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Abstract

This paper considers the problem of interval scale data in the most widely used models
of Data Envelopment Analysis (DEA), the CCR and BCC models. Radial models
require inputs and outputs measured on the ratio scale. Our focus is on how to deal with
interval scale variables especially when the interval scale variable is a difference of two
ratio scale variables like profit or the decrease/increase in bank accounts. Using these
ratio scale variables as variables in a DEA model we suggest  radial models. An
approach to how to deal with interval scale variables when we relax the radiality
assumption is also discussed

Keywords: Efficiency Analysis, Data Envelopment Analysis, Interval Scale Variables,
Negative Variables
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Dealing with Interval Scale Data
in Data Envelopment Analysis

Merja Halme
Tarja Joro
Matti Koivu

1. Introduction
After its introduction (Charnes, Cooper and Rhodes, 1978) Data Envelopment Analysis
(DEA) has gained wide popularity producing numerous applications reports as well as
articles in scientific journals. In many applications interval scale variables like profit
and changes in different variables (like sales, loans etc.) have been used as inputs and/or
outputs.

However, the obviously most widely used DEA models (the CCR model with constant
returns to scale and BCC model with variable returns to scale) require ratio scale,
preferably nonzero data. Data on the interval scale does not allow division, the zero
point is not defined and only distances can be calculated. This means that in the CCR
and BCC models all the inputs and outputs should be (strictly) positive. The ratio of
virtual efficient inputs/outputs and observed inputs/outputs plays a central role in the
calculations. In the literature there have been various approaches to deal with negative
data. It has, however, remained mostly unobserved that negative data are often
observations of variables measured on the interval scale.

It seems that usually – and especially in the applications we have run into (see Section
2.2)  - the interval scale variables used in DEA applications are a result of the deduction
of two ratio scale variables. Based on this finding we propose - when this is the case -
that the original interval scale variable should be replaced by those two ratio scale
variables. Moreover we suggest that the weights (prices) of the variables in the resulting
DEA optimization model could be set equal. We prove that the approach proposed
maintains efficient units always efficient (See Section 3.3).

In this paper a spectrum of approaches to deal with interval scale data is discussed. On
one end of it we see the radial model we propose and on the other end the simple
diagnosis of units as efficient or inefficient without providing any efficiency score.
Somewhere in the middle we see the approaches introduced in Section 4, the general
weights procedure as well as procedures not producing a score, but which in addition to
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the diagnosis as efficient/inefficient produce some more information of the inefficient
units.  Throughout the paper our main focus is on the CCR and BCC models.

The paper is organised as follows. Section 2 discusses interval scale data and DEA and
illustrates the approach proposed in this paper. Section 3 introduces formally our idea.
Section 4 discusses other approaches: DEA models with general weights as well as
procedures that do not produce scores. Section 5 provides a numerical example and
Section 6 presents the conclusions.

2. Translation Invariance and Interval Scale Data

2.1 Translation invariance of a model

Adding a sufficiently large positive constant to the values of the problematic variable
has served often as a remedy when there are negative observations in DEA applications.
Translation invariance of DEA models has been studied in various papers during the
90´s. A translation invariant model is such that “an affine displacement of data does not
alter the efficient frontier” (Ali and Seiford, 1990). The BCC model has been found
translation invariant (Ali and Seiford, 1990). However, if the efficiency scores should in
addition not be affected, then the BCC output oriented model allows a translation of
inputs and the input oriented model of outputs  (Lovell and Pastor 1995,  Pastor, 1996).

The translation invariance is connected with the convexity constraint of and thus the
CCR model does not fulfil this requirement. The aim of this study is to develop a way to
deal with interval scale (possibly negative) inputs and outputs without any restrictions
for the orientation of the BCC and CCR models. Also we want to retain the original
interpretability of the inefficiency scores owing to the radial character of the model.
Above all, we want to remain as close as possible to the original spirit of the classical
DEA. The proposed approach could be especially welcome for CCR model users and
those BCC model problems where both input and output variables include negative
observations or where the natural orientation of the model (output/input) does not allow
the translation of an interval scale variable (output/input).

2.2 Interval scale data problems

As already mentioned, DEA requires ratio scale data. We did not find so far explicit
discussion of the problems caused by data on the interval scale. Negative data values
were, however, observed frequently. Our core observation has been that the variables
with negative observations we encountered have been - thus far - a result of a deduction
of two ratio scale variables. Pastor (1994) lists the following examples of variables in
the DEA literature with negative values: increment of time deposits and of demand
deposits, rate of growth of gross domestic product per capita, profit and taxes
(difference of income items and “cost” items). All these variables mentioned are
differences of two ratio scale variables.  He also mentions negative taxes, which we
feel, however, is not relevant here owing to the timing aspect (the taxes returned date
from an earlier period).

The first principle we want to point out even here is the necessity of having the correct
variables in the analysis and the necessity of easy interpretation. Also when deciding
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about the variables one should bear in mind what the radiality of the model used means,
that efficiency scores produced should reflect the improvement needs of inputs and/or
outputs.

In the sequel we restrict ourselves to the apparently common case where the variable is
a difference of two ratio scale values. In general, the problem of how to cope in radial
models with variables that result from the division of an interval scale variable (say, the
absolute change in the number of bank accounts) by a ratio scale variable (original
number of bank accounts) has not been discussed much. Lovell’s (1995) solution to the
problem is interestingly very much in line with the approach in section 4.1. He has
resorted to a transformation in the output variables which relates them to their range in
the data. This abolishes the problem of negative values. However, he remarks that the
FDH scores calculated for inefficient units are not invariant to the translation.

We suggest that the original interval scale variable should be replaced by the two ratio
scale variables. Depending on the character of the original variable, the new variables
should be interpreted either as one input and one output like

profit = income-cost,

where both the income and the cost are variables the magnitude of which is under
control or one discretionary input (output) and one non-discretionary  input (output) like

increment in bank accounts =
number of accounts now - number of accounts at time point t..

The current number of accounts would be a normal output variable and the comparison
value would be treated as a non-discretionary input á la Banker and Morey (1986).
Moreover we suggest that the weights of these “twin” variables in the DEA dual model
should be set equal. This approach was adopted also in a DEA application where the
quality of perinatal care was measured by setting the number of babies at risk surviving
an output variable and number of babies at risk an input variable (Thanassoulis,
Boussofiane and Dyson, 1995). The actual output was the deaths of babies at risk to be
minimized.  The model thus can be seen as a weight restriction model.  According to the
classification of Thompson et al (1990) concerning relative weight restriction models
the model proposed can be seen as an Assurance Region (AR) model, more closely of
type ARII.

Using the proposed procedure we maintain the applicability of the radial model. When
the interval scale variable takes negative values in the data it seems quite natural to
proceed in the way proposed. However, even in the case when the values of the variable
happen to be positive in the data we strongly suggest the approach among other things
for the quite obvious reason that division on the interval scale is not allowed.



4

3. An Approach Decomposing the Interval Scale Variable into
Two Ratio Scale Variables

3.1 The case when both the two new variables can be considered as
objectives

Assume we have n DMUs each consuming m inputs and producing p outputs. Let X ∈
ℜm×n

+ and Y ∈ ℜp×n
+  be the matrices, consisting of nonnegative elements, containing the

observed input and output measures for the DMUs. We denote by Xi (the ith row of X)
the ith input values and by xij the quantity of input i consumed by DMUj, assumed to be
nonnegative. A similar notation is used for outputs.  Furthermore, we denote 1 = [1, ...,
1]T.

For the sake of symmetry we now introduce the combined DEA problem with variable
returns to scale (BCC model) where both outputs are maximized and inputs are
minimized (see, e.g., Joro et al. 1998). The CCR model can be obtained by dropping the
convexity constraint  1Tλ =1. Because we want to end at a linear model we use the
directional distance function (see Chambers, Chung and Färe, 1996).

Table 3.1 The combined  BCC Model

           Combined BCC Primal
(BCCP - C)

 Combined BCC Dual
(BCCD – C)

max σ + ε1T(s+ + s-)
                                                      (3.1a)
s.t
           Yλ  - σ y0 - s

+ =  y0

           Xλ +σ x0 + s-

  = x0

           1Tλ =1
          λ,  s- , s+ ≥ 0
           ε > 0

min      νT x0 - µ y0   + u
                                                       (3.1b)
s.t.
            -µTY    + νTX  + u1T ≥  0
              µT y0

 + νT x0       = 1

                   µ, ν ≥ ε1
              ε > 0

Next we introduce the model when, after the composition of an interval scale variable,
the new ratio scale variables are both objectives by character. Assume t inputs among
the total of m, and s outputs among the total of p, have been measured on the interval
scale. Now replace each by two ratio scale variables whose difference is the original
variable. The minuend remains as input/output according to what type the original
variable was and the subtrahend becomes an output if the original variable was an input
and correspondingly the subtrahend of an output variable becomes an input. An
example: an output variable profit is replaced by output variable “sum of revenues” and
input variable “sum of costs”.
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Arrange the new set of variables in such a way that the input matrix X ∈ ℜ+

(m+s)xn

contains first the t new ratio scale input variables originating from the interval scale
input variable (minuends). Next come the s ratio scale variables that originate from the
interval scale output variable (subtrahends). As for the output matrix Y ∈ ℜ+

(p+t)xn for
convenience we arrange the new output variables originating from the interval scale
input variables first (the subtrahends in the difference that corresponds to the interval
scale input variable) and next the new output variables corresponding to the original
interval scale outputs (minuends).

Consider the efficiency of DMU0. The coefficients of the new ratio scale variables are
set equal in the dual formulation, in other words the shadow prices must coincide. Note
that each resulting new constraint in the dual creates a new variable, denoted here by ν,
in the primal. Note that we refer to DMU0 by index ‘0’ except in the vectors Xi and Yr

where its represented by its original subscript.

Figure 3.1 Decomposition of interval scale outputs and inputs

ith interval scale output

(r+i)th input         (r+i)th output
(ratio scale)           (ratio scale)

ith interval scale input =

ith input               ith output
(ratio scale)           (ratio scale)

Table 3.2 The combined BCC model with the interval scale variables decomposed
into one input and one output each

Combined BCC Primal
(BCCP - C-R)

Combined BCC Dual
(BCCD – C-R)

max σ + ε1T(s+ + s-)

s.t.                                                 (3.2a)

Yrλ  - σyr0 - s
+

r  - vr  =  yr0,       r=1,…,t+s
Yrλ  - σyr0 - s

+

r  = yr0,     r =t+s+1,…,p+t
Xiλ +σ xi0 + s-

i – vi = xi0,       i=1,…,t+s
Xiλ +σ xi0 + s-

i = xi0,    i =t+s+1,…,m+s

           1 Tλ = 1
           λ,  s- , s+ ≥ 0
           ε > 0 (non-Archimedean)

Min      νT x0 - µ
 Ty0   + u

s.t                                                 (3.2b)

-µTY  + νTX  + u1 T ≥  0
 µTy0  + νTx0   = 1
 µr  - νi  = 0 ,              r = 1 ,…,t+s, i=r

              µ, ν ≥ ε1
              ε > 0  (non-Archimedean)

A DMU is efficient iff the optimal value σ* = 0  and all slack variables s-, s+ equal zero;
otherwise it is inefficient (Charnes et al., 1994). Note that in this model the
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interpretation of σ* is how much at least each input can be decreased and each output
increased compared to an efficient unit.

Naturally apart from the above model, input or output oriented models can be
considered. If we set xi0, i = 1,…,m+s,  to zero in 3.2a) we get the output oriented
formulation. The input oriented model is derived analogously.

Setting the new variables’ shadow prices equal is not absolutely necessary. That
constraint can be omitted. However, intuitively the constraint is appealing – their origin
is one variable whose two “sides” they represent. Also, consider model 3.2b and assume
one variable, say z = z+ - z-, has been decomposed into two. Now if the weights of z+ and
z- are set equal in 3.2b in both the objective and in the first set of constraints actually the
original variable (multiplied by its weight) appears and only in the normalization row
this is not the case.

3.2  The case when one of the new variables is non-discretionary by
character

When dealing with an output variable h that is an increment of two observations in time
h = gτ1 - gτ2 with τ1  > τ1 , then the observation at time point s is very much like a non-
discretionary input variable. Let us think of a bank attracting new accounts or a
magazine campaigning for new subscriptions. There is no control over the position
where they stand when starting the effort. We write an input-oriented model for that
kind of a situation, where the non-discretionary inputs are not among the objectives. In
the next formulation in Table 3.2 there are r interval scale output variables decomposed
into two and the accruing new input variables are non-discretionary by character.

Table 3.3 The input-oriented BCC model with r output variables decomposed into
two where the accruing input variables are non-discretionary

Input-oriented
BCC Primal
(BCCP - I-R)

Input-oriented
BCC Dual

(BCCD - I-R)

max σ + ε1T(s+ + s-)

s.t.                                               (3.3a)

Yrλ - s+

r - vr  =  yr0,                   r =1,…, t
Yrλ - s+

r=  yr0,                        r =t+1,…,p
Xiλ + s-

i - vi = xi0,                      i =1 …,t
Xiλ +σ xi0 + s-

i  = xi0,           i =t+1,…,m+t

           1 Tλ = 1
           λ,  s- , s+ ≥ 0
           ε > 0

Min      νT x0 - µ
 Ty0   + u

s.t                                                (3.3b)

-µTY  + νTX  + u1 T ≥  0
 νTxo  = 1
 µr  - νi  = 0 ,              r= 1 ,…, t+s, i=r

              µ, ν ≥ ε1
             ε > 0
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3.3 The efficiency/inefficiency of the units after the analysis with
decomposed variables

If a unit is efficient, it is necessary that it maintains this status even if the set of inputs
and outputs is modified in the way proposed in this paper. We introduce the following
definition

Definition 3.1 Unit 0 with an input vector x0 ∈ ℜm and an output vector y0 ∈ ℜp

 is
efficient with respect to set S if there does not exist a vector of coefficients a ∈ S ⊆ ℜ+

n

such that

Yra ≥ yr0 , r=1,…,p
Xia ≤ xi0  , i=1,…m

with at least one strict inequality. Note that even negative values for the input and
output vectors are allowed.

If S = {aai ∈ {0, 1}, 1T a = 1}, then Pareto efficiency (or nondominance) is in question
That means that if a unit is not efficient there is a superior unit in the set of units under
consideration.

It is easy to see that unit 0 with an input vector x0 ∈ ℜ+

m and an output vector y0 ∈ ℜ+

p

  is
efficient with respect to set S = {a ≥ 0 1T a = 1}  iff in the optimum of 3.1a σ*=0, s-

*= 0 and s+*= 0. The result is true also for S = {a ≥ 0} and 3.1a without the restriction 1
Tλ = 1.

Next we prove an efficient unit cannot become inefficient in model 3.2a after the
decomposition of one output variable, originally possibly negative. Without loss of
generality we assume that output has index p. The proof for more outputs and inputs is
straightforward as well as the proof for the CCR model.

Theorem 3.1
Consider unit 0 with an input vector x0 ∈ ℜ+

m and outputs  yr0 ∈ ℜ+, r=1,…,p-1,  yp0 ∈ ℜ.
Assume that the unit is efficient in the sense that there does not exist any positive vector
of coefficients a ∈ S = {a ≥ 0 1T a = 1} such that

Yra ≥ yr0 , r=1,…,p
Xia ≤ xi0  , i=1,…m

with at least one strict inequality. Then after  decomposing  yp , so that yp  = z - u, where z
is to be maximized  (output) and u is to be minimized (input) and diagnosing this
modified set of inputs and outputs by 3.2a, unit 0 is diagnosed efficient .



8

Proof
Assume that the optimal solution of 3.2a is λ*,σ*, s-* , s+*, v* and that unit 0 is
diagnosed inefficient. Then it is necessary that at least one from the following list of
variables is strictly positive:σ*, an element of s-*, an element of  s+*. That implies

Yrλ* ≥ yr0, r=1,…,p-1                                           (3.4a)
Xiλ* ≤ xi0 , i=1,…m.                                                (3.4b)

and

zTλ* - v* ≥ z0                                                                  (3.4c)
uTλ*- v* ≤ u0                                                                                                              (3.4d)

with at least one strict inequality. Rewriting (3.4c-d) we get

(z - u)λ* - v* + v* ≥  z0 - u0    and
Yp λ* ≥ yp0 .                                                                                       (3.4e)

There cannot exist any λ* with at least one strict inequality in 3.4a-b or 3.4e because
that is in conflict with the assumption that the original input-output vector was efficient.
Q.E.D.

Note that even if we did not impose any restrictions for the weights in 3.2b, efficient
units remain efficient after the decomposition. The increase of variables in DEA means,
however, also in this case that inefficient units may become efficient.

4. Other Approaches Dealing with Interval Scale Data

4.1 CCR and BCC models with general weights

As frequently mentioned, for an interval scale variable division is not allowed, only
differences of variable values can be calculated. Thus it is possible to calculate the
difference  of a “good” (efficient) value and another observation of the variable. To be
able to compare a difference with other input/output differences having different scales
the differences must be considered relative to something scaling the differences. In a
radial model the something is the value of the inputs and outputs of the unit under
consideration. That is only one choice, we generally speaking need some jointly elected
measure. In his study Korhonen (1997) has selected the range of the variable in the
data to be this scaling measure and the observed values (of the inputs and outputs) are
considered with respect to the range throughout.

Other good measures may exist. The Decision Maker finally utilizing the results of the
analysis may have an idea what the measure is. When studying the results of the
analysis she/he then is aware of the basis the calculations.
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When the model is not radial, the coefficients of σ in 3.1a are replaced by other positive
values, such as range. In table 3.2 we denote these subjectively chosen strictly positive
vectors of weights by wx and wy which replace x0 and y0 in the radial model as
coefficients of σ. Now the projection of an inefficient unit on the efficient frontier can
be any (virtual) unit dominating it. No translation or modifications in the original data
are needed.

Table 4.1 Combined Nonradial BCC Model

Nonradial Combined BCC Primal
(BCCP - C-NR)

Nonradial Combined BCC Dual
(BCCD - C-NR)

max σ + ε1T(s+ + s-)
                                                      (4.1a)
s.t
           Yλ  - σwy - s+ =  y0

           Xλ +σwx + s-

  = x0

           1Tλ =1
          λ,  s- , s+ ≥ 0
           ε > 0

min      νT x0 - µ y0   + u
                                                       (4.1b)
s.t.
            -µTY    + νTX  + u1T ≥  0
              µT wy + νTwx            = 1

                   µ, ν ≥ ε1
              ε > 0

Note that xo and y0 need not be positive. The approach maintains the
efficiency/inefficiency status of units (each input and output observation is divided by
its range in the data) and only the scores of the inefficient units change.

4.2 Models that do not produce efficiency scores

Ali and Seiford (1990) discovered that the additive model (Charnes et al. 1985) is
translation invariant. That model does not, however, produce efficiency scores which,
we feel, is a serious drawback. Lovell and Pastor (1995) and Pastor (1994) suggest the
weighted additive model, which is able to produce an “efficiency index” in the case
where the “variables are prices (or scaled) in such a way they stay on an absolutely
equal footing”. This seems, however, to be rarely the case. If something speaks strongly
for the CCR and BCC models and efforts for their further development, it is their
familiarity.

Zhu (1994) also considers negative inputs and outputs. He proposes a somewhat
complicated procedure for calculating efficiency scores translating the data and using
ideas of controlled envelopment analysis.

5. Example
Consider the efficiency of the forwards of the ice-hockey team Porin Ässät which plays
in the Finnish Ice Hockey League. In ice-hockey an important measure of performance
for a player is the figure “goals scored by the own team minus goals scored by the
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opponent team while the player is on ice”. No powerplay goals are taken into account in
the figure. In the data in Table 5.1 they are simply called the Plusgoals and the
Minusgoals and the result of their deduction is Points +/-. The last figure is clearly
measured on an interval scale and is frequently negative. Another output variable we
use is the points achieved by the player which consist of goals scored and assisted. As
an input variable we use games played. The information on the minutes played by a
player is not available but according to ice-hockey experts the players have relatively
evenly time on the ice in the Finnish Ice Hockey League.

Table  5.1  The players and their input output variable values (season 1996/97)

Players Games Points Plusgoals
Minusgoals

points
+/-

Vujtek 50 58 38 54 -16
Fandul 48 48 32 49 -17
Korpisalo 49 45 33 39 -6
Poulsen 49 35 36 31 5
Virta 48 34 35 31 4
Levonen 50 25 19 31 -12
Mikkola 47 25 31 28 3
Alinc 47 25 26 40 -14
Salonen 45 16 30 28 2
Saarinen 48 15 31 35 -4
Kotkaniemi 47 14 21 20 1
Virtanen 35 13 19 18 1
Karapuu 19 4 7 4 3
Tuominen 23 4 6 11 -5

Both the variables goals scored and goals scored by the opponent team are objectives.
The goals scored by the opponent team can be viewed either as outputs or inputs (to be
minimized). We considered them as inputs. Scores produced by several models are
calculated. We calculated also the scores with generalized weights (ranges) as discussed
in 4.1. In the following Vujtek’s problems (5.1-5.2) are introduced. Model  5.1 is the
combined BCC model and 5.2 is the combined nonradial BCC model with  ranges.
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max σ + ε1T(s+ + s -)

s.t. 38λ1 + 32λ2 + 33λ3 + ... + 6λ14 - σ38 - s+

1 - v1 = 38
58λ1 + 48λ2 + 45λ3 + ... + 4λ14 - σ58 - s+

2  = 58
54λ1 + 49λ2 + 39λ3 + ... + 11λ14 + σ54 + s -

1 - v1 = 54                             (5.1)
50λ1 + 48λ2 + 49λ3 + ... + 23λ14 + σ50 + s -

2 = 50

1Tλ = 1
λ, s+, s - ≥ 0
ε > 0

max σ + ε1T(s+ + s -)

s.t. -16λ1 -17λ2 - 6λ3 + ... - 5λ14 - σ22 - s+

1 = -16
58λ1 + 48λ2 + 45λ3 + ... + 4λ14 - σ54 - s+

2  = 58                                        (5.2)
50λ1 + 48λ2 + 49λ3 + ... + 23λ14 + σ31 + s -

1 = 50

1Tλ = 1
λ, s+, s - ≥ 0
ε > 0

The calculation of the scores can be done with any LP solver.

In the following tables improvement needs for the forwards according to different DEA
models are presented. From the oriented models we calculated only the output oriented
one because it seemed to fit better for the problem.

Table 5.2  The improvement needs for Porin Assat forwards according to radial
models

MODELS BASED ON RADIAL MEASUREMENTS OF EFFICIENCY
BCC
combined

BCC
output
oriented

CCR
combined

CCR
output
oriented

Vujtek 0,0000 0,0000 0,0000 0,0000
Fandul 0,0477 0,1086 0,0544 0,1151

Korpisalo 0,0084 0,0185 0,0100 0,0200
Poulsen 0,0000 0,0000 0,0000 0,0000

Virta 0,0060 0,0133 0,0086 0,0174
Levonen 0,2179 0,6247 0,2420 0,6385
Mikkola 0,0300 0,0602 0,0391 0,0813

Alinc 0,1895 0,5298 0,2132 0,5418
Salonen 0,0448 0,0911 0,0645 0,1379

Saarinen 0,1291 0,2882 0,1445 0,3379
Kotkaniemi 0,0876 0,1841 0,1168 0,2645

Virtanen 0,0780 0,1614 0,0871 0,1909
Karapuu 0,0000 0,0000 0,0000 0,0000

Tuominen 0,1581 1,2434 0,4037 1,3540
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Table 5.3  The improvement needs for Porin Assat forwards according to models
with improvements relative to the range

MODELS WITH IMPROVEMENTS RELATIVE TO THE RANGE
BCC
combined

BCC
output
oriented

CCR
combined

CCR
output
oriented

Vujtek 0,0000 0,0000 0,0000 0,0000
Fandul 0,0603 0,1149 0,0854 0,1219

Korpisalo 0,0132 0,0191 0,0157 0,0209
Poulsen 0,0000 0,0000 0,0000 0,0000

Virta 0,0085 0,0122 0,0120 0,0160
Levonen 0,2594 0,3665 0,2801 0,3726
Mikkola 0,0776 0,0848 0,0817 0,0981

Alinc 0,2484 0,3588 0,2767 0,3680
Salonen 0,1136 0,1242 0,1304 0,1566

Saarinen 0,2545 0,3676 0,2792 0,3714
Kotkaniemi 0,1607 0,1758 0,1775 0,2132

Virtanen 0,0966 0,1394 0,1161 0,1394
Karapuu 0,0000 0,0000 0,0000 0,0000

Tuominen 0,0645 0,1290 0,1965 0,2614

A player is efficient if the score is 0. Figure 0.11 means the player can improve his
performance by 11 per cent. In the radial model the 11 per cent means the improvement
needs relative to the player’s own input and output values and in the range model it
means 11 per cent of the range of each variable (in the output-oriented models the
improvement needs concern only outputs).

As can be seen for a score it is relevant if we use the combined or the ouput-oriented
model. The CCR and BCC models do not make much difference in this data because the
players’ figures are not very different from each other and in the optimum of the CCR
model calculations the sum of the optimal weights of the primal for each unit is very
close to 1.  Also the range model gives very much the same results in this case.

If units are only diagnosed efficient/inefficient (without any score produced) then, in the
case of the BCC and CCR models, we can read the results from Table 5.3 . If Pareto
efficient (nondominated) vectors are searched we may state that  Vujtek, Fandul,
Korpisalo, Poulsen, Mikkola, Salonen, Virtanen and Karapuu are efficient and the rest
of the players are inefficient.

6. Summary and Conclusions
The approach introduced in Section 3 allows us to use radial models for interval scale
variables. The CCR models are not translation invariant and thus the procedures we
propose are the only ones we know that could be used for them. In the BCC models
some translation invariance properties are available but they restrict the orientation of
the model.

We find the problem of interval scale variables important. In the radial procedure
proposed, though the number of variables increases, each of them is interpretable.
Efficient units remain efficient. The proposed procedure can be useful in practical
applications especially when the constant returns to scale assumption is valid.
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We proposed that in addition to the decomposition the weights of the new pair of
variables could be set equal. This is not, however, absolutely necessary.

Both the radial model proposed and the model with generalized weights are valid
approaches for the interval scale data problem. When to use which then? The radial
model and the generalized weights model both maintain efficient units efficient. The
advantage of the radial model is that as the new variables are interpretable then it comes
very close to the classical familiar DEA models. As for the generalized weight model
the main advantage is that the data can be used as such, no modifications are needed. In
that model, however, the analyst and the end-user have to agree on what measure to use.
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