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Abstract. Technology dynamics is endogenized into a bottom-up energy 
systems model. Mixed integer programming is used to incorporate into the 
model the non-convex relation between declining specific investment in 
energy technologies and overall experience or capacities installed. The ini­
tial results achieved with this approach show the importance of early in­
vestment in new technology developments. New technologies will not 
become cheaper irrespective of research, development , and demonstration 
(RD & D) decisions; they will do so only if determined RD&D policies and 
investment strategies enhance their development. 
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1 Introduction 

Over the past decades, energy modeling has developed into an important 
tool for energy policy analysis. In the early 1970s, when the oil price shock 
made energy a major focus of attention, the development of energy models 
was initiated with two major goals: 

• to find ways of reducing dependence on costly imported oil, and 
• to evaluate the effect on the economy of various energy policies. 

*Environmentally Compatible Energy Strategies Project a t the Internationa l Institute for 
Applied Systems Analysis. 
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Two classes of models have emerged from this background: technology­
oriented optimization and simulation models (now generally labeled bot­
tom-up models) serving the first goal, and economy-oriented models with 
an emphasis on energy as a subsector of the overall economy (the top-down 
models in the present literature). A well-known early energy optimization 
model was BESOM, the Brookhaven Energy Systems Optimization Model 
[!]. Based on this model, MARKAL [2], an energy systems model with 
applications in many countries, has been developed. The Energy Technol­
ogy Systems Analysis Programme (ETSAP [3]) of the International Energy 
Agency uses MARKAL for energy technology-related analyses at the 
country level. Other representatives of this class of energy systems models 
are EFOM [4], the model employed by the European Union, and MES­
SAGE [5], the energy optimization model developed at the International 
Institute for Applied Systems Analysis (IIASA) on the basis of the Hafele­
Manne [6] model. 

For the second type of analysis, macro-economic models, such as gen­
eral equilibrium models or neoclassical growth models, were constructed to 
account for energy as a factor input or as a sector of the economy. In the 
USA, such models were used for concerted analyses in the framework of the 
Energy Modeling Forum (EMF [7]). A famous example of the second 
model type used in the EMF is ETA-MACRO [8]. 1 

Further investigations worked toward linking bottom-up, technology­
oriented models with top-down models depicting the overall economy. 
Early examples include the linking of the Hudson-Jorgenson model, a very 
disaggregated econometric model of the US economy, with BESOM [IO], 
and a model developed for Austria that joins a macro-model based on 
dynamic input-output tables with a vintage capital structure and the energy 
systems model MESSAGE [11] . Currently, many attempts at combining 
models from the two categories are based on MARKAL/MACRO, which 
links the energy systems model MARKAL with the economy module of 
ETA-MACRO [12] . Wilson and Swisher [13] give a short introduction and 
critique of the top-down and bottom-up model types and the process of 
linking them, while Wene [14] evaluates different approaches for the linking 
procedure. 

In the late 1980s, the application of energy-related models moved to­
\Vard a new topic, global vvarming. Because the majority of man-made 
emissions of greenhouse gases are related to the use of energy,2 energy­
related models are useful in analyzing the problem and evaluating mitiga­
tion strategies. Conventional, energy-policy-oriented model analysis focuses 
on time frames of 20- 50 years, depending on the scope of the analysis. 3 

1 An analysis of the models currently employed in the EMF can be found in (9]. 
2 According to the IPCC [ 15], 77% of overall C02 emissions in the 1980s were related to 
the use of energy and cement production . On the other hand, C02 is responsible for 60% 
of the man-made greenhouse effect [ 19] . 
3 Most national energy plans based on model analysis had a time frame of 20- 30 years (see 
(16] as an example) , while major global analyses had an extended time horizon. An 
example of a comprehensive analysis from the early eighties that also included model 
analyses can be found in [ 17]: a recent study of this type is described in (18] . 
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However, the long residence time of carbon dioxide (C02) in the atmo­
sphere (50- 150 years [19]) and the slow dynamics encountered with struc­
tural changes of the energy system on a global scale (suggesting at least five 
decades for the penetration of new energy carriers [20]) call for prolonged 
time horizons for model analyses. 

Prolonging the time horizon up to the year 2100, as is done in most 
energy-related analyses of global change issues, brings new problems in 
model formulation and application that must be addressed. One of these 
issues relates to the availability of depletable resources. Present estimates of 
these resources are based on current technology and knowledge. However, 
by 2 I 00 more oil and gas fields will certainly be discovered, and new 
technologies will be available to increase the share of oil and gas recover­
able from known reserves. The historical record of the reserve-to-produc­
tion ratio of oil supports this view: Since 1900 the ratio has averaged 30 
years [21] while at the same time production has increased tremendously . 
Another notable example is the increase in the size of the estimated reserves 
as published by US Geological Survey (USGS) between the years 1987 [22] 
and 1991 [23]. Over this period, estimates of the ultimate world resources of 
crude oil increased by 25%, from 1,744 to 2.171 billion barrels. The ma­
jority of this increase (250 billion barrels) was due to a reevaluation of 
Middle East occurrences which a lone made the 1991 evaluation one-third 
higher than the 1987 evaluation . 

A second issue is technological performance. For a time frame of 30 
years it is possible to view technological change as being incremental and 
improvement rates as being exogenously given (e.g., using the AEEI , an 
autonomous reduction in energy intensity over time, as in some models of 
the Energy Modeling Forum [24]). In the bottom-up energy-related ana­
lyses performed at IIASA in the early 1980s, technology was viewed as 
dynamic and performance improved at certain, predefined rates .4 

With time horizons approaching a century or more, however, this model 
externalization raises problems . Externally defined technology performance 
does not reflect actual model outcomes. In such simplified treatments. the 
performance of a system will improve over time regardless of whether or 
not the system is employed . Finally, exogenizing technology in energy 
models implies that, when the learning process is finished and the tech­
nology has matured, it can be employed without previous investment in the 
learning process . 

This paper presents an approach to internalizing the process of tech­
nological learning in technology-related energy models by introducing 
technology cost as a function of cumulative acquired knowledge. This 
learning process reflects "learning by doing" (see [28] and [29]): the pa­
rameters of a technology improve as function of accumulated knowledge or 
cumulative output (or installed capacities). "Learning by doing" and the 
resulting learning or experience curves are among the best empirically 
corroborated phenomena characterizing technological change in industry 
(Argote and Epple [30]). 

4 Early model applications using this approach are described in (25], (26]. and (27]. 
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2 Background 

In the context of IIASA's work on global change, a set of models has been 
developed for the scenario-based analysis of energy strategies. Among the 
models included in this set are a framework to generate energy scenarios 
(the Scenario Generator [31]) and two energy models: a top-down energy­
economy model, 11R,5 and a bottom-up model, MESSAGE III [5]. In the 
overall modeling process MESSAGE and 11 R are linked through a so­
called soft-linking process where human interfaces use a formal decision 
framework to guide the process of scenario development for the three 
models and finally decide on convergence criteria. 6 Figure l shows these 
models and the linking procedure as part of the overall framework of in­
tegrated assessment modeling at IIASA. 

MESSAGE III , the bottom-up energy systems model, is a dynamic 
linear programming model of the energy system at the technology level. 
Depending on the degree of disaggregation, different processes or tech­
nologies for producing a commodity can be evaluated. IIASA's integrated 
analysis of the overall energy system includes the introduction of new en­
ergy carriers (for example, methanol or hydrogen). For this purpose, 
MESSAGE requires descriptions of the technologies involved, such 
as hydrogen production with various competing technologies and the 
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Regional Air Pollution 
Impacts Model 
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• Energy Carriers by 

RAINS Regions 
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Energy Systems 
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Fig. I. Integrated assessment at IIASA: models and linkages 

5 11 R is based on Global 2100, the model developed by Manne and Richels for long-term 
energy-economy analyses [32]. 
6 This process has been evaluated and compared with other methods of model linkage by 
Wene [14]. 
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utilization of hydrogen for different end uses (such as aviation or industrial 
processes). Technology descriptions consist of the technical parameters 
(efficiency, plant life), the economic parameters (investment, operating and 
maintenance costs), and the environmental effects related to the use of the 
technology [e.g., sulfur dioxide (S02) or C02 emissions]. Additional in­
formation concerns resource quantities, end-use demands (from the Sce­
nario Generator), and technical, economic, and sociopolitical constraints . 
Such additional constraints include maximum utilization rates for renew­
able sources of energy, constraints on the market penetration of new 
technologies, or policy-oriented limits, such as limiting the share of nuclear 
energy accepted in the electricity generation system. Generally, the pa­
rameters used in MESSAGE are scenario dependent. 

The most recent application of MESSAGE was performed in collabo­
ration with the World Energy Council (WEC). An integrated assessment 
framework was used to explore the prospects for improving the global 
availability and quality of energy services, as well as the wider implications 
these improvements may have. The study explores a broad range of global 
energy developments and their consequences , such as the likely financing 
needs and environmental impacts. This two-year I IASA-WEC study is 
presented in Global Energy Perspectives to 2050 and Beyond [18] and a 
number of related publications ([33], [34], [35]). 

The IIASA-WEC study centers on three cases of future economic and 
energy development for 11 world regions, Cases A, B, and C. The cases are 
characterized as follows: 

• Case A: High growth 
The future economy and energy system are characterized by high rates 
of economic growth and rapid technological progress. 

• Case B: Middle course 
A "pragmatic" scenario with moderate growth expectations and lower 
technological dynamics . 

• Case C: Ecologically driven 
The most challenging case, with opt1m1st1c assumptions about the 
economy and technology and, compared with Case A, strong emphasis 
on environmental issues and international equity. 

In terms of describing the scenarios with the energy systems model 
MESSAGE, assumptions concerning technological change had to be har­
monized with the scenario definition. Figure 2 shows the type of model 
employed: assuming increasing knowledge and cumulative application and 
construction of the technology, costs are reduced and performance pa­
rameters such as conversion efficiency improve over time [18]. The tech­
nology data bank of MESSAGE includes time series with improving 
performance and decreasing costs for all important technologies, especially 
new systems like photovoltaic (PY) electricity generation and all technol­
ogies related to hydrogen production and use. The rates of change vary 
across the three cases according to the assumptions made concerning eco­
nomic growth and technology dynamics . 

The modeling process described has a severe shortcoming: the model can 
(and does) decide to use a technology later in time, after the costs have 
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Fig. 2. Examples of historical and assumed future technology cost improvements 

declined; thus it can avoid investments during the learning phase of the 
technology. In this case, technology improvements and learning enter as 
"free goods". The result is the rather late adoption of new technologies, as 
deciding on their use occurs only when the technology parameters char­
acterize a mature, cheap technology with high market share and acceptance. 
In energy optimization models , a common way to combat these problems is 
by limiting growth rates over time, simulating a market penetration process. 

The technology dynamics should, however, be conceived differently. 
Diffusion is not an instantaneous large-scale process; it proceeds gradually, 
through the progressive exploitation of niche markets. These niche markets, 
together with continued RD&D, provide for " learning by doing," for ex­
ample, through the accumulation of knowledge and experience in the 
manufacture of machines or equipment. Experience is also accumulated in 
the application of technologies. a process called "learning by using." 
Knowing how to effectively apply a technology can improve its performance 
considerably. Additionally, learning by using is an important source of in­
formation for improving the design characteristics of new technologies and 
for making these technologies more economical. Learning is contingent on 
actual implementation of and experimentation with new technologies; the 
more implementation and experimentation takes place, the greater the re­
sulting learning and improvements of technologies. Thus, future technology 
improvements become endogenous aspects of the crucial development pro­
cess and path; that is, they are a function of the particular development 
(investment) strategy chosen. A frequently used way to represent this 
learning process is to express learning (e.g. , cost reductions) as a function of 
cumulative installations (sales or installed capacities of new equipment) . The 
information in Fig. 3 is similar to that given in Fig. 2, but with cumulative 
investment (or knowledge) measured on the horizontal axis. 

Generally, linear programming models such as MESSAGE cannot 
represent such relations, because they are non-convex. The most important 
feature of non-convexity is that feasible solutions to a problem exist with no 
direct connection from one of these solutions to the other. For the model of 
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technological learning, this feature implies that in the linear model the 
mature technology parameters are available without an investment in the 
learning process ; in other words, there is a direct connection from zero 
installations to the parameters of the mature technology. 

For linear programming models, the standard methodology for coping 
with non-convex relationships is mixed integer programming (MIP). Like 
all nonlinearities, non-convex relations are described by stepwise lineari­
zation. Additionally, integer variables are used to enforce the sequence in 
the curve, in our case the relation between total size of the market and 
technology cost. Cheap technologies are only possible when the market is 
large: for smaller markets (or cumulative installations), higher prices must 
be paid. A pure linear programming model would permit the use of cheap 
technologies regardless of the actual market size . 

3 The energy model MESSAGE 

The energy optimization model MESSAGE is a dynamic linear program­
ming model of the overall energy system. It models flows of energy through 
the energy system, from primary energy extraction via conversion (e.g., in 
refineries or power plants) up to final utilization in various sectors of the 
economy. MESSAGE uses two major types of variables: activity variables 
describing the fuel consumption of technology j in period t (XJt ), and ca­
pacity variables for annual new installations of technologies ( lJ1). Con­
straints applied in all modeling exercises concern (a) acquiring sufficient 
supplies of the (exogenous) demands, (b) balancing quantities for all energy 
carriers and periods, (c) constraining resource availability, and (d) ensuring 
the installation of sufficient capacity of the technologies applied . Additional 
constraints can be defined depending on the needs of the application: for 
example, the need to limit the market penetration of new technologies or to 
relate technologies based on energy sources with stochastic availability to a 
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certain share of the overall supply (see [5] for a full description of the 
mathematical formulation of MESSAGE). 

The objective function generally applied in MESSAGE is to minimize 
the sum of the discounted costs, or the net present value, of the overall 
energy system. A simplified version of this objective function could be 
written as 

T 

min L L[d~ ~1XJt x iJt + d~·~ 1 Ij1 x oJt], 
j t = I 

where T is the number of periods in the model; d~ and d~ are the discount 
factors applied for operating and capital costs, respectively; ~tis the length 
of period t in years; and iJt is the specific investment and oJt, the operating 
costs of technology j in period t. This objective function is minimized 
subject to the energy balance and demand constraints, where all producers 
of energy carrier e (technologies in P,J must supply sufficient energy for 
either all consumers (technologies in Ce) or for the exogenous demand for 
e (De1), taking into account the conversion efficiencies of the technologies, 
(11 Jt ) : 

L Y/jtxjt 2 L xjt +Del· 
j E P, jE C, 

Capacity requirements are determined by a vintage type of approach, that 
is, production in a period is related to all capacities up to a certain age (the 
technical plant life, n1), including the contribution of capacities existing 
before the first modeled year (hjt): 

I 

1/jrJ<;r :S 'l.jt L ~r Yr; +hjt . 
r= t - n j 

Average utilization of the capacity is described by the plant factor CJ.Jt, which 
is more important for electricity generation than for other technologies. 
Overall resource consumption is controlled by constraining the quantities 
extracted over the entire model horizon to the available quantities of a 
resource (R;): 

T 

L ~rXjt :SR;. 
I = I 

Additional constraints on resource extraction, such as depletion constraints 
limiting the quantity extracted during a period to the volume still available, 
or constraints on the growth of extracted quantities, can also be formulated. 

The application of MESSAGE is parameterized by a set of input files 
describing the energy system. There are three types of technology-related 
parameters: technical parameters like conversion efficiency, technical plant 
life, and plant factor; economic parameters such as investment and oper­
ating costs; and ecological parameters, in most cases emission factors for 
C02, S02 and nitrous oxides (NOx). Other required parameters concern the 
demands derived from the Scenario Generator in the current application 
and the availability of depletable and renewable resources. Depending on 
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the scenario, other parameters can be introduced, such as em1ss1on con­
straints or limits on the application of certain technologies. 

4 Modeling technological learning 

For the first experiments with the endogenized process of technological 
learning, investment costs were chosen as a dependent variable. Process 
models like MESSAGE require technology costs as specific values, for ex­
ample, per kW. In the model formulation, these costs are multiplied by the 
annual new installations to yield overall cost. By using dynamic (time­
variable) investment costs, technological learning is reflected in a static way. 
The resulting investment strategies do not influence specific investments. 
The investment costs of one technology are then commonly expressed as 

T 

I: d1L11Yr x i, 
I = I 

in the objective function, where d1 is the discount factor for period t, Yr the 
annual investment in period t , L11 the number of years in period t, i1 the 
specific investment cost in period t , and T the number of periods in the 
model. 

Endogenizing technological learning in a technology-oriented model 
requires a representation of changes in technology parameters during the 
learning process . The measure used for cumulative knowledge acquired in 
the learning process is cumulative installed capacity. Dynamic specific in­
vestment costs as part of the ohjecti\·e can be expressed as 

T 

Ld1L11Yr x i1(C1) , 
I = I 

with 

I 

Ci= LL1rYr , 
r = l 

where the specific investment cost, ii, is a function of cumulative investment. 
C1. 

As described in the previous section. this non-convex relationship can be 
formulated using an extension of linear programming, namely, an MIP 
formulation. In MIP, single variables of the problem can be forced to take 
only integer values. A special algorithm (most commonly the branch-and­
bound method) searches the solution space along the tree of possible de­
cisions for integer variables in order to find the optimal solution. An ex­
tension of mixed integer formulations that is useful for the problem 
investigated here is Type Two Special Ordered Sets (SOS-2). These sets are 
defined as consisting of at least two variables and having the characteristic 
that only two adjacent variables can take nonzero values. 

By definition , SOSs are very well suited to interpolate non-convex re­
lationships. This suitability is exemplified for the non-convex relationship 
y = f(x). Each variable in the set (S;) stands for a cornerpoint in the 
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piecewise linear interpolation of J(x). Because by definition only two ad­
jacent variables can have nonzero values, setting the sum of the SOS 
variables equal to one provides interpolation along these points. Williams 
[36] provides a comprehensive explanation of the basic formulation possi­
bilities: Nemhauser and Wolsey [37] describe potential solution algorithms; 
and Jeroslow [38] goes into more detail with respect to mixed integer for­
mulations. 

II 

I::s; = 1. 
i = I 

Multiplication of the variables in the set (S;) by the x-values (x;) provides 
the x-value, 

II 

x= Lx;S; ; 
i = I 

multiplication by the corresponding y-values Ci1) provides the function 
value in the MIP formulation 

n 

y= LY;S;. 
i = I 

Formulating the cost curve of technological learning using an SOS-2 for­
mulation includes the following steps: 

1. Interpolate cumulative investments; that is, determine where in the 
learning curve the technology is: 

N t 

L C11S/I/ = L i1 , Y, . 
11 = I r = I 

2. Determine the investments to be paid in the period, cumulating all in­
vestments over time and using the specific investment costs in accor­
dance with the cost curve: 

I N 

L Ir = L i 11S111. 

r = I 11 = I 

3. Force the sum of the SOS variables to be equal to one for correct 
interpolation: 

N 

I::s111=l. 
11 = 1 

4. Include the investment variables in the objective function; discounted 
with a discount rate of 5% per year: 

T 

I:di11, 
t= I 

where S111 are the variables of the SOS-2 set for period t , I, are the 
additional investments in the technology in period t, c 11 represents the 
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interpolation points for capacity, and i 11 represents the interpolation 
points for average costs. 

This formulation is added to the standard formulation of MESSAGE, as it 
is described in Section 3 and in [5], and solved with a commercial M IP 
package, CPLEX [39]. 

5 Application and results 

Among the differences between the three families of scenarios described 
in Section 2 are the different descriptions of technology dynamics over 
time. Cases A and C have dynamic expectations of potential technology 
improvements, and Case B presents a more conventional view of the 
future , with more static investment costs . Table 1 presents the specific 
investment costs for new electricity generation technologies, which could 
provide a significant share of electricity by the year 2050. It includes the 
costs for 1990, that is, estimates of present costs for new installations. 
and the costs in 2050 for Cases A and B. These cost estimates were 
based on data collected in C02DB, the IIASA C02 mitigation tech­
nology inventory [40]. A statistical analysis of these underlying data is 
described in [41] . 

Table 1. Inves tment costs a nd progress rati os of se lected technologies. in US dollars (at 
1990 va lue) per kW 

Technology 1990 2050 Progress 
ratio 

Case B Case A 

Coa!Adv 1,650 1,500 1.350 0.93 
GasCC 730 600 400 0.85 
New Nuclear 2,600 2.300 1.800 0.93 
Wind 1,400 900 600 0.85 
Solar TH 2,900 1.600 1.200 0.85 
SolarPV 5,100 2.000 1.000 0.72 

Table 1 shows that in the Middle Course, Case B, the potentia l for 
improvements for advanced coal and new nuclear technologies is assumed 
to be in the range of 10% ; gas combined cycles improve by nearly 20%; 
and the cost reduction potentials for the renewable technologies are highest, 
with 35% for wind, 45 % for solar thermal , and 60% for PY electricity 
generation. In the case with more dynamic technological change, Case A, 
the potentials for improvements lie between 18% for advanced coal-based 
electricity generation and 80% for solar PY. These cost reductions change 
the cost rankings of the technologies. In Case A , even the ranking among 
the solar technologies is reversed : expectations are for PY cells to become 
more economical than solar thermal electricity generation. 
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The three cases were modeled on the basis of 11 world regions. For each 
region, energy conversion is modeled from primary energy extraction and 
imports up to final utilization in the end-use sectors. The regional energy 
models are interlinked by global energy trade; the entire system is solved 
simultaneously. This world energy model, M 11 T, has on the order of 35,000 
variables and 50,000 constraints, depending on the case, that determine the 
number of new technologies available in the system. 

A smaller version of the world model was developed for additional 
investigations and for the development of new methodological approaches. 
This small version, CWM, consists of only one region depicting the world 
as a whole and currently does not include end-use technologies, but rather 
includes demands for types of final energy carriers (gaseous, liquid, solid, 
electricity, and district heat) . CWM is used for the initial experiments with 
the approach to internalizing technological learning used in MESSAGE III. 
Its model size is approximately one-tenth that of the full model, with 2,700 
columns and 3,400 rows. 

Technological learning in terms of the reduction of investment costs as 
a function of cumulative installations is included in this model for the 
technologies listed in Table 1. The learning process starts at present costs 
and can, by accumulating experience, reach the level assumed for Case A. 
This means that for solar PY, a reduction by a factor of five can be 
reached; the reduction potential for gas combined cycles is approximately 
45%, from US$730/kW to USS400/kW. The maximum potential degree of 
cost reduction is limited in this application for methodological reasons: in 
order to evaluate how the option of influencing the speed of technological 
progress affects the results, other differences that could come from dif­
ferent absolute cost levels are excluded. Table 1 also shows the progress 
ratios used in the analysis . Generally, for more mature technologies, lower 
progress was assumed, while for newer technologies the progress ratios of 
0.85 are between high and average values for large plants, as shown by 
Christiansson [42]. The implied cost reduction per doubling of capacity is 
7% for mature technologies and 15% for new technologies . This diver­
sification is inspired by Fig . 3, where the exponential decrease of cost as a 
function of overall installed capacity occurs when technologies become 
more mature, that is, when the potential for improvement declines. For 
PY cells , which can be grouped into technologies with modular design, an 
even higher reduction potential with a progress ratio of 0.72 (a 28% cost 
reduction per doubling) is assumed. As for the large plants, this value lies 
in the range of high and average progress ratios for modular technology 
designs. 

The comparative analysis is based on a "static" case, where the invest­
ment costs of the new technologies are assumed to remain at the 1990 level 
over the time horizon . Figure 4 shows the energy mix used for electricity 
generation in the static case for the years 1990, 2020, and 2050. In this case, 
the mix of electricity generation, which in 1990 includes 38% coal, 14% gas, 
17% nuclear, and 30% other sources (predominantly hydropower), un­
dergoes a major shift toward nuclear energy; by 2050, 55% of all electricity 
is generated from nuclear energy. The second-largest share (33%) is from 
coal-based systems, with standard coal-fired power plants increasing their 
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production from current levels of 515 GWyr to 911 GWyr, and advanced 
coal-based systems supplying an additional 641 GWyr by 2050. Gas-based 
electricity generation in steam turbines ( 184 GWyr in 1990) is virtually 
phased out by 2050, and gas-fired combined cycles provide 444 GWyr or 
10% of all electricity, a lower share than in 1990. Wind generators start to 
be employed at a larger scale only after 2030, when fossil energy sources 
become more expensive [the shadow price of oil reaches US$38 per barrel of 
oil equivalent (boe) in 2030]. Solar thermal systems are first used in 2050, 
but their contribution is below I%. PYs do not become competitive at the 
energy prices prevailing in this scenario. 

The static case, as presented here, represents a scenario where resources 
are dwindling: marginal oil and gas resources are expensive, nuclear energy 
is required to provide energy at attractive prices, and coal, \Vith its vast 
resource base at economical costs, is the second choice for electricity gen­
eration. New renewable energy sources cannot provide electricity at com­
petitive prices, and natural gas resources are not cheap enough to provide 
significant shares of electricity. 

The picture changes dramatically with the introduction of technological 
learning, as described in Section 4, for the electricity generation technolo­
gies listed in Table I (see Fig. 5). The use of standard technologies (coal and 
nuclear in addition to gas) is reduced considerably (by 2050, only 14% of 
electricity is generated from these two sources), and new technologies, 
which have the potential for technological learning, expand considerably. 
Wind generators, solar electricity generators, and new nuclear generators 
are employed, and the use of advanced coal-based systems also increases 
slightly. In 2020 two changes can be observed, namely, the initial pene­
tration of solar PY and wind systems, and the larger contribution of new 
nuclear reactors to the smaller overall share of nuclear energy. By 2050, the 
share of coal in electricity generation is 17%, versus 33 % in the static case; 
nuclear energy supplies 36% of total electricity, compared with 46% in the 
static case; and solar PY contributes 19% and wind energy I 0% of elec­
tricity generation, compared with 0.7% and I%, respectively, in the static 
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Fig. 5. Electricity generation in the case with technological learning in electricity gener­
ation. 1990. 2020, and 2050 

case. The effect of technological learning on marginal production costs (or 
shadow prices) leads to stable electricity prices, compared with a 13% in­
crease of marginal costs in the static case. 

One notable result of this analysis is that, in this case, gas-based com­
bined cycle power plants are used to a lesser degree than in the static case. 
Although the costs of these systems have a reduction potential of 45%, 
other systems become more attractive. The main reason for this result is the 
high share that fuel costs have in the production costs of gas-based elec­
tricity generation systems. Over the planning horizon, the shadow price of 
natural gas doubles from roughly USS 16/boe in 1990 to US$32/boe in 2050 
in both cases. making gas an unattractive source of electricity. 

Because increases in the price of natural gas due to the depletion of 
easily accessible reserves have a major effect on model results, a logical next 
step in model development is to extend the technological learning principle 
to extraction technologies . The assumption in Case A concerning techno­
logical learning in oil and gas extraction (applied only to the more expensive 
categories) is that a 40% reduction could be achieved up to the year 2050. 
This assumption is incorporated into the small world model as a potential 
cost reduction. 

In this third case, marginal prices of primary energy are reduced con­
siderably: in 2050. oil is priced at USS35/boe instead of about US$40/boe in 
the other two cases, and gas is priced at US$23/boe instead of US$32/boe. 
At the same time, the cumulative use of oil over the 60 years increases by 
5%, or 18 Gtoe, and cumulative gas use is 10%, or 30 Gtoe, higher. 

The electricity generation pattern in 2020 (see Fig. 6) is not significantly 
different from that of the previous case, but by 2050 the contribution of gas­
based combined cycles reaches a higher share than in either of the other 
cases, accounting for 36% of electricity. This expansion is reached at the 
expense of nuclear energy (no standard nuclear systems are used and the 
advanced systems contribute 25% less) and advanced coal (which con­
tributes only 4%, compared with 15% in the previous case). 
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Fig. 6. Electricity generation in the case with technological learning in electricity gener­
ation and extraction, 1990, 2020. and 2050 

6 Comparison with standard applications 

The analyses in Section 5 have shown that modeling technological learn ing 
in terms of cost reductions with growing experience dramatically influences 
model outcomes. In this section, this approach is compared with the use of 
dynamic parameters, introducing a deterministic trajectory of future cost 
reductions into the model parameters. 

The small world model was applied with the cost trajectories underlying 
Case A, reaching the level of investment costs described in Table 1 by 2040. 
Figure 7 compares the electricity generation patterns in 2050 for this case 
(labeled dynamic) with those for the static case and the case with endog­
enized learning in electricity generation and extraction. 

In the dynamic case, where the cost trajectories correspond to IIASA­
WEC Case A, coal is reduced to approximately 5% and standard nuclear 
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Fig. 8. Electricity generation from solar PY in the dynamic and learning cases, 1990 to 
2050 

technologies are phased out and partly replaced by new nuclear systems. 
However, the major share of electricity generation in this case is supplied by 
gas-based combined cycle power generation. The overall contribution of 
solar systems is about 20% , and PY starts to penetrate the market. 

Comparing the dynamic case with the learning case shows some small 
differences, as well as one major dissimilarity concerning solar electricity 
generation. Overall, solar electricity generation is the same, but in the 
learning case nearly all of it comes from PY, while in the dynamic case some 
60% is still from thermal systems. This is an effect of the crossing over of 
the cost curves of the two solar electric systems. This crossover occurs at a 
fixed point in time in the dynamic case, but in the learning case its timing 
can be influenced by higher investments in PY systems. Consequently, with 
endogenized learning, PY penetration starts as early as 2000, compared 
with 2020 in the dynamic case, and penetration rates are much higher (see 
Fig. 8). 

The specific investment costs per kW installed for solar PY systems in 
the dynamic and learning cases are compared in Fig. 9. The assumption in 
Case A, the dynamic case, is a linear cost decrease over 50 years of around 
3% per year. In the learning case, the final level of US$1000/kW is reached 
IO years earlier, in 2030, and the development of the costs over time is 
nonlinear. The initial small reduction of 10% between 1990 and 2000 is 
followed by a major reduction in costs of more than 50% by 2010. Between 
2010 and 2020 there is another significant decrease in costs, amounting to a 
40% reduction. The final reduction, occurring between 2020 and 2030, is 
again around 10%. 

Similar comparisons can be made for all technologies. One interesting 
case is that of advanced coal, shown in Fig. 10. Initially, no investment 
takes place in this system; therefore, in the learning case, costs are not 
reduced up to 2000. Specific investment costs start to decrease slowly up to 
2010 and thereafter accelerate until, by 2030, they have reached the ultimate 
level of cost improvements. In the dynamic case, on the other hand, cost 
improvements are predefined by a given pattern over time. Although 



Technological learning in MESSAGE 

5000 

4000 

~ 
~ 3000 
<;> 
!/) 
:::> 

2000 

1000 

o~---'----1-----+-----+----'----~ 

1990 2000 2010 2020 2030 2040 2050 

307 

- - - - - - Dynamic 

---Learning 

Fig. 9. Specific investment costs for PY systems in US dollars (at 1990 value) per kW for 
the dynamic and learning cases , 1990 to 2050 

1700 

1650 

1600 

1550 
:: 
-"' 

- - - - - - Dynamic .... 1500 .,, 
!/) ---Learning 
:::> 

1450 
.. 

1400 

1350 

1300 
1990 2000 2010 2020 2030 2040 2050 
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investments m advanced coal systems start only in 20 I 0, parameters 
improve in a static manner over time. 

Figure 11 shows the effect of making investment costs dynamic (dynamic 
case) and endogenizing technological learning in terms of investments 
(learning case) by comparing the investment profiles for these two cases 
with that of the static case. Investments in the energy sector today account 
for at least 10% of international credit financing, which currently is around 
US$3.6 trillion (10 12) [43]. In the static case, the annual energy investments 
increase at an average annual rate of 2.4%, growing to 4.2 times the 1990 
level by 2050. This trajectory is taken as basis for the comparison in Fig. 11 
and is shown as 100% there. If specific investment costs of new technologies 
decline over time (dynamic case) , the overall investments start at a higher 
level than in the static case in order to initialize faster market penetration of 
the new technologies, which reduces investments by up to 20% after 2020. 
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In the case with endogenized technological learning, investment in ex­
pensive technologies such as solar PY starts earlier, as was shown in the 
previous analysis. Consequently, overall investment is even higher than in 
the dynamic case. However, in the longer run the reduction in investment 
starts earlier and sustains a higher level in the case with endogenized learning 
compared with the dynamic case. Up to 2020, cumulative investments in the 
energy sector are 0.2% higher in the dynamic case and 1.5% higher in the 
endogenized technological learning case than in the static case. Between 
2020 and 2050, both the dynamic and learning cases show reductions in 
cumulative investments; however, the reductions are 50% greater in the case 
with endogenized technological learning (-13.2 % compared with the static 
case) than in the dynamic case (-8.7 % compared with the static case). Over 
the entire time horizon , 1990- 2050, cumulative investments are 6.6% lower 
in the dynamic case and 9. 7% lower in the endogenized learning case than in 
the static case . Redistributing the investment decisions to enhance the pro­
cess of technological learning reduces overall capital investments in the en­
ergy sector by 50 % more than just envisioning a time-dependent learning 
process, as is modeled in the dynamic case . 

The objective function of the optimization runs is the sum of all dis­
counted costs (or the net present value) of the energy system over the entire 
horizon up to 2050, using a discount rate of 5%. In the static case, the 
objective function value is US$186.2 trillion (10 12 ) in 1990 dollars 
[US$(90)]. In the dynamic case it is reduced by US$(90)l.79 trillion, and in 
the endogenized learning case it is reduced by US$(90)2.22 trillion, some 
24% more. 

In this modeling approach, which minimizes the overall discounted cost, 
the factor that influences investments the most is the discount rate chosen 
for the analysis. In this approach, capital is available at a cost that exactly 
matches the discount rate, so the discount rate defines the interest paid on 
capital. Thus, it is clear that higher discount rates tend to favor technologies 
with lower up-front investments, even if the operating costs are higher, 
whereas low discount rates result in increased use of technologies with high 
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initial investment. The results of sensitivity analyses of MESSAGE to the 
discount rate have shown that renewable technologies, which have com­
paratively high investment requirements, tend to be used more at lower 
discount rates (see [44]). Consequently, an analysis of the influence of the 
discount rate on the results presented here would show a faster introduction 
of solar PY at low discount rates and a slower introduction at high discount 
rates. Thus, it is important to state that both the dynamics of technological 
learning and the choice of the discount rate play an important role in 
determining the shape of the development trajectories. 

7 Conclusions 

Technological learning has been endogenized into the energy systems model 
MESSAGE III in terms of cost reduction as a function of accumulated 
knowledge. Results of model runs for a comprehensive model of the global 
energy system show drastic changes in model results when endogenized 
learning, rather than static model parameters, is used. In contrast to the 
mere inclusion of time-dependent cost trajectories, this representation yields 
different results in cases where faster cost reductions for attractive tech­
nologies can be achieved by higher initial investments. This result has been 
shown for the case of PV electricity generation, where the reduction po­
tential is considerable. In the complete absence of technological learning, 
these systems are not employed, whereas in the case of a trajectory for 
system cost, a share of 8% of electricity generation by PV is reached by 
2050. By endogenizing the process of knowledge accumulation and cost 
reduction into the model, this share is increased to nearly 20%. 7 

An analysis of the investment requirements and objective function val­
ues reached in the three model runs (the static, dynamic, and learning cases) 
shows the influence of endogenizing technological learning in the modeling 
approach: In the learning case, cumulative investments are reduced by 13% 
compared with the static case and by approximately 5% compared with the 
dynamic case. However, endogenizing technological learning also reduces 
the overall discounted costs of the energy system by 1.2% compared with 
the static case, which is 0.2% more than the dynamic case. Compared 
with the static case, the overall cost reduction is US$(90)2.2 trillion. The 
basic message from this experiment is that early decisions concerning the 
introduction of new technologies are essential for reaching good economic 
performance over time. 

Technological learning, as implemented in the current approach, in­
cludes only expenditures made during the time a technology is actually 
applied. RD&D expenditures, be they for scientific research or development 
and demonstration by a company, are not explicitly incorporated. In an 
early attempt to introduce induced technical change in a linear program­
ming model, Nordhaus and Van der Heyden [45] included the up-front 
investments for R&D by using an integer variable indicating whether or not 

7 The discount rate used for this analysis is 5% , as was used in the underlying JIASA­
WEC study [18]. 
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R&D takes place. In this case, a new technology can only be applied if this 
up-front investment is made. Future enhancements of the modeling ap­
proach presented here will include a representation of up-front R&D along 
these lines. 

As already postulated by Schumpeter [46], technical change is an evo­
lutionary process with considerable uncertainties involved in all stages. The 
modeling approach presented in this paper is an initial step toward endo­
genizing the process of technological learning into energy systems modeling. 
Under the conditions of optimal technology selection and for the setup and 
parameters of the model chosen, this approach gives answers to questions 
concerning optimal allocation of research funds and R&D expenditures. In 
real life, where "technological innovations would consist mostly of non­
starters" [47], the winners and losers are not known at the outset. What is 
therefore required as an addition to this initial experiment is the further 
expansion of the approach to deal with uncertainties concerning the success 
of new technologies, as well as the uncertainties concerning the develop­
ment paths that technology performance takes. An initial step in this di­
rection has been taken by introducing the uncertainties of future technology 
performance as such into the model formulation [48]. Early experiments 
with the stochastic version of MESSAGE have shown that, if the uncer­
tainties concerning future technology performance are incorporated, the 
model tends to spread risk over more technologies. Combining the two 
approaches - endogenizing the process of technological learning and in­
corporating uncertainties concerning the degree of possible learning -
would then also hedge against the risk of wrong investment strategies by 
diversifying into the most promising options. The combined approach 
would quantify the expenditures that still lead to an optimal allocation of 
financial resources, depending on the risk perception of the decision maker. 
Although it clearly could not tell which technologies will be the winners in 
the future, it could mark clusters of technologies with certain characteristics 
for which research funds should be spent. 

The results presented in this paper have some important implications for 
energy policy. They clearly show that it is misleading to simply model new 
technologies as future "back-stops" that will at some point become avail­
able at lower costs. This approach leads to postponed investment in these 
technologies, and implies that it would be opportune to wait until new 
technologies become cheaper. However, these new technologies will never 
become cheaper without determined RD&D policies. Furthermore, in­
vestments in new technologies are uncertain and costly, because there are 
many "non-starters". This paper has shown that the first step in endo­
genizing technological dynamics indicates that up-front investment and 
determined RD&D policies can lead to future cost reductions and tech­
nology performance improvements. Further work is required to include 
technological uncertainty as another important property of technology 
development. 

Ack11ol!'/edgeme11ts. The author is grateful to A. Grilbler, N. Nakicenovic, and two 
anonymous referees for helpful and constructive discussions and suggestions. 



Technological learning in MESSAGE 311 

References 

I. Cherniavsky, EA ( 1974) Energy systems-analysis and technology assessment program 
for the U .S.A.C.E. BESOM - Energy System Optimization Model. BNL-19565, 
Brookhaven National Laboratory, Upton, NY, USA 

2. Fishbone LG, Giesen GA, Goldstein HA, Hymen HA et al. (1983) User's Guide for 
MARKAL (BNL/ KFA Version 2.0). BNL-46319, Brookhaven National Laboratory, 
Upton, NY, USA 

3. Kram T ( 1993) National energy options for reducing C02 emissions. A report of the 
Energy Technology Systems Analysis Programme, Annex IV ( 1990- 1993). ECN-C-93-
101, Netherlands Energy Research Foundation ECN 

4. Van der Voort E et al. (1985) Energy supply modeling package - EFOM 12C MARK 
I. Vol. II (user's guide) EUR 8896 EN, Vol III EUR 8896 EN (CEC) 

5. Messner S, Strubegger M (1995) User's Guide for MESSAGE III, WP-95-69 . Inter­
national Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 

6. Hafele Wet al. (1976) Second Status Report of the IIASA Project on Energy Systems. 
RR-76-1, International Institute for Applied Systems Analysis (IIASA), Laxen burg. 
Austria 

7. Weyant JP ( 1981) The experiences of the energy modeling forum. Beyond the energy 
crisis, opportunity and challenge, Vol IV. Pergamon Press, Oxford, UK 

8. Manne AS (1979) ETA MACRO: A model of energy-economy interactions. Advances 
in the economics, of energy and resources. Vol 2. Jai Press, Greenwich. CT, USA 

9. Kydes AS, Shaw SH, McDonald OF ( 1995) Beyond the horizon: Recent directions in 
long-term energy modeling. In: Energy, Vol 20. No 2. Elsevier, Oxford. UK 

10. Hoffman KC, Jorgenson OW (1977) Economic and technological models for the 
evaluation of energy policies. The Bell Journal of Economics. 8(2): 444-466 

11. Messner S, Strubegger M (1987) Modellsys tem zur Analyse der Wechselwirkungen 
zwischen Energiesektor und Gesamtwirtschaft. Der offentliche Sektor: For­
schungsmemoranden, Technical University of Vienna , Vienna, Austria 

12. Manne AS, Wene C-0 (1994) MARKAL/MACRO: A linked model for energy­
economy analysis. Advances in systems analysis: Modelling energy-related emissions 
on a national and global level. Forschungszentrum Jiilich, Jiilich, Germany 

13. Wilson D, Swisher J (1993) Exploring the gap - Top-down versus bottom-up analyses 
of the cost of mitigating global warming. Energy Policy, Oxford, UK 

14. Wene C-0 (1995) Energy-economy analysis: Linking the macroeconomic and systems 
engineering approaches, WP-95-42 . International Institute for Applied Systems 
Analysis (IIASA), Laxenburg, Austria 

15. IPCC (Intergovernmental Panel on Climate Change) ( 1995) Climate Change 1994. 
Radiative Forcing of Climate Change and an Evaluation of the IPCC JS92 Emission 
Scenarios. Cambridge University Press, Cambridge, UK 

16. Bundesministerium fiir Handel ( 1987) Energiebericht und Energiekonzept der Bun­
desregierung 1984. Vienna , Austria 

17. Hafele W, Anderer J, McDonald A, Nakicenovic N ( 1981) Energy in a finite world: 
Paths to a sustainable future. Ballinger, Cambridge, UK 

18. Grilbler A, Jefferson M, McDonald A, Messner S, Nakicenovic N, Rogner H-H , 
Schrattenholzer L (1995) Global energy perspectives to 2050 and beyond. World 
Energy Council (WEC), London, UK 

19. Grilbler A, Nakicenovic N (1994) International burden sharing in greenhouse gas 
reduction. RR-94-09, International Institute for Applied Systems Analysis (IIASA) , 
Laxenburg, Austria 

20. Nakicenovic N ( 1989) Technological progress, structural change and efficient energy 
use: Trends worldwide and in Austria. International Institute for Applied Systems 
Analysis, Laxenburg, Austria 

21. Bundesanstalt filr Geowissenschaften und Rohstoffe ( 1989) Reserven, Ressourcen und 
Verfilgbarkeit von Energierohstoffen. Hannover, Germany 



312 S. Messner 

22. Masters CD, Attanasi ED, Dietzman WD, Meyer RF, Mitchell RW, Root DH (1987) 
World resources of crude oil , natural gas, natural bitumen, and shale oil. Proceedings 
of the Twelfth World Petroleum Congress at Houston, TX, USA, 1987. Wiley, New 
York, NY, USA 

23. Masters CD, Root DH, Attanasi ED (1991) World resources of crude oil and natural 
gas. Proceedings of the Thirteenth World Petroleum Congress at Buenos Aires , 
Argentina, 1991. Wiley, New York , NY, USA 

24. Beaver R (1993) Structural comparison of the models in EMF 12. Energy Policy, 
Oxford, UK 

25 . Nakicenovic N, Messner S (1982) Solar energy futures in a Western European Con­
text. WP-82-126, International Institute for Applied Systems Analysis (IIASA) , 
Laxenburg, Austria 

26. Messner S, Strubegger M ( 1986) First-order effects of a nuclear moratorium in Central 
Europe. WP-86-80, International Institute for Applied Systems Analysis (IIASA) , 
Laxenburg, Austria 

27. Rogner H-H, Messner S, Schrattenholzer L, Strubegger M (1990) Study of the supply, 
cost and demand of alternative sources of energy to oil. International Institute for 
Applied Systems Analysi s (IIASA), Laxenburg 

28. Arrow K ( 1962) The economic implications of learning by doing. Review of Economic 
Studies 29: 155- 173 

29. Rosenberg N ( 1982) Inside the black box: Technology and economics. Cambridge 
University Press, Cambridge, UK 

30. Argote L, Epple, D ( 1990) Learning curves in manufacturing. Science 247: 920-924 
31. Gritsevskii A ( 1996) The scenario generator: A tool for scenario formulation and 

model linkages . WP-96-Draft. International Institute for Applied Systems Analysis 
(IIASA), Laxenburg, Austria (forthcoming) . 

32. Manne AS, Richels RG ( 1992) Buying greenhouse insurance. The economic costs of 
C02 emission limits. The MIT Press, Cambridge, MA, USA 

33. IIASA (International Institute for Applied Systems Anal ysis) /WEC (World Energy 
Council) ( 1995) Global energy perspectives to 2050 and beyond. Support Paper. 
WEC, London, UK 

34. Grlibler A, Jefferson M, Nakicenovic N (1996) Global energy perspectives: A sum­
mary of the joint study by the international institute for applied systems analysis and 
world energy council. Technological Forecasting and Social Change: An International 
Journal 51(3): 237- 264 

35 . Nakicenovic N . Rogner H-H ( 1996) Financing global energy perspectives to 2050. In : 
OPEC Review, Vol XX. No. I. OPEC, Vienna , Austria 

36. Williams HP (1990) Model building in mathematical programming. Wiley, New York , 
NY, USA 

37. Nemhauser GL, Wolsey LA ( 1988) Integer and combinatorial optimization. Wiley, 
New York, NY, USA 

38. Jeroslow RG (1989) Integer-based decision support - Mixed integer formulation . 
North Holland , Amsterdam, The Netherlands 

39 . CPLEX Optimization (1989- 1994) Using the CPLEX Callable Library. Incline Vil­
lage, NV, USA 

40. Messner S, Strubegger M (1991) User's Guide to C02DB: The IIASA C02 Tech­
nology Data Bank, Version 1.0. WP-91-31a, International Institute for Applied Sys­
tems Analysis (IIASA), Laxenburg, Austria 

41. Strubegger M , Reitgruber I (1995) Statistical analysis of investment costs for power 
generation technologies. WP-95-109, International Institute for Applied Systems 
Analysis (IIASA), Laxenburg, Austria 

42. Christiansson L (1995) Diffusion and learning curves of renewable energy technolo­
gies. WP-95-126, International Institute for Applied Systems Analysis (IIASA), 
Laxenburg, Austria 



Technological learning in MESSAGE 313 

43. Nakicenovic N , Rogner H-H (1995) Global financing needs for long-term energy 
perspectives. WP-95-10 I, International Institute for Applied Systems Analysis 
(IIASA), Laxenburg, Austria 

44. Messner S (1996) The influence of the discount rate on long-term energy perspectives . 
International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria 

45. Nordhaus WD, Van der Heyden, L (1983) Induced technical change: A programming 
approach. In: Energy, productivity and economic growth, Oelgeschlager, Gunn & 
Hain , Cambridge, MA, USA 

46. Schumpeter JA (1959) Capitalism , Socialism, and democracy. Harper & Row, New 
York, NY, USA 

47 . Griibler A (1995) Time for a change: Rates of diffusion of ideas, technologies and 
social behaviors. WP-95-82 , International Institute for Applied Systems Analysis 
(IIASA), Laxenburg, Austria 

48. Messner S, Golodnikov A, Gritsevskii A ( 1996) A stochastic version of the dynamic 
linear programming model MESSAGE III. Energy. Vol 21. No 9, pp 775- 784. 
Elsevier, Oxford, UK 




