
jfN (x)� f(x)j+ jgN (x)� g(x)j

i
= 0: (1.2)

If �MN weakly converges as N !1; M !1 (that is, �rst M goes to in�nity, then

N goes to in�nity) to a random variable ��, we can show that for every �nite T > 0
the random processes xMN (�) weakly converge on C[0; T ] as N !1;M !1 to the
curve x��(�) belonging to [0; 1]. (The argument is similar to the one given in x3 of

Chapter II of [5].) The limit satis�es the relations

dx��

dt
= f(x��)� g(x��); x��(0) = ��: (1.3)

By C[0; T ] we designate the space of continuous on [0; T ] functions endowed with
the topology of uniform convergence.

Thus, if �� is a weak limit point for � tN as N !1; t!1, then the weak limit

of xMN (�) as N !1, M !1 satis�es (1.3) provided that (1.2) holds true.
Since the chain � tN belongs to [0; 1), we have that g(0) = 0 and f(1) = 0. By

continuity this implies: f(�) � g(�) � 0 in a neighborhood of 0 and f(�) � g(�) � 0
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in a neighborhood of 1. Thus, [0; 1] is an invariant set for the di�erential equation

involved in (1.5).

If M is su�ciently large, then the distributions of �M+i
N ; i � 0, are arbitrarily

close to the stationary one for a �xed N . Hence, the distributions of xMN (s) and

xMN (t) almost coincide for all 0 � s < t < 1. This implies that x��(s) and x��(t)

are equally distributed for all s 6= t and this distribution is ��. Also, for a �xed

x0, xx0(t) converges to a singular point of (1.3) as t!1. The singular points are

solutions of the equation

f(x) = g(x): (1.4)

Hence, x��(t) deterministically converges (and, consequently, weakly) to a singular

point as t!1. Since T can be arbitrarily large and the distribution of x��(t) is �
�

for all t � 0, we conclude that the weak limits of � tN (as N !1; t!1) can nest

only on the set of singular points, that is, with probability one

f(��) = g(��) (1.5)

provided that (1.2) holds true.
If there is a single solution of (1.4) on [0; 1], then (1.5) characterizes completely

the limit distribution, which is deterministic. But if there is more than one solution
of (1.4) on [0; 1], the characterization is unsu�ciently precise. For example, some of
the solutions are stable in terms of the dynamic system (1.3), others are not. The

criterion (1.5) does not distinguish between such points, although our intuition sug-
gests that unstable singular points should not be attained by the limit. Furthermore,
if (1.4) holds for an interval, (1.5) does not allow to characterize the distribution
generated by �� on this interval. Thus, we need a more delicate instrument than
(1.5) to analyze the limit behavior of stationary distributions as N !1.

2 Convergence to the Global Minimum of the Limit Potential

At this section we �rst look at the limit behavior of

P �
N = Pf�N (�N )� ��N � �g:

Here � designates a positive number; �N stands for a random variable such that

Pf�N = i=Ng = d
(N)
i ; i = 0; 1; : : : ; N � 1;

��N = minx2[0;1]�N (�). Since p(N)
i�1 > 0 and q

(N)
i > 0 for i = 1; 2; : : : ; N � 1, ��N is a

�nite value.

By (1.1) at every state i=N where �N (�) exceeds its minimal value, the station-

ary probability wipes out as N ! 1 faster than at a state where the minimum
is attained. This intuition is con�rmed by the following statement which can be

thought of as a large deviation result for the random variables �N(�N )� ��N .
Theorem 2.1. P �

N � N exp(�N�) for every � > 0.

Proof. We have that

P �
N =

X
i: �N (i=N)���

N
��

d
(N)
i =
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d
(N)
0

X
i: �N (i=N)���

N
��

exp[�N�N(i=N)] =

d
(N)
0 exp(�N��N )

X
i: �N (i=N)���

N
��

expf�N [�N(i=N)� ��N ]g �

d
(N)
0 exp(�N��N )

X
i: �N (i=N)���

N
��

exp(�N�) �

d
(N)
0 exp(�N��N )N exp(�N�):

To accomplish the proof it is enough to notice that Pf�N = x�Ng = d
(N)
0 exp(�N��N ) �

1 for every x�N such that �N (x
�
N ) = ��N .

Corollary 2.1. P �
N ! 0 as N !1 for every � > 0.

Set

FN(x) =

(
p
(N)
i�1=q

(N)
i for [Nx] = i� 1; x 2 [0; 1);

p
(N)
N�1=q

(N)
N for x = 1:

Let there exist a function F (�) such that

sup
x2[0;1]

jFN(x)� F (x)j = �N ! 0 (2.1)

as N ! 1. From now on we shall assume that lnF (�) is Riemann integrable on

[0; 1]. Then

�(x) = �
Z x

0
lnF (u)du

is a continuous function for 0 � x � 1. It is di�erentiable on (0; 1). We call this
function the limit Gibbs potential.

Notice that (1.2) implies that F (x) = f(x)=g(x) if g(x) > 0. Furthermore,

since �0(x) = � lnF (x), we obtain that �0(x) = � ln[f(x)=g(x)]. Consequently, all
singular points of �(�) satisfy (1.4) if (1.2) holds true. Hence (1.5) relates to the
necessary condition of extremum for �(�). The result to be given in this section

sharpens the characterization provided by (1.5) showing that the limit distributions

nest on the set of global minima of �(�). Notice, that under (1.2) each point of

minimum of �(�) turns out to be a stable attractor of the di�erential equation
involved in (1.3). Thus, the description of the limits in terms of global minima
proves to be sharper than any one based on the analysis of stability of the limit

di�erential equation. Because the set of global minima may contain a point where

F (�) is discontinuous, the characterization given here generalizes the one based on
the necessary condition. Since �N (x) is almost an integral sum for �(x), intuitively

the result we are going to obtain follows from Corollary 2.1.
let [a] be the integer part of a real number a. By oN (1) we shall designate

nonnegative sequences, not necessarily equal, converging to 0 as N ! 1. We say

that a function F (�) is H�older on [a; b] if there is 
 2 (0; 1] such that

jF (x)� F (y)j � Ljx� yj
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for every x; y 2 [a; b]. Here L is called the H�older constant, 
 is called the H�older

exponent. If 
 = 1 the function is Lipschitz and L is its Lipschitz constant.

Since for x < y

�(y)� �(x) = �
Z y

x
lnF (u)du;

we obtain the following result.

Lemma 2.1. Assume that for some 0 � a < b � 1 the function F (�) is continu-
ous and positive on [a; b]. Then for every x; y 2 [a; b]; x < y

j�(y)� �(x)j � max
u2[x;y]

j lnF (u)jjy� xj:

Lemma 2.2. Let (2.1) holds true. Assume that for some 0 � a < b � 1 the

function F (�) is H�older and positive on [a; b]. Then for every x; y 2 [a; b]

�N (x)� �N(y) = �(x)��(y) + �(N;x; y);

where

j�(N;x; y)j � (b� a)

�
N�
 L

c[a;b]
[1 + oN (1)] +

�N

c[a;b]

�
+

2N�1C[a;b];

c[a;b] = min
x2[a;b]

F (x); C[a;b] = max
x2[a;b]

j lnF (x)j;

L stands for the H�older constant of F (�) on [a; b].
Proof. By hypothesis, the function F (�) is continuos and positive on [a; b].

Hence 0 < c[a;b] � �c[a;b] < 1 and ln(�) is a Lipschitz function on [c[a;b]; �c[a;b]] whose

Lipschitz constant does not exceed 1=c[a;b]. Here �c[a;b] = maxx2[a;b]F (x). Thus, the
constants involved in the estimate for �(N;x; y) exist.

Let x < y, then

�N (y)� �N(x)� �(y) + �(x) =

� 1

N

[Ny]X
i=[Nx]+1

lnFN (i=N) +
Z y

x
lnF (u)du =

�
[Ny]X

i=[Nx]+1

Z i=N+1=N

i=N
lnFN(i=N)dv +

Z y

x
lnF (u)du =

�
[Ny]�1X

i=[Nx]+1

Z i=N+1=N

i=N
[lnFN(i=N) � lnF (u)]du�

1

N
lnFN([Ny]=N) +

Z y

[Ny]=N
lnF (u)du: (2.2)
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Notice that

lnFN(i=N) = lnF (i=N) + ln

�
1 +

FN (i=N)� F (i=N)

F (i=N)

�
(2.3)

and for [Nx] + 1 � i � [Ny]� 1

j lnF (i=N)� lnF (u)j � 1

c[a;b]
jF (i=N)� F (u)j �

L

c[a;b]
N�
 if u 2 [i=N; i=N + 1=N ]: (2.4)

Since ln(1 + x) � x and by (2.1)

sup
[Nx]�i�[Ny]

jFN(i=N) � F (i=N)

F (i=N)
j � �N=c[a;b];

we obtain that

j ln
�
1 +

FN (i=N)� F (i=N)

F (i=N)

�
j � �N

c[a;b]
: (2.5)

The statement of the lemma follows from (2.2) { (2.5).
Remark 2.1. In the proof we actually used the rate of uniform convergence of

FN (�) to F (�) only on [a; b].
Let for an � > 0

X�
N = fx 2 [0; 1] : �N (x)� ��N < �g;

X� = fx 2 [0; 1] : �(x)� �� < �g;

where �� = minx2[0;1]�(x).
The following statement follows from Corollary 2.1.

Theorem 2.2. If for every � > 0 there is a real �0 > 0 and a positive integer N 0

depending on � and such that X� � X�0

N for N � N 0, then

Pf�(�N )��� < �g ! 1 as N !1:

By Lemma 2.1 the hypothesis of Theorem 2.2 holds true if on [0; 1] the function
F (�) is H�older and positive. But there are less restrictive conditions ensuring this
hypothesis.

Theorem 2.2 establishes weak convergence of �(�N ) to �
� as N !1. To obtain

weak convergence of �N to the set X� = fx 2 [0; 1] : �(x) = ��g (that is, when the

Euclidean distance between them goes weakly to zero), we need additionally some
regularity condition.

Since �(�) is a continuous function, the set X� is closed. From now on we shall

be assuming that it consists of a �nite number of connected components: singletons

ai, i = 1; 2; : : : ; k, and intervals [bj; cj], j = 1; 2; : : : ; l. Also, let there be continuous
functions  i(�) and 	j(�) such that:

�(x) = �� +  i(x� ai) in a neighborhood of ai
and
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�(x) = �� +	j(min[x� bj;max(0; x� cj)]) in a neighborhood of [bj; cj].

We call them growth functions, if they are decreasing for negative values of the

argument and increasing for positive values of the argument. Also,  i(0) = 	j(0) =

0.

Theorem 2.3. Let hypothesis of Theorem 2.2 hold true, the set X� consist of

a �nite number of connected components possessing growth functions. Then �N
weakly converges to X� as N !1.

Proof. For a given � > 0 there are positive numbers ��i (�), �
+
i (�), �

�
j (�) and

�+
j (�) such that

�� + � =  i(ai � ��i (�)) =  i(ai + �+i (�)) =

	j(bj ���
j (�)) = 	j(cj +�+

j (�))

for all possible i and j. Also, by continuity and monotonicity of the growth functions

��i (�)! 0; �+i (�)! 0; ��
j (�)! 0; �+

j (�)! 0 (2.6)

as �! 0.
Then

Pf�(�N )��� < �g =
kX

i=1

pi;N� +
lX

j=1

P j;N
� ; (2.7)

provided that � is so small that the intervals
�
ai � ��i (�); ai + �+i (�)

�
,

i = 1; 2; : : : ; k, and
�
bj ���

j (�); cj +�+
j (�)

�
, j = 1; 2; : : : ; l, do not overlap. Here

pi;N� = Pf�N 2
�
ai � ��i (�); ai + �+i (�)

�
g

and

P j;N
� = Pf�N 2

�
bj ���

j (�); cj +�+
j (�)

�
g:

Since in (2.7) the value � can be arbitrarily small, the statement of the theorem

follows from Theorem 2.2 and (2.6).

Theorem 2.3 states that all weak limits of DN as N !1 are concentrated with
probability one in X�. It might happen that some of the limits put zero weights on
certain connected components of X�. Now we shall calculate the probabilities that

the limits assign to di�erent connected components of X� and identify conditions of

uniqueness of the limit of DN .

3 Local Limit Theorems

By o�(1) we shall designate nonnegative values, not necessarily equal, converging to
0 as �! 0. Also, �(�;N) stands for nonnegative values, not necessarily equal, such

that lim�!0 limN!1�(�;N) = 0.

Lemma 3.1 Let
1) for some � > 0 the function F (�) be Lipschitz on [ai� �; ai+ �] and jFN(x)�

F (x)j � c=N for every x from this interval;
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2) for some 
i � 2 and �i > 0

lim
�!0

sup
juj��

j i(u)

juj
i � �ij = 0:

If there is a sequence fxiNg such that �N (x
i
N) = ��N and xiN ! ai as N !1, then

lim
�!0

lim
N!1

pi;N� �
1=
i
i 
i

d
(N)
0 exp(�N��)N1�1=
i2�(1=
i)

= 1;

where �(�) designates the complete gamma-function,

�(z) =
Z 1

0
exp(�u)uz�1du:

Proof. We have that

pi;N� = d
(N)
0

X
j=N2I(�)

exp[�N�N(j=N)] =

d
(N)
0 exp(�N��)NA(�;N); (3.1)

where

A(�;N) =
1

N

X
j=N2I(�)

expf�N [�N(j=N) � ��]g;

I(�) =
�
ai � ��i (�); ai + �+i (�)

�
:

Applying Lemma 2.2, we obtain

A(�;N) =
1

N

X
j=N2I(�)

expf�N [�(j=N) ���]gr1(j;N); (3.2)

where

r1(j;N) = expf�N [�N (ai)� �(ai) + �(N; j=n; ai)]g; (3.3)

j�(N; j=N; ai)j � o�(1)N
�1[

L+ c

cI(�)
+ o�(1)]: (3.4)

In the latter estimate we took into account that the set I(�) is an interval shrinking

to zero as �! 0, which implies

cI(�) ! 1 and CI(�) ! 0:

By hypothesis xiN 2 I(�) for all su�ciently large N , hence applying Lemma 2.2

�N (x
i
N)� �N (ai) = �(xiN )� �(ai) + �(N;xiN ; ai):

Since �N (x
i
N)� �N (ai) � 0 and �(xiN )��(ai) � 0, this relation implies

j�N (ai)��(ai)j � 3

2
j�(N;xiN ; ai)j: (3.5)
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Taking into account that

lim
x!0

[exp(x)� 1]=x = 1; (3.6)

by (3.2) { (3.5) we obtain

[1��(�;N)]B(�;N) � A(�;N) � [1 + �(�;N)]B(�;N); (3.7)

where

B(�;N) =
1

N

X
j=N2I(�)

expf�N [�(j=N) ���]g:

Notice that

B(�;N) =
X

j=N2I(�)

Z j=N+1=N

j=N
expf�N [�(j=N) � �(ai)]gdu =

X
j=N2I(�)

Z j=N+1=N

j=N
expf�N [�(u)��(ai)]gr2(j;N)du;

where

r2(j;N) = expf�N [�(j=N) � �(u)]g:
Since CI(�) ! 0 as �! 0, by (3.6) and Lemma 2.1 we conclude that

jr2(j;N)� 1j � �(�;N):

Thus,

[1��(�;N)]C(�;N) � B(�;N) � [1 + �(�;N)]C(�;N); (3.8)

where

C(�;N) =
X

j=N2I(�)

Z j=N+1=N

j=N
expf�N [�(u)��(ai)]gdu:

Notice that

jC(�;N)�D(�;N)j = �(�;N); (3.9)

where

D(�;N) =
Z
I(�)

expf�N [�(u)� �(ai)]gdu;

�(�;N) = j
Z [�I(�)N ]=N+1=N

�I(�)
expf�N [�(u)��(ai)]gdu�

Z [I(�)N ]=N+1=N

I(�)
expf�N [�(u)� �(ai)]gduj;

I(�) = ai � ��i (�) and �I(�) = ai + �+i (�);
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�(�;N) � 2=N: (3.10)

By hypothesis 2) for all su�ciently small �

D(�;N) =
Z
I(�)

exp[�N i(u� ai)]du;

Z
I(�)

expf�N [�i + o�(1)]ju� aij
igdu � D(�;N) �
Z
I(�)

expf�N [�i � o�(1)]ju� aij
igdu; (3.11)

where

o�(1) = sup
u2I(�)

j  i(u� ai)

�iju� aij
i � 1j:

Furthermore,

�
ai �

�
�

�i

[1� o�(1)]

�1=
i
; ai +

�
�

�i

[1� o�(1)]

�1=
i�
� I(�) �

�
ai �

�
�

�i

[1 + o�(1)]

�1=
i
; ai +

�
�

�i

[1 + o�(1)]

�1=
i�
: (3.12)

Notice that for � > 0Z �

0
exp(�N�u
)du = 1

N1=
�1=



Z N��


0
exp(�v)v1=
�1dv =

�(1=
)[1 ��(�;N)]

N1=
�1=


;

provided that N > 0; � > 0 and 
 > 0. Increasing the right-hand side of (3.11) by

integrating over the larger set involved in (3.12) and decreasing the left-hand side
of (3.11) by integrating over the smaller set involved in (3.12), we obtain that

2�(1=
i)

N1=
i�
1=
i
i 
i

[1��(�;N)] � D(�;N) �

2�(1=
i)

N1=
i�
1=
i
i 
i

[1 + �(�;N)]: (3.13)

Since 
i � 2,

lim
N!1

1=N

1=N1=
i
= 0:

Taking this into account, by (3.1), (3.7) { (3.10) and (3.13), we obtain the statement

of the lemma.
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Remark 3.1. The argument given above allows for a generalization of Lemma

3.1. If, instead of hypothesis 2), we require that there are pairs 
+i � 2; �+
i > 0 and


�i � 2; ��i > 0 such that

lim
�!0

sup
0<u��

j i(u)

u

+
i

� �+
i j = 0 and lim

�!0
sup

���u<0
j  i(u)

(�u)
�i
� ��i j = 0;

the statement modi�es as follows:

if 
+i = 
�i = 
i,

lim
�!0

lim
N!1

pi;N� (�+
i )

1=
i(��i )
1=
i
i

d
(N)
0 exp(�N��)N1�1=
i[(�+

i )
1=
i + (��i )

1=
i]�(1=
i)
= 1;

if 
+i 6= 
�i ,

lim
�!0

lim
N!1

pi;N� �(i)1=
(i)
(i)

d
(N)
0 exp(�N��)N1�1=
(i)�(1=
(i))

= 1;

where 
(i) = max(
+i ; 

�
i ),

�(i) =

(
�+
i if 
+i > 
�i ;

��i if 
+i < 
�i :

Lemma 3.1 and Remark 3.1 allow to describe the limit of DN which is unique
in the situation when the set of minima consists of a �nite number of singletons.
The distribution nests on the subset of points of global minima with the highest 
+i
or 
�i . To avoid bulky formulations we shall give this result only for the case when

+i = 
�i = 2 for all i.

Theorem 3.1. Let
1) for every � > 0 there be a real �0 > 0 and a positive integer N 0 depending on

� and such that X� � X�
N for N � N 0;

2) X� = faig; i = 1; 2; : : : ; k;
3) in a neighborhood of each ai the function F (�) be Lipschitz and FN (�) deviates

from F (�) at most by c=N for some c > 0;

4) for each ai there be positive numbers �
+
i and ��i such that

lim
�!0

sup
0<u��

j i(u)

u2
� �+

i j = 0 and lim
�!0

sup
���u<0

j i(u)

u2
� ��i j = 0:

Then DN weakly converges to a limit that assigns to ai the probability

1=
q
�+
i + 1=

q
��iPk

j=1(1=
q
�+
j + 1=

q
��j )

:

Proof. By Theorem 2.3 and (2.7) we obtain

j
kX

i=1

pi;N� � 1j = oN (1):
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By Remark 3.1 this implies that�
1Pk

i=1(1=
q
�+
i + 1=

q
��i )

��(�;N)

�
�

d
(N)
0 exp(�N��)N1=2�(1=2)

2
�

�
1Pk

i=1(1=
q
�+
i + 1=

q
��i )

+ �(�;N)

�
:

Hence, applying Remark 3.1 again,

lim
�!0

lim
N!1

pi;N� =
1=
q
�+
i + 1=

q
��iPk

j=1(1=
q
�+
j + 1=

q
��j )

:

The theorem is proved.

Remark 3.2. A similar result was obtained by Hwang [9] even for the multi-

variate case. However, he considers Gibbs distributions with potentials that do not
depend on N .

Now let us proceed to the analysis of the limit distributions on the intervals.
The following result is a counterpart of Lemma 3.1 in this case.

Lemma 3.2. Let

1) for some � > 0 the function F (�) be Lipschitz on [bj � �; bj] [ [cj; cj + �], and
jFN(x)� F (x)j � c=N for every x from this set;

2) there be �j > 1 and �j > 0 such that 	j(u) � �jjuj�j for all su�ciently small
u;

3) there be a H�older on [bj; cj] function �j(�) such that

lim
N!1

N sup
i=N2[bj;cj ]

jp
(N)
i�1

q
(N)
i

� 1� 1

N
�j(i=N)j = 0:

If there is a sequence fxjNg such that �N (x
j
N) = ��N and xjN ! [bj; cj] as N ! 1,

then

lim
�!0

lim
N!1

P j;N
�

d
(N)
0 exp(�N��)Ndj(cj)

= 1

and for every x 2 [bj; cj]

lim
N!1

Pf�N 2 [bj; x]g
d
(N)
0 exp(�N��)Ndj(x)

= 1;

where

dj(x) =
Z x

bj

exp[��j(u)]du; ��j(u) =
Z u

bj

�j(v)dv:

Proof. We have that

P j;N
� = T�(�;N) + T (N) + T+(�;N); (3.14)
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where

T�(�;N) = d
(N)
0

X
i=N2(bj��

�

j
(�);bj)

exp[�N�N(i=N)];

T (N) = d
(N)
0

X
i=N2[bj;cj]

exp[�N�N(i=N)];

T+(�;N) = d
(N)
0

X
i=N2(cj;cj+�

+
j
(�))

exp[�N�N (i=N)]:

Notice that

T (N) = d
(N)
0 exp[��N(bj)]M(N); (3.15)

where

M(N) =
X

i=N2[bj;cj ]

expf�N [�N (i=N)� �N (bj)]g =

X
i=N2[bj;cj ]

iY
s=[bjN ]+1

p
(N)
s�1=q

(N)
s :

By hypothesis 3) and (3.6), for every i=N 2 [bj; cj]

[1� oN (1)]M(i;N) �
iY

s=[bjN ]+1

p
(N)
s�1=q

(N)
s �

[1 + oN (1)]M(i;N); (3.16)

where

M(i;N) = exp
� iX
s=[bjN ]+1

1

N
�j(s=N)

�
:

According to hypothesis 3), �j(�) is a H�older function on [bj; cj], hence we obtain
that

[1� oN (1)]��j(i=N) �M(i;N) � [1 + oN (1)]��j(i=N): (3.17)

Similarly, ��j(�) is a Lipschitz function on [bj; cj], consequently

[1� oN (1)]dj(cj) � 1

N

X
i=N2[bj;cj]

exp[��j(i=N)] �

[1 + oN (1)]dj(cj): (3.18)

By (3.16) { (3.18) we obtain

lim
N!1

M(N)

N
= dj(cj);
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which due to (3.15) implies that

lim
N!1

T (N)

d
(N)
0 exp[��N(bj)]Ndj(cj)

= 1: (3.19)

By (3.5) we conclude that

1 � o�(1) � lim inf
N!1

expf�N [�N(bj)� �(bj)]g �

lim sup
N!1

expf�N [�N(bj)� �(bj)]g � 1 + o�(1):

Since expf�N [�N(bj)� �(bj)]g does not depend on �, the latter inequalities imply

that

lim
N!1

expf�N [�N (bj) ��(bj)]g = 1: (3.20)

Slightly modifying the argument given in Lemma 3.1, we obtain that jT�(�;N)j+
jT+(�;N)j does not exceed

const � d(N)
0 exp(�N��)N1�1=�j

as N !1. Taking into account (3.19) and (3.20), the terms T�(�;N) and T+(�;N)
are asymptotically smaller than T (N). This allows to derive the �rst statement of
the lemma from (3.14), (3.19) and (3.20).

The second statement obtains by an argument similar to the one used in esti-

mating T (N).
The lemma is proved.
From Remark 3.1 and Lemma 3.2 we conclude that if there are intervals among

the connected components of the set of global minima, the limit distribution can nest
only on them. More formally we have the following statement.

Let us call a growth function like in Lemma 3.2 a power growth function.
Theorem 3.2. Let
1) for every � > 0 there be a real �0 and a positive integer N 0 depending on �

such that X� � X�0

N for N � N 0;
2) X� = [k

i=1faig [l
j=1 [bj; cj], where l � 1;

3) in a neighborhood of each ai, bj and cj the function F (�) be Lipschitz and

there be a constant c > 0 such that FN(�) deviates from F (�) at most by c=N ;

4) for each ai and [bj; cj] there be a power growth function;
5) for each [bj; cj] there be a H�older on this interval function �j(�) such that

lim
N!1

N sup
i=N2[bj;cj ]

jp
(N)
i�1

q
(N)
i

� 1� 1

N
�j(i=N)j = 0:

Then DN weakly converges as N !1 to a limit such that for every x 2 [bj; cj]

lim
N!1

Pf�N < bj + xg =
P

i: ci<bj
di(ci) + dj(x)Pl

s=1 ds(cs)
;

or, equivalently,

lim
N!1

Pf�N < bj + xj�N 2 [bj; cj]g = dj(x)=dj(cj):
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Proof. By Theorem 2.3 and (2.7) we obtain that

j
kX

i=1

pi;N� +
lX

j=1

P j;N
� � 1j = oN (1): (3.21)

Since the growth functions are power ones, there are � > 1 and � > 0 such that

 i(u) � �juj� for i = 1; 2; : : : ; k provided that u is small. Arguing like in the proof

of Lemma 3.1, we obtain that

kX
i=1

pi;N� � const � d(N)
0 exp(�N��)N1�1=�:

This by the �rst statement of Lemma 3.2 shows that the impact of singletons is

negligible in (3.21), that is,

j
lX

j=1

P j;N
� � 1j = �(�;N): (3.22)

Substituting here the expressions for P j;N
� from Lemma 3.2, we have that

1=
lX

j=1

dj(cj)��(�;N) � d
(N)
0 exp(�N��)N �

1=
lX

j=1

dj(cj) + �(�;N): (3.23)

Which by the �rst statement of Lemma 3.2 implies that

jP j;N
� � P (j)j = �(�;N); (3.24)

where

P (j) =
dj(cj)Pl
i=1 di(ci)

:

By (3.22) { (3.24) and the second statement of Lemma 3.2 we obtain

� X
i: ci<bj

P (i) +
dj(x)Pl

s=1 ds(cs)
��(�;N)

�
�

Pf�N < bj + xg �
� X
i: ci<bj

P (i) +
dj(x)Pl

s=1 ds(cs)
+ �(�;N)

�
;

which entails the statement of the theorem.
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4 An Example

In Chapter 5 of [1] the following model is considered. There are M agents who

have two choices, strategy 1 or strategy 2. They reevaluate their choices randomly.

Namely, let

�(x) = Pf�1(x) � �2(1 � x)g;
where �i(x) is a perceived random bene�t of adopting alternative i when fraction x

of agents are using it. Assume that each time instant only one agent is allowed to

change his strategy. Let i agents are using strategy 1 at t. There are two possibilities:

one of them switches to strategy 2, or one of M � i agents who are using strategy

2 switches to strategy 1. Then either i� 1 or i+ 1 agents will be using strategy 1

at t+ 1. Since the agent who switches is chosen by chance, we obtain the following

transition probabilities:

Pfi 7! i� 1g = i

M
[1� �(i=M)] and Pfi 7! i+ 1g = M � i

M
�(i=M):

Thus we have arrived to the above Markov chain with N =M + 1,

p
(N)
i =

�
1� i

N � 1

�
�(

i

N � 1
) and q

(N)
i =

i

N � 1

�
1� �(

i

N � 1
)
�
:

It is ergodic if �(x) 2 (0; 1) for every x 2 [0; 1].
We have that

fN (i=N) =

�
1� i

N
(1 +

1

N � 1
)

�
�(
i

N
(1 +

1

N � 1
))

and

gN (i=N) =
i

N

�
1 +

1

N � 1

��
1� �(

i

N
(1 +

i

N � 1
))

�
:

If �(�) is a Lipschitz function on [0; 1], then

lim sup
N!1

N sup
x2[0;1]

[jfN(x)� f(x)j+ jgN (x)� g(x)j] <1; (4.1)

where

f(x) = (1� x)�(x) and g(x) = x[1� �(x)]:

Since f(�)� g(�) is positive in a neighborhood of 0 and it is negative in a neigh-

borhood of 1, we conclude that there are solutions of the equation f(x) = g(x); x 2
[0; 1]. They are interior points of [0; 1]. The limits of DN concentrate on, generally

speaking, a subset of these solutions.

Notice that

FN(i=N) =
[1� i

N
(1 + 1

N�1
) + 1

N�1
]�( i

N
(1 + 1

N�1
))

i
N
(1 + 1

N�1
)[1� �( i

N
(1 + i

N�1
))]

and

F (x) =
(1� x)�(x)

x[1� �(x)]
:

{ 16 {



Because the denominators of these expressions are positive inside [0; 1] and �(�) is a
Lipschitz function, (4.1) implies that

lim sup
N!1

N sup
x2[a;b]

jFN(x)� F (x)j <1

for every [a; b] � (0; 1). Also, F (�) is a Lipschitz function and lnF (�) is a Riemann

integrable function on [0; 1].

Now, depending upon the structure of the set of global minima of the limit Gibbs

potential, we can apply results given above.

5 Conclusions

The results obtained here show certain similarity of birth-and-death processes and

generalized urn schemes [2]. Indeed, since the chain � tN and an urn process evolve in

[0; 1], they are stochastic replicator equations. In both cases the asymptotic analysis

relies on the stability properties of some dynamic system associated with the process.

In the case of singleton attractors this analogy works fully for urn processes. Their
limits nest on the set of stable singular points. For birth-and-death processes it is
not the case. Their limit distributions nest on a subset of stable attractors (namely,
the points of global minima of the limit potential, or even a subset of this set) of

the associated dynamic system. For urn processes each set of singular points having
positive Lebesgue measure turns out to be an attractor [7], which is not the case
for birth-and-death processes. There only intervals that consist of points of global
minima support the limit. Finally, urn schemes generate time non-homogeneous
Markov processes that are not ergodic, while the Markov chains corresponding to

birth-and-death processes considered here are time homogeneous and ergodic.
These two mathematical objects have essentially the same area of application.

In economics this includes learning processes. Conceptually the main di�erence
between them is that the total size of a population involved in learning is growing
in time in the case of an urn process, while it remains constant in the case of a

birth-and-death process.

We believe that some of the results of Section 3 can be proved for a general
annealing process [11].
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