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Preface 
This report summarizes Activities 1.4 �Common techniques for incorporation of endogenous 
technology evolution in the large scale models� and 2.3 �Experience from MARKAL and 
MESSAGE� of the TEEM project. It brings together the experiences and insights gained by the 
project partners PSI (Switzerland), IIASA (Austria) and ECN (project number 7.7126). The 
contribution to this project has been carried out on behalf of the European Union (in the 
framework of the Non Nuclear Energy Programme JOULE III), contract JOS3-CT97 0013). 
 
 
Abstract 
Technological change is widely recognised as a key factor in economic progress, as it enhances 
the productivity of factor inputs. In recent years also the notion has developed that targeted 
technological development is a main means to reconcile economic ambitions with ecological 
considerations. This raises the issue that assessments of future trajectories of for example en-
ergy systems should take into account context-specific technological progress. Rather than tak-
ing characteristics of existing and emerging technologies as a given, their development should 
be a function of dedicated Research, Development and Demonstration (RD&D) and market de-
ployment under varying external conditions. 
 
Endogenous technological learning has recently shown to be a very promising new feature in 
energy system models. A learning, or experience curve, describes the specific (investment) cost 
as a function of the cumulative capacity for a given technology. It reflects the fact that tech-
nologies may experience declining costs as a result of its increasing adoption into the society 
due to the accumulation of knowledge through, among others, processes of learning-by-doing 
and learning-by-using. 
 
This report synthesises the results and findings from experiments with endogenous technologi-
cal learning, as reported separately within the EU TEEM project. These experiments have been 
carried out by three TEEM partners using three models: ERIS (PSI), MARKAL (ECN and PSI), 
and MESSAGE (IIASA). The main objectives of this synthesis are: to derive common methodo-
logical insights; to indicate and assess benefits of the new feature, but also its limitations and 
issues to solve; and to recommend further research to solve the main issues. 
 
This synthesis shows that all model applications are examples of successful first experiments to 
incorporate the learning-by-doing concept in energy system models. Incorporating the learning-
by-doing concept makes an important difference. The experiments demonstrate and quantify the 
benefits of investing early in emerging technologies that are not competitive at the moment of 
their deployment. They also show that the long-term impact of policy instruments, such as CO2 
taxes or emission limits and RD&D instruments, on technological development can be assessed 
adequately with models including technology learning. 
 
Adopting the concept of endogenous learning, several types of RD&D interventions can be 
addressed that aim at accelerating the market penetration of new technologies. The directions 
into which such interventions might lead have been illustrated in some of the experiments. 
However, quantitative relationships between R&D policy and learning data parameters are still 
unknown 
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1. INTRODUCTION 

Technological change, also referred to as technological progress, is widely recognised as a key 
factor in economic progress, as it enhances the productivity of factor inputs. In recent years also 
the notion has developed that targeted technological development is a main means to reconcile 
economic ambitions with ecological considerations (see, for example, Grübler, 1998a). This 
raises the issue that assessments of future trajectories of for example energy systems should take 
into account context-specific technological progress. Rather than taking characteristics of exist-
ing and emerging technologies as a given, their development should be a function of dedicated 
RD&D and market deployment under varying external conditions. Internally consistent frame-
works incorporating appropriate links with technological change, including learning rates and 
technology maturing costs receive increasing attention. 
 
Elaborating the general concepts, endogenous technological learning has recently shown to be a 
very promising new feature in energy system models. This paper synthesises the results and 
findings from four experiments with endogenous technological learning, as reported within the 
EU TEEM project. These experiments have been carried out by three TEEM partners using the 
models ERIS (PSI), MARKAL (ECN and PSI), and MESSAGE (IIASA). The experiences of 
the teams have been reported separately in more detail (Kypreos and Barreto, 1998a (ERIS), 
1998b (MARKAL); Seebregts, Kram, Schaeffer, and Stoffer, 1998 (MARKAL); Messner and 
Schrattenholzer, 1998 (MESSAGE). 
 
The objectives of this synthesis paper are the following: 
• To derive common methodological insights from these experiments. 
• To indicate and assess benefits of the new feature, but also its limitations and issues to 

solve. 
• To provide recommendations for proper use of the new feature. 
• To recommend further research to solve the main issues identified. 
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2. THE CONCEPT OF TECHNOLOGICAL LEARNING 

Typically, energy scenarios analysed with energy system models assume that characteristics of 
technologies can change over time. This can be seen as a reflection on technology dynamics 
(learning). However, the trend is often assumed to be exogenous � a function of time, for in-
stance � to the energy system analysis model. This applies to technology cost indicators like the 
specific investment cost and to performance indicators, e.g. the efficiency of energy technolo-
gies. 
 
Recent experiments with the small-scale global energy system model GENIE (Mattsson, 1997, 
1998) and the small version of the global MESSAGE model (Messner, 1997) have shown that 
formulations with endogenous learning are feasible and lead to insights not directly obtainable 
from the conventional models. The two models mentioned above apply the learning mechanism 
to the specific investment cost and adopt a learning or experience curve approach: the specific 
investment cost of a �learning� technology decreases as a function of cumulative capacity 
(�learning-by-doing’ mechanism). Other performance indicators remain exogenous to the en-
ergy system model. Figure 2.1 shows examples of such learning curves. 
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Figure 2.1  Examples of learning curves of energy conversion technologies 
Source: IIASA-WEC (1998)  
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A learning, or experience curve, describes the specific (investment) cost as a function of the 
cumulative capacity for a given technology. It reflects the fact that technologies may experience 
declining costs as a result of its increasing adoption into the society due to the accumulation of 
knowledge through, among others, processes of learning-by-doing and learning-by-using (Dut-
ton and Thomas, 1984; Grübler, 1998b). A number of technical, economical, environmental and 
social factors may also influence the cost reductions. The cumulative capacity is used as a 
measure of the knowledge accumulation occurring during the manufacturing and use of one 
technology (Christiansson, 1995). An experience curve can be expressed as: 

ba)( −×= CCSC  
Where:  
SC Specific cost 
C Cumulative capacity 
a Specific cost at C=1 
b Learning index (constant) 
C0 Initial cumulative capacity (at t = 0) 
SC0 Initial specific cost (at t = 0), equals a × C0

-b 

 
The learning index b can be used to calculate the progress ratio or vice versa. The progress ra-
tio (pr) expresses the rate at which the cost declines each time the cumulative production dou-
bles.  

b2pr −=  
E.g., a progress ratio of 0.8 means that the costs per unit of newly installed capacity decrease by 
20% for each doubling of cumulative installed capacity. The parameter b thus constitutes one of 
the key assumptions describing technological progress because it defines the speed of learning 
for the technology. It is important to note that an alternative but equivalent parameter, the learn-
ing rate, is often used which is defined as �1 - pr�. The advantage of using the learning rate 
rather than the progress ratio is that a higher learning rate means a faster decrease of costs, while 
a higher progress ratio means a slower decrease of costs. Despite of this, the use of progress ra-
tios seems more widespread. Table 5.1, Section 5.1 shows some examples of progress ratios 
used in the various applications summarised in this paper. 
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3. SCOPE AND COVERAGE OF THE MODELS 

The purpose of this section is to describe briefly the main characteristics of the four models and 
applications selected for this synthesis paper. For details, the interested reader is referred to the 
underlying reports and papers. 
 

3.1 ERIS prototype (PSI) 
ERIS (Energy Research and Investment Strategy) is a small-scale global energy model proto-
type specified and developed during the TEEM project. The original purpose of ERIS, as set out 
in (TEEM, 1997), was to capture the main mechanisms regarding the endogenous analysis of 
RTD policy under uncertainty and to allow for a consistent cost-benefit analysis of specific 
policies aiming at technology prioritisation. The original prototype, specified by IIASA (Mess-
ner, 1998) and coded by NTUA (Capros et al., 1998), was extended by PSI to include stochastic 
and more general constraints (Kypreos, 1998). It considered the non-linear programming (NLP) 
formulation of experience curves. (Kypreos and Barreto, 1998a) describes the implementation 
of the Mixed Integer Programming (MIP) formulation of learning curves into the ERIS proto-
type, makes a comparison between NLP and MIP solutions, and examines some parameters af-
fecting the MIP solution. The experience with ERIS reported in (Kypreos and Barreto, 1998a) is 
used in the underlying synthesis paper. Further development of ERIS by PSI is currently being 
considered as part of the last phase of the TEEM project. 
 

3.2 MARKAL (ECN and PSI) 
MARKAL is a widely applied bottom-up, dynamic linear programming (LP) model (Fishbone 
et al., 1983) developed by the Energy Technology Systems Analysis Programme (ETSAP) of 
the International Energy Agency (IEA). Besides this �standard� MARKAL LP model, which has 
provisions to model material flows within the energy system and to include uncertainty by a 
stochastic programming approach, the MARKAL family of models includes (IEA-ETSAP, 
1997; DecisionWare, 1998; IEA-ETSAP, 1999): 
• The MARKAL-MACRO model, a relatively new (NLP) model that combines the techno-

logical detail of MARKAL with the general economics of MACRO, a long-term neoclassi-
cal growth model. 

• The MARKAL-MICRO (NLP) and MARKAL-ED (LP) models which have a partial equi-
librium model not representing the rest of the economic system, but allowing demands to be 
reduced in response to higher energy prices. 

 
With only a few exceptions, the individual capabilities outlined above are additive in nature, 
that is they can be used in combination with each other, and are embedded in one software sys-
tem. For more details, see (IEA-ETSAP, 1997, 1999) or (DecisionWare, 1998).  
 
Experience from MARKAL models with endogenous learning was gained for a small-scale ex-
ample, the simple global MARKAL model (Kypreos and Barreto, 1998b) and for a large-scale 
example covering Western Europe (Seebregts et al., 1998). Both examples are used in this syn-
thesis paper.  
 

3.2.1 The simple global MARKAL (PSI) 
The simple global MARKAL model reported in (Kypreos and Barreto, 1998b) represents the 
global electricity market. The demand for electricity corresponds to the IIASA scenario B 
(IIASA/WEC, 1998). In this exercise, competitiveness of different electricity generation alterna-
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tives is examined. Six of them are allowed to experience learning in the investment cost, while 
for the others the cost is assumed constant along the horizon. 
 

3.2.2 Large scale Western Europe MARKAL (ECN) 
The (standard) MARKAL model application reported in (Seebregts et al., 1998) is the first large 
scale MARKAL application with endogenous learning. Main objectives were to evaluate 
whether the MIP formulation is feasible for large scale MARKAL models and to prepare and 
synthesise methodological recommendations, numerical results and sensitivity analyses and 
provide them for use in other activities of the TEEM project. 
 

3.3 Reduced version of the global MESSAGE (IIASA) 
The results of first experiments with endogenous learning in a reduced version of the global 
MESSAGE III model were reported by (Messner, 1997).The reduced version (�CWM�) models 
the world as one region and includes only final energy demand (and therefore makes no distinc-
tion into end-use technologies). The reduced model is about one-tenth of the size of the full 
MESSAGE model. The paper (Messner and Schrattenholzer, 1998) reports additional experi-
ence and is used in the underlying synthesis paper. 
 

3.4 Comparison 
The comparison of the models with respect to their scope and coverage has been summarised in 
Table 3.1. The aspects included are: 
 
Parameters subjected to learning 
All models restrict learning to the specific investment cost.  
 
Type of model 
All models can be characterised as dynamic, perfect-foresight, cost optimisation models and 
adopt the MIP formulation to model the concept of learning curves. The difference � and its 
significance � between the MIP and NLP formulations is explained in Section 4.1. The ERIS 
prototype also includes an NLP formulation, while the first experiments with MARKAL were 
performed on the basis of an NLP formulation. NTUA transformed the NLP model also to a 
Mixed Complementarity Problem (MCP, Capros et al., 1998). The time horizon is 1990-2050 
for all models. 
 
Geographical scale and regional detail 
Except for the standard MARKAL application for Western Europe (referred to as �MARKAL-
Europe� in the rest of this document), all models are global models. On the one hand, this has 
the advantage of including the world-wide experience. On the other hand, no distinction is made 
between different regions, e.g. to model spill-over from one region to another. The experience 
outside the region should not only be restricted to capacity in operation, under construction, or 
planned but also newly projected e.g. on the basis of energy system model results for other re-
gions of the world (e.g. see the discussion in (Petersik, 1997). 
 
Complexity and technological level of detail 
As can be seen from Table 3.1, only the MARKAL-Europe application can be considered as a 
rather technologically detailed, large-scale model. It has the greatest complexity in terms of 
number of technologies, level of detail in end-use technologies, number of variables and con-
straints. The number of segments used for the step-wise linear approximation of the cumulative 
cost curve is a measure for the accuracy of the MIP formulation. The larger the number of seg-
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ments, the larger is the number of discrete variables describing the approximation and hence the 
computational burden to solve the MIP problem. 
 
Language and solver used 
ERIS and MARKAL are implemented in the GAMS language, MESSAGE is primarily written 
in C. PSI and IIASA use CPLEX as solver, while ECN uses OSL. Since the models differ a lot 
in size and complexity, a comparison with respect to solver, specific solver option and solution 
times is not sensible. PSI and ECN report that the choice of specific solver options has an im-
pact on the computational performance and even on the solution generated. 
 
Table 3.1  Summary table depicting the coverage of the four model applications with 

endogenous learning 
Aspect ERIS global MARKAL reduced MESSAGE 

(�CWM�) 
MARKAL-Europe 
(�MARKAL-EUR. 1.0�)

Parameter affected by 
learning 

specific investment cost specific investment cost specific investment cost specific investment cost

Type of model dynamic, perfect 
foresight, cost- 
optimisation, MIP and 
NLP 

dynamic, perfect 
foresight, cost 
optimisation, MIP 

dynamic, perfect 
foresight, least-cost 
optimisation, MIP 

dynamic, perfect 
foresight, cost 
optimisation, MIP 

Time horizon 1990-2050 1990-2050 1990-2050 1990-2050 
Geographical scale  
and regional detail 

global, as 1 region global, as 1 region global, as 1 region Western Europe, as 1 
region  

Complexity and level 
of detail 

small small medium large 

number of technologies 11 13 77 510 
number of learning 
technologies 

5 6 6 3-10 

number of energy 
demands 

1 
(global electricity) 

1 
(global electricity) 

5 final energy categories 51 

end-use technologies 0 0 0 331 
Size of the MIP 
problem 

    

number of variables 751 1444 27003 86001 / 94002

number of constraints 1315 2260 34003 70001 / 84002

number of segments 6 6-8 unknown 6-20 
Language and solver 
used 

GAMS and CPLEX 5.0 
(LP, MIP) and MINOS5 
(NLP) 

GAMS and CPLEX 5.0 C and CPLEX GAMS 2.50 and OSL 
2.1 

1 With 3 learning technologies, 6 segments
2 With 10 learning technologies, 6 segments  
3 35000 variables and 50000 constraints in the full 11-region MESSAGE 

(LP model without endogenous learning) 
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4. MIP FORMULATION 

This section first describes the reasons for pursuing the MIP approach but also mentions some 
drawbacks, prior to addressing the numerical results from the reported experiences. Next, it ad-
dresses the additional inputs resulting from the MIP formulation. 
 

4.1 Rationale 
The learning concept as formulated in Section 2 above introduces, obviously, a non-linear rela-
tion between model variables. If, as was the case with MARKAL and MESSAGE, the original 
models are defined as linear models, sometimes including MIP (Mixed-Integer Programming) 
extensions, an obvious solution possibility is to approximate the non-linear with mixed-integer 
relations. All three models therefore adopt a Mixed-Integer Programming (MIP) formulation to 
incorporate technology learning, the feasibility of which was also demonstrated in the GENIE 
model experiments (Mattsson, 1997). The MIP feature allows to approximate the non-convex 
objective function by piece-wise linear functions and to use a so-called branch-and-bound algo-
rithm to search the solution space for the optimal solution. For a description of such an ap-
proximation see Messner (1997). 
 
The objective function including the concept of technological learning is not only non-linear 
(leading to an NLP model), it is also non-convex. This means that the function possesses local 
minima each of which satisfying the usual necessary conditions for minimum values. The addi-
tional challenge of finding the lowest of the local minima, i. e., the global optimum, complicates 
the task of finding the overall solution considerably. In particular this means that there is no 
practical exact solution method of the problem. The MIP solution suffers from the errors intro-
duced by the approximation and conventional methods to solve the NLP problem cannot be re-
lied upon to find the global � instead of a local � minimum. This and other disadvantages of the 
NLP approach led to pursue the MIP approach for MESSAGE and MARKAL. In view of the 
uncertainty concerning the learning rates (see also Section 5.2), the additional error introduced 
by the approximation of the learning curve is judged to weigh less than the ambiguity intro-
duced by the possibility of not having found a global optimum. Also note that an MCP (Mixed 
Complementary Problem) formulation has the same disadvantage due to the non-convex charac-
ter of the model�s objective function. Moreover, some NLP solvers cannot handle large-scale 
model applications (such as MARKAL-Europe).  
 
While the MIP formulation thus seems to be the best practical approach to model endogenous 
learning in these perfect-foresight, optimisation type of models, it has some drawbacks to take 
into consideration: 
• The increase of the computational complexity compared to the conventional LP model 

without endogenous learning describing the same energy system. 
• The accuracy depends on segmentation of step-wise linearisation of the cumulative cost 

curve. 
• The solution time and the success to find optimal solutions depend on specific solver op-

tions, which may be solver and problem specific and may require some experimentation to 
find optimal and practical settings. 
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4.2 Input parameters to model technological learning 
The PSI and ECN MIP formulations require the following input learning parameters: 
• Selection of technologies to learn endogenously. 
• For each learning technology: cost level in the start year, the initial cumulative capacity 

available in the start year and the maximum cumulative installed capacity in the end year, 
and the progress ratio or, alternatively, the learning rate. 

• The accuracy of the segmentation e.g. expressed as the number of segments. 
 
The MESSAGE implementation of technological learning makes assumptions about the initial 
and maximum cumulative capacity input data and the number of segments used for the linear 
approximation. Initial cumulative capacities are in the range of 10 GW (for wind and solar sys-
tems) up to 50 GW (for thermal and nuclear power plants). Maximum cumulative capacities are 
parameterised to match the levels of learning, i.e. cost reduction, reached in the underlying sce-
nario from IIASA-WEC. Resulting cumulative capacities are between 300 and 800 GW for the 
6 technologies. The number of segments for the approximation was chosen to match the degree 
of learning possible. It is between 3 and 5 segments for the technologies (see Table 5.1). 
 
Besides these specific learning input parameters, the ERIS and MARKAL models use maxi-
mum growth factors and constraints to control the penetration of technologies. Moreover, ECN 
mentions the use of capacity and investment bounds as other means to prevent seemingly unre-
alistic penetration rates. In MESSAGE, the compact world model CWM used for this analysis 
had been parameterised to be capable to mimic the IIASA-WEC scenarios, which have been de-
veloped with an 11-region model. The 6 IIASA-WEC scenarios can be represented in CWM by 
merely changing the scenario assumptions, i.e. demand data, resource availability and cost as-
sumptions, as has been done to model the 6 scenarios with the 11 region world model. This ap-
proach resulted in a well-tuned model that uses bounds, market penetrations and additional 
complex constraints, where applicable to achieve realistic results. 
 

4.3 Accuracy of segmentation 
The PSI and ECN reports on ERIS and MARKAL discuss the effect of different levels of accu-
racy for the linear approximation of the cumulative cost curve. Also IIASA considered segmen-
tation as an important point from the outset, especially with respect to learning potential and 
consequently the number of doublings of cumulative knowledge reachable. Because the initial 
part of the curve was regarded as more important, the natural subdivision into doublings was 
chosen for setting the segments. The number of segments was tailored to the learning potential 
of each technology. 
 
The important point regarding the segmentation is to take into account that the cost reductions 
are very significant for the first installed units, but afterwards, the learning effect decreases and 
begins to saturate. Therefore, very likely more segments will be required for the first, rapid-
change, zone of the cumulative cost curve. Both the PSI and ECN formulations allow both for 
such a segmentation scheme. 
 

4.4 Formulations compared 
The formulation of the ERIS prototype prepared by IIASA reflects the model features of the 
implementation in MESSAGE. The PSI MIP formulation embedded in the ERIS prototype (Ky-
preos and Barreto, 1998a) is basically identical to the MARKAL formulations. The most recent 
PSI MARKAL experiments (Kypreos and Barreto, 1998b) mention a few improved features not  
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yet available for the ECN experiments, such as: 
• Dependency of the number of segments on the technology, enabling a technology with large 

learning potential to be modelled more accurately without sacrificing overall computational 
complexity. 

• A two-stage learning curve model, based on the assumption that progress ratios differ along 
different stages of the life cycle of a technology e.g. faster learning in the R&D phase and a 
slow down in the demonstration and market penetration phase. After a certain a threshold 
capacity for this behaviour, the progress ratio switches to another one.  

 

4.5 Issues arising from the various model formulations 
Independent from issues arising from the inputs to or the numerical results of the various mod-
els� applications (Section 6), the differences in the formulations raise the following issues: 
• Should the investment cost of a �learning� technology have a lower limit (asymptote)? 

Note that in a finite time horizon, progress ratio, initial cost, initial and maximum cumula-
tive capacity determine a minimum value of specific investment costs. See also Section 5. 

• Should maximum growth rates or other bounds for controlling the penetration of new tech-
nologies be defined (from: global MARKAL and MARKAL-Europe)? 
The implementation of the learning concept as such will make the inclusion of bounds and 
market penetration constraints even more important, because otherwise, an optimal solution 
would always go into the most promising technology alone. In this case this technology 
would learn most and costs would be the lowest. The model would not hedge at all against 
uncertainties with regard to the learning of this technology. Note that first MESSAGE ex-
periments with stochastic programming (Gritsevskii, 1998) suggest that the hedging inher-
ent in this approach leads to a smoother and more realistic substitution of technologies than 
conventional perfect-foresight models. 

• Should the learning curve be split into two or more stages, in particular for new, currently 
non-competitive and marginally applied, technologies (from: Kypreos and Barreto, 1998b)? 
The conclusion of PSI was that a two-stage learning model may be useful in specifying real-
istic limits of the cost reduction, without imposing a fixed lower bound that rules out the 
possibility of further learning for a particular technology. Note that this deterministic two-
stage learning curve could be transformed into a two-stage stochastic learning curve (see 
also Mattsson, 1998).  
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5. TECHNOLOGY CHARACTERISATION WITH RESPECT TO 
LEARNING 

In principle, endogenising the concept of learning requires selection of learning rates for all 
technologies. These can be zero for those technologies, for which learning is considered non-
essential, given the model run(s) in question. This will focus the analysis and reduce the compu-
tational effort to solve the model. In any case, an update of technology characterisation within 
the model database should be considered to facilitate the storage of � historical or estimated fu-
ture � progress ratios.  
 

5.1 Selection of technologies with endogenised learning 
The experiments reported here are primarily focussed on gaining experience from incorporation 
of endogenised learning into energy models. The selection of technologies with endogenised 
learning is not always assessed systematically. Table 5.1 in the next Section 5.2 gives an over-
view of selected technologies and progress ratios applied for the model experiments considered. 
Solar cells and wind power are for all experiments seen as technologies for which endogenisa-
tion of learning could be appropriate and beneficial for modelling purposes. 
In the MARKAL-Europe experiments the number of technologies with endogenised learning 
has been limited to three technologies, which saves computational performance. However, 
model runs using ten technologies with endogenised learning have been carried out as well. The 
MARKAL-Europe report identifies the following technology selection criteria: 
• large potential of technology learning (reduction of investment costs), 
• large expected impact of technology learning on model outcomes, 
• a key technology within prospective energy systems, 
• presence of a direct competing technology with endogenised learning. 
 
E.g., solar cells and wind turbines match these selection criteria, while endogenisation of tech-
nology learning for solar cells necessitates also the incorporation of learning for wind turbines, 
since both technologies are direct competitors on the renewable electricity market. Furthermore, 
solar cells and wind turbines can be seen as key technologies, i.e. technologies, which are 
clearly distinct with respect to the applied energy conversion process. They form an essential 
part of several technology descriptions in energy model databases.  
 

5.2 Determination of learning parameters 
The learning curve formulation requires additional data on the following �learning parameters� 
(see also Section 2 and 4.2):  
• Progress ratio (pr) of the technology, or its equivalent learning index (b= -log(pr)/log(2)), or 

the learning rate (1-pr). 
• Initial specific investment costs (SC0) of the technology in start year. 
• Initial cumulative installed capacity (Ck,0) of the technology in start year. 
• Maximum cumulative installed capacity (Ck,max) of the technology over the entire time hori-

zon. 
 
The maximum cumulative installed capacity is strongly related to physical bounds on the in-
stalled capacity or ideas on the maximum market share in the end year. It determines the learn-
ing potential, here defined as the lowest achievable investment cost level (pr n). Table 5.1 shows 
that in the various model experiments quite different assumptions on the learning potential are 
included. 
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Table 5.1  Progress ratio (pr), maximum amount of doublings (n) and lowest achievable 
investment cost level (pr n) compared to initial cost; period 1990-2050 

 MARKAL Europe1 MARKAL global reduced MESSAGE 
global 

ERIS global 

 pr n pr n [%] pr n pr n [%] pr n pr n [%] pr n pr n [%]
advanced coal × × × 0.94 4 78 0.93 3 80 0.95 8 66 
gas combined cycle × × × 0.89 4 63 0.85 4 52 0.88 8 36 
new nuclear × × × 0.96 15 54 0.93 5 70 × × × 
fuel cell 0.82 11 11 0.87 13 16 × × × 0.82 17 3 
wind power 0.90 6 53 0.89 9 35 0.85 5 44 0.88 13 19 
solar PV 0.81 11 10 0.81 13 6 0.72 5 19 0.85 16 7 
solar thermal × × × × × × 0.85 5 44 × × × 
1 ECN also used 5 and 10 learning technologies, with the progress ratios for these additional technologies equal to 

the comparable MESSAGE technologies. A detailed assessment has been performed to generate the values of the 
three technologies included in this table. 

 
Learning-parameter data of technologies, which are already operational, could be derived from 
historical statistics. As outlined in (Seebregts et al, 1998), historic data is always available, but 
great care must be applied before historical can be extrapolated into the future. As the variety of 
progress ratios in Table 5.1 already suggests, the estimation of progress ratios is not always a 
trivial task. Analysis of the value of historical data for the determination of progress ratios in the 
future requires a deeper analysis of the dynamics of technological development, allocating the 
main factors influencing technology learning. Technology learning often shows different 
phases, for instance a phase which combines large technology improvements, but limited mar-
ket penetration (technologies in R&D-oriented phase), and a phase were technology improve-
ment is mainly driven by market penetration. Market-oriented phases can be followed by R&D-
oriented phases, and the other way around (see e.g. OECD, 1992). Extrapolation of data from 
one phase (of for instance the R&D-oriented phase in the 1980�s on solar cells) could lead to an 
overestimation or underestimation of the future progress ratio. In order to characterise techno-
logical development and to determine the value of progress ratios to be included in a model for 
a technology, four basic questions should be answered (Seebregts et al., 1998, Chapter 3): 
• Is there a historical trend from which a historical progress ratio can be determined? 
• Is it plausible that the technology will continue to be developed at all? 
• Will the direction of the development remain the same or will its course be altered? 
• Is it plausible that the progress ratio observed will stay the same, or will it decrease/ in-

crease? 
 
If the first question cannot be answered positively, the assessment of proper progress ratios 
could be made by comparison with existing technologies. The remaining three questions are re-
lated to the degree of stability of technological development. Several indicators can be defined 
to measure the so-called system and convergent stability of a technology. Indicators provide 
guidance as to whether continuation of the historical, higher or lower progress ratios will be the 
best estimate for the future. The approach above has been followed for the three selected tech-
nologies (see Table 5.1, MARKAL Europe). 
 

5.3 Clustering technologies and identifying key technologies 
On the one hand, the availability of (historic) accurate progress ratio data call for a high level of 
aggregation, while, on the other hand, modelling an energy system accurately may call for a lot 
of technological detail, depending of the purposes and uses of the energy system model. If the 
future of a specific type of a technology is the subject of the forecasting exercise, then a consid-
erable level of detail should be used. If the purpose is to get insights in the future emission of 
polluting gases, then such a level of detail is not needed. Instead of forcing oneself to choose for 
instance between solid oxide fuel cell (SOFC) or molten carbonate fuel cell (MCFC) based 
biomass plants in the future, this future device can also be described as a fuel cell-based bio-
mass plant, without having to make a decision whether the one or the other fuel cell type will be 
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used in this specific application. Shifting from one type to another, resulting in better perform-
ances or lower costs can be conceived as a form of learning. The strength of the learning ap-
proach relies on the fact that no detailed predictions have to be made about how lower costs or 
better performance will be reached, but only that these improvements can be achieved. 
 
ECN has termed the issue of less or more technological detail and the mutual consistency of 
technologies belonging to the same class or cluster of technologies �endogenous alignment’ 
(Seebregts et al., 1998). An approach that could be taken to achieve endogenous alignment of 
technology characteristics is to define �key technologies’. Key technologies have been defined 
in (Seebregts et al., 1998) as technologies that are a component in many other technologies in 
the database of the technology characterisations of the RES modelled. Examples of key tech-
nologies are gas turbines, fuel cells, photovoltaic modules, wind turbines, burners and boilers. 
Most of the about 500 technologies defined in the MARKAL-Europe database are composed of 
about 20 of such key technologies. Prior to defining the key technologies, the existing technolo-
gies need to be grouped into cluster of technologies which are similar with respect to their learn-
ing behaviour i.e. the development of these technologies is in some way linked to each other. 
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6. INSIGHTS FROM NUMERICAL RESULTS 

6.1 Overview of cases 
Several model experiments have been conducted to analyse the impact of endogenised learning 
of selected technologies on model outcomes (see Table 6.1). The focus is to compare and syn-
thesise the methodological insights in order to provide a clear picture of the benefit introduced 
by technological learning. Comparison of the numerical results of the different models is not the 
aim, since model coverage (see also Table 3.1) and exogenous assumptions on technology de-
velopment are diverse.  
 
Table 6.1  Overview model experiments 
 MARKAL Europe MARKAL global reduced MESSAGE 

global 
ERIS global 

base case exogenous 
learning 

declining investment costs constant investment costs constant + linearly 
declining investment 
costs 

constant investment costs 

base case 
endogenous learning 

learning parameters 
technology specific  

maximum cumulative 
capacity for all 
technologies at 3000 GW

learning parameters 
technology specific  

maximum cumulative 
capacity for all technologies 
at 30000 GW 

 growth constraint on 
learning technologies of 
20% per year 

growth constraint on 
learning technologies of 
5-10% per year 

    

CO2 reduction cases 2 1 0 2 
R&D and  
sensitivity cases 

progress ratio, initial 
investment costs, initial 
cumulative capacity, 
maximum cumulative 
capacity 

(two-stage) progress ratio
 
 

  maximum cumulative 
capacity, 
NLP vs. MIP 
 

 segmentation 
(accuracy of approximation 
cumulative cost curve) 

sensitivity on growth rate   segmentation 
(accuracy of approximation 
cumulative cost curve) 

 
Special cases considered are a comparison of MIP and NLP formulations (ERIS, Kypreos and 
Barreto, 1998a) and an exogenous learning case with a full scale model using outcomes on the 
development of specific investment costs of the reduced model including endogenous learning 
(MESSAGE global, Messner and Schrattenholzer, 1998). 
 

6.2 Methodological insights 
Technology maturing costs incorporated in an integrated fashion 
The experiments demonstrate that future costs revenues by initially non-competitive additional 
investments are adequately foreseen by the models. E.g. Figure 6.1 shows that endogenisation 
of technology learning (Case T) induces early investments in initially expensive technologies, 
since future revenues in the long run are foreseen to offset these short term additional invest-
ments. As such, the �technology maturing costs� are directly incorporated in an integrated fash-
ion. This phenomenon is more pronounced in Case T than in a dynamic case where technology 
learning is exogenously set by the model user (Case D). Figure 6.1 illustrates that it can be op-
timal to invest early in technologies, that is, even at a time when they are not competitive. The 
effects of discounting notwithstanding, the figure shows that the assumption of technological 
learning increases investment costs in the short run, but that these costs are more than recovered 
later. 
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Figure 6.1  Total annual energy system investments in an exogenous dynamic (D) and 

endogenised learning case (T) compared with a non-learning static case (S) 
(Messner and Schrattenholzer, 1998) 

 
Improvement of consistency 
Including technology learning in models improves the consistency of model outcomes not only 
by avoiding a situation of �learning without doing�. Another consistency improvement is on the 
shape of the cost reductions as illustrated in Figure 6.2.  

1300

1350

1400

1450

1500

1550

1600

1650

1700

1990 2000 2010 2020 2030 2040 2050

US$/kW

Case D

Case T

 
Figure 6.2  Specific investment costs for advanced coal power plants for the exogenous dynamic 

(D) and endogenised learning case (T) (Messner and Schrattenholzer, 1998) 
 
The figure shows a typical cost reduction curve as any modeller would be likely to include it 
into an energy model in an attempt to describe technological progress (Case D). The curve de-
scribes linear cost decreases (equally well, it could describe exponential decreases), which is 
very unlike the cost decreases as described by the learning curve of Case T. This observation 
suggests that the formulation of learning rates in a model greatly enhances the consistency of 
model results no matter what learning rates are assumed. However, the relationship is often not 
valid at a limited regional scale, e.g. a small country. 
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6.3 Modelling energy policy measures 
As illustrated in the previous section, the inclusion of technology learning in energy modelling 
increases the attractiveness of seemingly �too expensive� technologies. By the same token, how-
ever, technologies with large learning potentials reduce the attractiveness of competing tech-
nologies with more limited learning potentials. Policy measures aiming to boost the learning 
and thereby the penetration of particular technologies will generally lead to earlier and benefi-
cial introduction of these technologies, but the determination of an optimal mix of supported 
technologies could be a difficult task.  
 

6.3.1 Environmental policies 
The introduction of environmental taxes and emission reduction targets enables the assessment 
of the impact of environmental policy measures on the penetration of environmentally benign 
technologies. Figure 6.3 shows that a CO2 tax of 25 ECU/tCO2 in 2010 and 50 ECU/tCO2 on-
wards could lead to a significant penetration of solar cells in 2000 and further on. In turn, this 
early penetration leads to a significant reduction of the specific investment costs of solar cells 
over the whole time period. Note that in the experiment reported here, solar cells already reach 
their assumed minimum costs in 2030. The CO2 tax case leads to a 40% reduction of emissions 
in 2050 compared to the 1990 level. A less severe CO2 reduction regime (8% reduction of 1990 
emissions from 2010 onwards) does not make solar cells cost-effective. 
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Figure 6.3  Specific investment cost solar PV without (LP, Base no learning) and with 
endogenous learning (–8% CO2 reduction target and CO2 tax) 
(Seebregts et al., 1998) 

 

6.3.2 RD&D technology stimulation measures 
Technology learning parameters determine the �learning potential� of a technology and the 
speed at which it can be reached (see Section 5.2). Simple extra-model calculations of �technol-
ogy maturing costs� show that the attractiveness of a �learning� technology depends in a very 
sensitive and non-linear way on the learning parameters (Messner and Schrattenholzer, 1998). 
Such findings have been elaborated and illustrated in more detail by the PSI and ECN experi-
ments with ERIS and MARKAL.  
 
To illustrate the usefulness of the learning concept for RD&D policy making, ECN performed a 
small experiment with MARKAL, assessing three variants of stimulating the development of a 
fuel cell car (see Table 6.2). The variants defined are: (1) technology breakthrough through 
lower initial investment costs, (2) enhanced learning potential through a lower initial cumulative 
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capacity and (3) enhanced market potential through a higher maximum cumulative capacity. In 
variant 2 the potential investment costs reduction of the fuel cell car is higher than in the other 
two variants; the latter two provide a similar potential for investment costs reduction. 
 
These experiments show that this sensitivity of model results is particularly large for technolo-
gies which are currently not competitive and only marginally applied (but which have a large 
learning potential), as can be seen from the data and results displayed in Table 6.2 and Figure 
6.4. This sensitivity could be regarded as an obstacle to clear guidance of RD&D decisions by 
model results, but at the same time, it enables the model user to quantify the benefits of success-
fully reaching RD&D goals. Varying the values of learning parameters of technologies, for ex-
ample, could provide better insight in the impact of technology stimulation measures on the 
prospects of technologies, as is shown in (Seebregts et al., 1998). Lower initial investment costs 
could mimic a technical breakthrough as a result of dedicated RD&D efforts. A more favourable 
progress ratio reflects the impact of RD&D efforts speeding up the technology learning process. 
An exogenous increase of the value of the cumulative capacity for the first period(s) can be seen 
as the implementation of a demonstration programme.  
 
Table 6.2  Learning parameter data and learning potential of the fuel cell car in the base case 

and three variants (changed values of learning parameters in italic)  
(Seebregts et al, 1998) 

 Base case Variant 1  
(lower SC0) 

Variant 2  
(lower Ck, 0) 

Variant 3  
(higher Ck, max) 

pr 0.82 0.82 0.82 0.82 
SC0 [ECU/GJyr] 10745 ⇒ 8000 10745 10745 
Ck, 0 [PJ/yr] 4) 0.5 0.5 ⇒ 0.1 0.5 
Ck, max [PJ/yr] 1030 1030 1030 ⇒  3000 
     
SCmin [ECU/GJyr] 1209 900 763 890 
n (number of doublings) 11 11  13 13 
prn [%] 11 11 8 8 
     
CO2 policy necessary to 
make it cost-effective? 

yes, +++1 yes, +2 no yes, ++3 

1 CO2 policy +++: an even more stringent CO2 policy measure than a CO2 tax of 25 ECU/tCO2 in 2010 and 50 
ECU/tCO2 onwards, would be necessary 

2 CO2 policy +: CO2 reduction target -8% from 2010 on, relative to 1990 level 
3 CO2 policy ++: CO2 tax of 25 ECU/tCO2 in 2010 and 50 ECU/tCO2 onwards, equivalent to �40% in 2050 relative 

to 1990 level4) A more common measure is [vehicle km/yr]. The measure used here is useful energy to the wheels, 
which is an equivalent measure: multiplication of [vehicle km/yr], [l/km], [MJ/l] (heating value), and an overall car 
efficiency, results in [PJ/yr] as measure for capacity. 

 
Figure 6.4 gives the resulting specific investment costs of these variants and two cases for com-
parison: the base case without endogenous learning (exogenous cost decreases linearly until 
2030 and remains constant thereafter) and a stringent CO2 tax case. The fuel cell car is not cost-
effective with endogenous learning according to the default assumptions, even in a quite strin-
gent CO2 emission tax case (of 25 ECU/tCO2 in 2010 and 50 ECU/tCO2 from 2020 onwards). 
However, the fuel cell car is a cost-effective option in the three variants. Variant 2, providing 
the highest investment costs reduction potential, results in the lowest specific investment cost 
path, even without CO2 policy. In Variant 3, wherein the maximum cumulative capacity is in-
creased to 3000 PJ/yr, the fuel cell car becomes cost-effective only in combination with a quite 
extreme CO2 tax. Variant 1 provides a similar investment costs reduction potential, but a limited 
CO2 reduction regime appears to be sufficient to induce a cost-effective penetration of the fuel 
cell car. From the third period on, the fuel cell car is first employed and the cost decreases. Note 
that for this specific technology, associated NOx, CO, and volatile organic compounds (VOC) 
emissions are not valued. Since fuel cell cars emit less of these three pollutants than conven-
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tional cars, reduction policies for these other pollutants would further boost the attractiveness of 
this technology. 
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/  
Figure 6.4  Development of specific investment cost of the fuel cell car at different values of 

learning parameters (Seebregts et al, 1998) 
 
The effects of RD&D on the learning parameters are rather speculative and are meant here only 
as illustration of a possible effect. Still these model outcomes illustrate that an early and steep 
reduction of the initial investment cost of the fuel cell car (a technological breakthrough) can 
accelerate the uptake of this technology in the market. In this way the costs of additional policy 
measures to stimulate the penetration of the fuel cell car can be reduced. Figure 6.5 indicates 
that the initial investment cost could decisively affect the development of investment costs of a 
specific technology. The figure is also indicative for the impact of RD&D efforts (influencing 
values of learning parameters) that aim to speed up the market penetration of new technologies. 
Comparing the costs of additional RD&D efforts with the benefits on energy system costs gives 
a cost-benefit ratio of these policy interventions (Seebregts et al., 1998).  
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Figure 6.5  Impact (indicative) of lower (50%) initial investment costs (SC0), higher (factor 5) 

initial cumulative capacity Ck,0, and lower progress ratio (pr=0.75) on base case 
development of investment costs (pr=0.82) (Seebregts et al, 1998) 
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6.3.3 Penetration curves for new technologies 
Models that include endogenous technological learning tend to show a so-called �lock-in� effect: 
through fast penetration of the most cost-effective technology, a drastic decline of the specific 
investment costs is obtained, which results in a diminishing market for other competitors. The 
historical development of many individual technologies shows lock-in phenomena, influenced 
by various market and non-market factors, whereas in the models considered here, the lock-in 
effect is mainly determined by costs. As other considerations than direct costs also play a role in 
investment decisions, some model parameters should be chosen carefully, e.g. by making use of 
capacity bounds and growth constraints.  
 
The large impact of capacity growth constraints on the market penetration of power generation 
technologies is illustrated by Figure 6.6, which represents the global power generation mix in 
2050 under a limited (5%) CO2 emission reduction target from 2010 onwards at different capac-
ity growth constraints. At a growth constraint of 15% per annum the gas fuel cell is reaching a 
50% share of the generation market, mainly at the expense of gas combined cycle technologies 
and wind turbines. A growth constraint of 12% per annum leaves a restricted market share for 
the gas fuel cell, and results in a more balanced power generation mix. 
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Figure 6.6  Global power generation mix in the year 2050, 5% CO2 reduction relative to1990 
from 2010 onwards, at capacity growth constraints of 10, 12 and 15 % per annum 
(Kypreos and Barreto, 1998b) 
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7. BENEFITS, LIMITATIONS, AND ISSUES TO SOLVE 

This chapter summarises the benefits, limitations, and issues to solve associated with modelling 
technology learning endogenously based upon the experience with the four models as presented 
in the previous chapters. 
 

7.1 Benefits 
Increased consistency of model results 
The main benefit and advantage of modelling technology learning endogenously is the increased 
consistency compared to the commonly applied exogenous cost projections. Cost development 
in the new formulation is fully consistent with the uptake of the technology by the market. An-
other important benefit is that for the optimisation, not only the decline of the specific invest-
ment costs, but also the necessary technology maturing costs are taken into account in an inte-
grated and internally consistent way.  
 
Moreover, the awareness of the �learning-by-doing� mechanism on the side of the modeller 
tends to improve of model inputs (e.g. technology characterisation), even if the model is oper-
ated in a non-learning mode. E.g. it stresses the need for proper �alignment� of technology dy-
namics between mutually dependent and competing options. In addition, model users become 
more alert to avoid (currently not uncommon) situations of �learning without doing� i.e. a tech-
nology becomes cheaper and cheaper over time without being deployed until it reaches a com-
petitive price whereupon the model starts using it. 
 
Guidance for RD&D and environmental policy 
The concept of technology learning provides a useful guideline for RD&D policy making prior 
and in addition to the quantitative results of an energy system analysis. In particular, the follow-
ing policy questions can be addressed better: 
• What is the possible benefit of R,D&D policy measures on the development and dissemina-

tion of specific technologies and on the energy system as a whole? 
• Which technologies need additional support in order to make them cost-effective; what is 

the nature and extent of this support and what development targets should be aimed for? 
• What is the possible impact of environmental policy (e.g. CO2 emission reduction) on the 

technological development; as such or in combination with RD&D measures? 
 
The model experiments reported here give insight in factors influencing the prospects of tech-
nologies and illustrate how an early reduction of the initial investment cost of new technologies 
can accelerate the uptake of the market, which reduces the costs of additional policy measures to 
enhance market uptake of these technologies. The long-term benefits of specific RD&D can be 
assessed and evaluated against the short-term expenditures. However, a precise cost-benefit 
analysis requires making daring assumptions on the effectiveness of such RD&D activities.  
 
An important policy aspect is the possible existence of niche markets, where a competitive edge 
for new technologies can be obtained at limited efforts, e.g. in the case of photovoltaic cells for 
off-grid uses. Niche markets offer possibilities to stimulate early deployment in a particularly 
cost-effective way. Model databases often include a variety of applications in potential markets 
for technologies, largely equivalent with prospective applications in much larger markets where 
they are not competitive (yet). Once a concept like the introduction of �key technologies� (see 
section 5.3) is implemented, assessment of spill-over effects induced by niche markets can also 
be considered. The potential relevance of demonstration and dissemination programs focused on 
suitable technology/niche market combinations can thereby be taken into account. 
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Solution times remain acceptable 
The large scale, technology-rich MARKAL-Europe application shows that the increase in solu-
tion time, compared to those for the same model without endogenous learning, remain accept-
able. IIASA, however, reports only results with their small scale reduced version of the global 
MESSAGE model and mentions difficulties in incorporating the concept in the full scale re-
gionalised MESSAGE model (Messner, 1997). The application of the key technology concept 
(identified in Seebregts et al., 1998, and further elaborated in Seebregts et al., 1999) could be, 
apart from being a consistency mechanism, a means to cope with computational restrictions in 
e.g. the full scale MESSAGE model, because it helps to limit the complexity and size of the 
model. 
 

7.2 Limitations 
Although the experiments and experience with the models show much progress, it is important 
to be aware of limitations still existing, viz.: 
• Endogenous learning is restricted to investment cost only; other technology attributes like 

O&M costs, efficiency, and utilisation rate remain exogenous. Although theoretically, the 
concept could be applied to these other attributes as well, practical reasons e.g. computa-
tional complexity would hamper such extension. Moreover, all technological change is re-
lated to a single phenomenon, �learning-by-doing�. Other plausible causal relationships � 
such as between RD&D expenditures and the progress ratio � remain without a direct influ-
ence on model results. 

• The lack of reliable data describing the learning parameters and uncertainty in the additional 
data necessary for the new approach. 

• Inter-dependent learning between clusters of technologies sharing common key components 
has not yet been dealt with (e.g. spill-over/cross-over effects between separately modelled 
technologies). 

• An existing reference energy system (RES) and underlying technology characterisations 
may not be optimally configured to capitalise on the benefits of including technology learn-
ing. 

• The decisive impact of assumed learning parameters: progress ratio, initial investment cost, 
initial and maximum cumulative capacity of a technology expected to learn endogenously. 
In particular, the cost-effectiveness of technologies with a large learning potential but cur-
rently high costs are very sensitive to these parameters, as are the benefits of policy inter-
ventions aimed at boosting these technologies. The drawback of this high sensitivity is 
compounded by the uncertainty of these parameters. Any set of model-based policy recom-
mendations therefore requires a careful sensitivity analysis. Moreover, a well-targeted use 
of capacity bounds and expansion limits is warranted to prevent clearly unrealistic results. 

 

7.3 Issues to solve 
From the limitations identified above, the following issues are put forward as candidates to be 
solved in further research. 
 
1. How to deal with uncertainty with respect to learning? 
Not only the historic progress ratio itself uncertain, but it is also uncertain if it will retain the 
same level over the entire trajectory considered or if they might rise or decline after an initial 
period of learning e.g. once a certain capacity threshold is exceeded. 
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2. Can we develop formal, quantitative models to link R,D&D measures directly to learning 
parameters, notably the progress ratio, can such models be supported by reliable input 
data? 

The few experiments so far indicate that the new models enable at least a qualitative assessment 
of the effect of RD&D policy instruments on technological development. For a more quantita-
tive assessment, additional modelling work and corresponding reliable input data are needed. 
More research into the quantification of the relationship between RD&D expenditures and 
learning parameters is required. 
 
3. How to model interdependencies between technologies that share common key components? 
ECN has defined the �key technology� concept as a possible means, in parallel to the notion of 
cluster of technologies, to deal with this issue. These concepts will be further elaborated on the 
basis of an existing rather complex RES (e.g. the MARKAL application for Western Europe) 
and additional model extensions. The first more detailed implementation of this concept is out-
lined in (Seebregts et al., 1999). 
 
4. Under the assumption that full-scale model applications may remain intractable due to 

computational reasons, how can the ‘endogenous’ results of reduced models be used as ex-
ogenous input into more detailed models without endogenous learning? 

Another shortcut to introducing the concept of technology learning in large models is formulate 
exogenous dynamic cost input data and check the consistency with the learning concept by ana-
lyzing the model results. This method has been described in (Messner and Schrattenholzer, 
1998). Also (Kypreos and Barreto, 1998a) mention this type of use of small to medium scale 
models with endogenous learning. The real issue at stake is whether the result of small or me-
dium scale models are sufficiently good indicators for the large scale model. A small-scale 
model may differ in a lot more ways from its corresponding large scale and more detailed model 
than only the aspect of learning. The issue can be summarised as: (1) how can reduced models 
be used? and (2) how much of an additional error do we introduce by this approximate method. 
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8. CONCLUSIONS AND RECOMMENDATIONS 

This section summarises the main conclusions and recommendations based upon the synthe-
sised experiences with the ERIS, MARKAL, and MESSAGE models by PSI, ECN, and IIASA. 
 

8.1 Conclusions 
1. All model applications are examples of successful experiments to incorporate the learning-

by-doing concept in energy system models. The mathematical formulation is basically the 
same for all applications and has been implemented as a so-called Mixed Integer Program-
ming (MIP) model. Although the applications of the concept were at different scales (from 
small to large), similar and important insights can be obtained by all of the four model ap-
plications. 

2. Incorporating the learning-by-doing concept makes an important difference. A comparison 
between the original models with exogenous cost projections (either as constant costs over 
time or assuming a regular decline over time) show that the resulting technology prospects 
differ substantially.  

3. The experiments demonstrate and quantify the benefits of investing early in emerging tech-
nologies that are not competitive at the moment of their deployment. They also show that 
the long-term impact of policy instruments, such as CO2 taxes or emission limits and 
RD&D instruments, on technological development can be assessed adequately with models 
including technology learning. Policy measures aiming at CO2 emission reduction are 
shown to have a clear and often decisive positive impact on the prospect of clean technolo-
gies, underlining their important role in guiding technology development towards more sus-
tainable directions. 

4. Adopting the concept of endogenous learning, several types of RD&D interventions can be 
addressed that aim at accelerating the market penetration of new technologies. The direc-
tions into which such interventions might lead have been illustrated in some of the experi-
ments. However, quantitative relationships between R&D policy and learning data parame-
ters are still unknown. 

 

8.2 Recommendations for further research 
To curb the most crucial limitations outlined in Section 7.2, and to address the issues to be re-
solved as indicated in Section 7.3, the following areas for further research are recommended. 
When possible, the likely TEEM partner to address the issue in the next phase of the TEEM 
project is indicated. 
 
1. The role of uncertainty 
Further investigation of the �two-stage progress ratio�, as implemented by PSI (Kypreos and 
Barreto, 1998b), collection and estimation of more reliable data and careful extrapolation into 
the future can contribute to solve this issue. Remaining uncertainties with respect to the parame-
ters describing technology learning can be addressed by adopting stochastic formulations 
(Ybema and Kram, 1996; Ybema et al., 1998; Mattsson, 1998, Gritsevskii, 1998). 
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2. The relationship between RD&D measures and learning parameters, notably the progress 
ratio 

Ongoing work within the TEEM project on the task �Typology and quantification of energy 
technology dynamics�, co-ordinated by IEPE, and possible subsequent incorporation of it in the 
models can contribute to solving this issue. 
 
3. Inter-dependency between technologies sharing key common components 
Implementation of the concept of �key-technologies and clusters of technologies on ECN�s 
MARKAL database for Western Europe, as outlined in (Seebregts et al., 1999), will be a first 
step to explore such linkages. 
 
4. Learning on a multi-regional global scale 
The application of learning on a multi-regional global scale could also be interesting. It would 
allow, for instance, the possibility of considering explicitly learning spill-over between regions, 
incorporating a spatial dimension to the technological learning framework. Also, the effects of 
the combined representation of endogenous learning (global or applied to selected regions) and 
other aspects of technology dynamics such as spatial and temporal patterns of technology diffu-
sion could be addressed. Currently, endogenous technology learning is being implemented (by 
PSI) in the multi-region version of the MARKAL model. 
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LIST OF ABBREVIATIONS 

CPLEX Solver for LP and MIP problems (e.g. provided with the GAMS software) 
EC European Commission 
ECN Energieonderzoek Centrum Nederland (Netherlands Energy Research 

Foundation) 
ERIS Energy Research and Investment Strategy, model prototype developed in 

the TEEM project 
ETSAP Energy Technology Systems Analysis Programme, research partnership of 

the IEA/OECD 
EU European Union 
GAMS General Algebraic Modelling System, language in which the MARKAL 

and ERIS models are coded 
GENIE Global Energy systems model with Internalized Experience curves, global 

model developed at Chalmers University 
IEA International Energy Agency of the OECD 
IIASA International Institute for Applied Systems Analysis (Austria) 
LP Linear Programming 
MARKAL MARket ALLocation (energy systems model), developed and maintained 

within ETSAP 
MCP Mixed-Complementarity Programming 
MESSAGE Global energy systems model from IIASA 
MIP Mixed-Integer Programming 
NLP Non-Linear Programming 
NTUA National Technical University of Athens 
OECD Organisation for Economic Co-operation and Development 
OSL Solver for LP and MIP problems (e.g. provided with the GAMS software) 
PSI Paul Scherrer Institute 
RD&D Research, Development and Demonstration 
RTD Research and Technology Development 
WEC World Energy Council 
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