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Abstract

Catastrophes produce rare and highly correlated insurance claims, which depend on the
amount of coverage at different locations. A joint probability distribution of these claims
is analytically intractable. The most promising approach for estimating total claims for
a particular combination of decision variables involves geographically explicit simulations
of catastrophes. The straightforward use of catastrophe models runs quickly into infinite
“if – then” evaluations. The aim of this paper is to develop a framework allowing for
the use of Monte Carlo simulation of catastrophes to aid decision making on designing
optimal catastrophic risk portfolios. A dynamic stochastic optimization model is discussed.
Connections between ruin probability and nonsmooth, in particular concave, risk functions
are established. Nonsmooth adaptive Monte Carlo optimization is proposed.

Keywords: Catastrophes, Insurance, Risk, Stochastic optimization, Adaptive Monte
Carlo, Nonsmooth optimization, Ruin probability.
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1 Introduction

Traditional insurance operates on the assumption of independent, frequent, low-consequence
(conventional) risks, such as car accidents, for which decisions on premiums, estimates of
claims and likelihood of insolvency (probability of ruin) can be calculated by using rich
historical data. The law of large numbers provides in this case a simple “more-risk-is-
better” portfolio selection strategy: if the number of independent risks in the portfolio is
larger, then the variance of aggregate claims is lower and lower premiums can be chosen.
This increases the demand for insurance, the coverage of losses, and, hence, the profits of
insurers; it therefore also increases the stability of the insurance industry. The frequent oc-
curance of conventional risks also permits simple “trial-and-error” or “learning-by-doing”
procedures for adjusting default decision variables, for instance, premiums and coverage.

Traditional (collective) risk theory [1], [3], [4] relies on the law of large numbers, which
allows for the pooling of data from multiple sources of loss in order to obtain collec-
tive estimated of the frequency parameters, aggregate losses and ruin probabilities. The
emphasis on analytical approaches requires special assumptions on the underlying proba-
bility distribution. The ruin probability is usually analysed for infinite time horizons. The
importance of dependencies in this analysis is discussed in [20]

Rare catastrophic risks require new portfolio selection approaches. Catastrophes pro-
duce claims highly correlated in space and time, which depend on the clustering of property
and other values in the region and on geographical patterns of catastrophes, for example,
natural disasters due to the persistence in climate [14]. The law of large numbers does not
operate (in general) and the “more-risk-is-better” strategy may increase the probability
of ruin for many insurers. The portfolio selection problem in the case of catastrophic risk
is transformed from a purely statistical problem into a challenging risk selection problem.
A principal difficulty is the lack of historical data on the occurrence of catastrophes at a
particular location, although rich data may exist on their occurrence and magnitudes on
a regional level. Potential losses at a particular location may be unlike any experienced
in the past.

The most promising method for estimating dependent catastrophic losses for a partic-
ular combination of coverages and other decision variables involves the direct simulation
of catastrophes, or catastrophe modeling [12]. This technique is becoming increasingly
important to insurance companies as they make decisions on the allocation and values
of contracts, premiums, reinsurance agreements, and the effects of mitigation measures.
It is possible to simulate different patterns of catastrophes in a region realistically and
to analyze the impact of different combinations of decision variables on the stability of



– 2 –

insurance companies. Unfortunately, this analysis runs quickly into infinite evaluations of
“if-then” situations.

The aim of this paper is to develop a nonsmooth stochastic optimization techniques
that allow the analyst to track spatial and temporal dependencies of losses and to di-
rect adjustments of decision variables towards desirable outcomes by using Monte Carlo
simulations. Catastrophes are extreme events and, as such, their analysis requires ex-
plicit introduction of nonsmooth (possibly discontinious) functions. Section 2 describes
the dynamic stochastic optimization model, which is similar to those proposed in [6], [7].
This model extends classical results (Borch [2]) on the risk sharing to the case of non-
substitutable risks, complex dynamics and possibility of the ruin. Section 3 establishes
connections between nonsmooth risk functions and the probability of ruin. An adaptive
Monte Carlo optimization procedure is analyzed in Section 4. Section 5 outlines numerical
experiments, Section 6 presents some concluding remarks.

2 Stochastic Optimization Model

2.1 Risk Reserves

Assume that the study region is divided into subregions or locations j = 1, 2, ...,m. Loca-
tions may correspond to a collection of households, a zone with similar seismic activity, a
watershed, etc. For each location j there exists an estimation W t

j of the property value
or “wealth” at time intervals t = 0, 1, ..., that includes values of houses, factories, etc. A
sequence of random catastrophic events ω = {ωt, t = 0, 1, ...} affects different locations
j = 1, 2, ..,m and generates at each t = 0, 1, ... losses Ltj(ω). These losses include direct
losses from ωt and indirect or delayed losses from previous time intervals. We assume that
ω is an element of a probability space (Ω,F , P ), where Ω is a set of all possible ω, and F
is a σ-algebra of measurable (with respect to probability measure P ) events from Ω. We
denote as {Ft} an increasing family of σ-algebras, Ft ⊆ Ft+1, Ft ⊆ F . Random variables
Ltj(ω) are assumed to be Ft - measurable, i.e., they depend on the observable “history”
till t.

Losses Ltj(ω), in contrast to conventional risks, are shared by many participants, such
as governments, insurers, reinsurers, banks, and brokers. In the model these are called
“insurers”, although each participant shares a part of the risk and exhibits both insurer
and reinsurer features.

For each insurer i the main variable of concern is his risk reserve Rti at time t = 0, 1, ...,
or the money that the insurer has at its disposal:

Rt+1
i = Rti + πti −Cti − Sti , t ≥ 0,

where R0
i is a fixed amount of the initial risk reserve. At t = 0, 1, ... premiums πti push

the trajectory of Rti up, whereas transaction costs Cti push it down. Claims Sti arriving at
random moments trigger sudden jumps of Rti downwards.

In conventional risk theory the probability distribution of claim process Sti can be
derived by using historical data. In the case of catastrophic risks there are strong depen-
dencies among the variables Sti , i = 1, ..., n, which are affected by insurers’ decisions on the
spread of coverages among different locations. Since the joint probability distribution of
claims is analytically intractable, we assume that there exists a Monte Carlo catastrophe
model simulating trajectories of Sti , t = 0, 1, .... Let us denote by qtij a fraction of Ltj(ω)
covered by insurer i, i.e.,

n∑
i=1

qtij ≤ 1, qtij ≥ 0. (1)
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Then the claim process can be written as

Sti(ω) =
∑

j∈Ii(t,ω)

Ltjq
t
ij , (2)

where Ii(t, ω) is a subset of locations affected by ω till time t where insurer i still operates.

Remark 2.1 In (2) a simple linear coverage function qtij(L
t
j) = qtijL

t
j is used. There may

be more general piece-wise linear coverage function qtij(L
t
j) = qktij L

t
j , if uk−1t

j ≤ Ltj ≤ uktj ,

uk0
j ≥ 0,

∑n
i=1 q

kt
ij ≤ 1, qktij ≥ 0. According to this function different “slices” of losses

Ltj are covered with different fractions qktij . Parameters qktij , u
kt
j are decision variables; for

example, u0t
j > 0 indicates a deductible policy. The conventional reinsurance is associated

with only two “slices” separated by an insurance “cap”. In what follows only linear coverage
functions are considered, although results hold for general functions.

By using (2), risk reserve Rti is calculated as

Rt+1
i = Rti +

m∑
j=1

[
πtij(q

t)−Ctij(qt)
]
−

∑
j∈Ii(t,ω)

Ltj(ω)qtij, (3)

where i = 1, 2, ..., n, qt = {qtij, i = 1, n, j = 1, m}, t = 0, 1, ..., T − 1, and R0
i is an initial

risk reserve.

2.2 Model

Without insurance, location j faces losses Ltj. Individuals from this location receive com-
pensation Ltjq

t
ij from company i when such a loss occurs. If W 0

j is the initial wealth, then
location j’s wealth at time t+ 1 is

W t+1
j = W t

j +
n∑
i=1

(
Ltjq

t
ij − πtij(qt)

)
− Ltj. (4)

Individuals maximize their wealth, which depends on

vtj =
t−1∑
k=0

(
Ltj

n∑
i=1

qkij −
n∑
i=1

πkij(q
k)

)
.

Therefore assume that coverages qtij are chosen from the maximization of the expectation
function

Fj(q) = Ef
τj
j (x, ω), f

τj
j = v

τj−1
j + γj min

t≤τj

[
vt−1
j −Evt−1

j

]
(5)

subject to
n∑
i=1

qtij ≤ 1, j = 1, m, t = 0, 1, ..., T − 1, (6)

where γj is a substitution coefficient (or risk coefficient) between possible wealth and
the risk of underestimating losses, τj is a stopping time, for example, the time of ruin not

exceeding T−1, τj = min
[
T − 1,min

{
t : W t

j ≤ 0, t ≤ T − 1
}]

, [a] = min{0, a}. Similarly,

insurer i maximizes (by choosing coverages qtij) his expected wealth

rti =
t−1∑
k=0


m∑
j=1

[
πkij(q

k)− Ckij(qk)
]
−

∑
j∈Ii(t,ω)

Ltj(ω)qtij

 ,
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taking into account the risk of overestimating profits and the risk of insolvency (Rti < 0).
Coverages qtij are chosen from maximization

Gi(q) = Egϕii (t, ω), gϕii = rϕi−1
i + εi

[
min
t≤ϕi

rt−1
i −Ert−1

i

]
+ δi min{0, Rϕii } (7)

subject to (6), where εi, δi are substitution coefficients between profit and the risk of
overestimating profits and insolvency, and ϕi is a stopping time, e.g.,

ϕi = min
[
T − 1,min

{
t : Rti ≤ 0, t ≤ T − 1

}]
.

Remark 2.2 In the general case in (5), (7) can be used valuations Fj(q) = Efj(W
t
j , 0 ≤

t ≤ τj), Gi(q) = Egi(R
t
i, 0 ≤ t ≤ ϕi) for some functions fj(·), gi(·). The maximization of

(5) and (7) generates the insurance-demand functions and the insurance-supply functions
depending on premiums. The choice of premiums must reflect balances between insurance
demand and supply, otherwise higher premiums may decrease profits. In this paper we do
not analyze the choice of premiums from this general perspective.

2.3 Pareto Optimal Coverages

A Pareto optimal improvement of the initial catastrophic risk situation with respect to
goal functions Fj(q), Gi(q) can be achieved by maximizing

W (q) =
m∑
j=1

αjFj(q) +
n∑
i=1

βiGi(q), (8)

subject to
n∑
i=1

qtij ≤ 1, qtij ≥ 0, j = 1, 2, ...,m, t= 1, 2, ..., T, (9)

where αj > 0, βi > 0,
∑m
j=1 αj +

∑n
i=1 βi = 1. Let

W (q, ω) =
m∑
j=1

αjf
τj
j (q, ω) +

n∑
i=1

βig
ϕi
i (q, ω).

Then W (q) can be written as W (q) = EW (q, ω).
Random functionsW (q),W (q, ω) have a complex analytical structure: they are, in fact,

functionals of stochastic spatial processes (random fields) defined by simulated patterns
of catastrophes. The nonsmooth character of functions Fj(q) is due to the presence of
operations min, max, and stopping times τj, ϕi in the definition of W (q, ω). This becomes
more complex for general coverage functions.

Remark 2.3 The above model can be modified for analyzing the capacity of the insurance
“industry” in case of the most damaging catastrophic events. For this purpose [6] only
uncertainties with sufficient historical data are characterized by random variables. Other
uncertainties are considered from the worst-case perspective, consistent with their spatial
patterns. For example, the occurrence of events in a region and their magnitudes can be
characterized by a given probability distribution (Poisson, Pareto), whereas geographical
location and their patterns can be chosen from the worst case. The resulting stochastic
maximin model is a tradeoff between a conservative worst-case approach (all catastrophes
are clustered at once in the most “valuable” locations) and the above model.
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Remark 2.4 The use of stopping time arguments in problems (5)-(7) generally destroys
the concavity of expectation Fj(q), Gi(q) despite the concavity of the components involved.
These functions are concave when stopping times coincide with the moment of the first
catastrophe. This important case reflects the nature of catastrophes as extreme events
challenging the stability of the whole system once they occur.

3 Probability of Ruin and Nonsmooth Risk Functions

There is a flexibility in choosing the weights αj, βj, εi, γj, δi. Coefficients αj, βj are
responsible for the Pareto optimality. In (5), (7) nonsmooth risk functions are used to
guarantee a trade-off between profits and risks of underestimating losses and overestimat-
ing profits with substitution coefficients εi, γj. These risk functions correspond to the
Markovitz mean-semivariance model [15], the Konno and Yamazaki model [13] with abso-
lute deviations, and the S. Messner et al. dynamic energy model [16]. In [19] it was shown
that the use of absolute deviations with appropriate choice of risk coeeficients (similar to
εi, γj) is consistent with the stochastic dominance of random outcomes. The applicability
of the well-known mean-variance model [15] is usually linked with the normality of the
probability distribution summarizing different prospects, which can not be assumed for
catastrophic risks.

A key issue for catastrophic portfolio selection problems is the possible ruin of insurers.
Let us show that when risk coefficients δi become large enough, then the probability of
ruin drops below a given level.

The function W (q) can be represented in the form

W (q) = V (q) + E
n∑
i=1

βiδi min
{
0, Rϕii

}
.

If δi = N/βi , where N is a large number, then W (q) = V (q) + NE
∑n
i=1 min{0, Rϕii }.

Let us show that if N is large enough, then maximization of W (q) approximates the
maximization of V (q) subject to the chance constraints P {∑n

i=1 min{0, Rϕii } < 0} < ε

for arbitrary small ε > 0; that is, the ruin probability of any insurer cannot fall below a
given level. This is due to the following general result, which for the case of linear chance
constraints was, in fact, discussed in [22].

Consider two problems, the chance constraint problem

F (x) −→ max
x∈X

(10)

subject to
P (x) = P{g(x, ω)> 0} ≤ ε, (11)

with optimal value F ∗ε and the problem

ΦN(x) = F (x) +NG+(x) −→ max
x∈X

, (12)

with optimal value Φ∗N , where X ⊂ Rn is a compact set, F (x) is a continuous function ,
G+(x) = Emax{0, g(x, ω)}, and N is a penalty coefficient. Here ω denotes an elementary
event in a probability space (Ω,F ,P).

Assume that
(i) g(·, ω) is almost sure (a.s.) continuous and |g(x, ω)| ≤ C(ω) for all x ∈ X ,

EC1+λ(ω) ≤ C1+λ < +∞, for some C > 0, λ > 0.
(ii) G+(x′) = 0 for some x′ ∈ X ;
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(iii)
P{g(x, ω) = 0} = 0 ∀ x ∈ X. (13)

Assumption (iii) implies that function P (x) = P{g(x, ω) > 0} in (11) is continuous
(see [21]). The following lemma shows that if penalty term G+(xN ) goes to zero for some
sequence of points {xN} then P (xN ) also go to zero as N −→ +∞.

Lemma 3.1 Let for some sequence of points {xN} limN→+∞G+(xN) = 0. Then

lim
N→+∞

P{g(xN , ω) > 0} = 0.

Proof 3.1 Denote δN = G+(xN) and Fx(t) = P{g(x, ω)≤ t}. By Chebyshev inequality:

P{g(xN , ω) > 0} = P{0 < g(xN , ω) ≤
√
δN}+ P{g(xN , ω) >

√
δN}

≤ FxN (
√
δN )− FxN (0) + P{max(0, g(xN, ω)) >

√
δN}

≤ FxN (
√
δN )− FxN (0) + 1√

δN
Emax(0, g(xN , ω))

= FxN (
√
δN )− FxN (0) +

√
δN .

By condition (iii) the distribution function Fx(t) is continuous at any point (x, 0). Without
loss of generality we can assume that xN −→ x as N −→ +∞. Since δN −→ 0, from the
continuity of Fx(t) at (x, 0) follows FxN (

√
δN) −→ Fx(0) and FxN (0) −→ Fx(0). Hence

P{g(xN , ω) > 0} −→ 0 as N −→ +∞.

Lemma 3.2 Let us assume that for any ε > 0 there exists a point xε ∈ X such that

P{g(xε, ω) > 0} ≤ ε.

Then
G+(xε) ≤ Cελ/(1+λ) (14)

and hence limε→0 G+(xε) = 0.

Proof 3.2 Denote

Ig(x,ω)>0 =

{
1, g(x, ω) > 0,
0, otherwise.

By Hölder inequality

Emax(0, g(xε, ω) =
∫

Ω
|g(xε, ω)|Ig(xε,ω)>0P(dω) ≤

∫
Ω
C(ω)Ig(xε,ω)>0P(dω) ≤

(∫
Ω
C1+λ(ω)P(dω)

)1/(1+λ)(∫
Ω
Ig(xε,ω)>0P(dω)

)λ/(1+λ)

≤

C (P{g(xε, ω) > 0})λ/(1+λ) ≤ Cελ/(1+λ).

Thus, limε→0 G+(xε) = 0.

The next theorem relates the optimal values of the chance constraint problem (10),
(11) and problem (12).

Theorem 3.1 There exist non-negative functions ε(N ), α(N ), β(ε) and γ > 0 such that

lim
N→+∞

ε(N ) = lim
N→+∞

α(N ) = lim
ε→0

β(ε) = 0,

Φ∗N − α(N ) ≤ F ∗ε(N) ≤ Φ∗1/εγ(N) − β(ε(N )), (15)

F ∗
1/N1/γ + β(1/N 1/γ) ≤ Φ∗N ≤ F ∗ε(N) + α(N ). (16)
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Proof of Theorem 3.1 Denote xε, xN optimal solutions of problems (10), (11) and

(12) respectively, α(N ) = NG+(xN ), β(ε) = ε
− λ

2(1+λ)G+(xε). ε(N ) = P{g(xN , ω) >

0}. Then limN→+∞ α(N ) = 0 by properties of the penalty function method (see, for
example, [10], [11]). By estimate (14) limε→0 β(ε) = 0. From Lemma 3.1 it follows that
limN→+∞ ε(N ) = 0. Since by definition P{g(xN , ω) > 0} ≤ ε(N ), then by optimality of
xε

Φ∗N = F (xN ) +NG−(xN) ≤ F (xε(N)) +NG−(xN) = F ∗ε(N) + α(N ). (17)

Denote γ = λ
2(1+λ) . By optimality of xN(ε), N (ε) = ε−γ

F ∗ε = (F (xε) + ε−γG−(xε))− β(ε) ≤ Φ∗ε−γ − β(ε). (18)

Now fix an arbitrary N > 0. From (17) and (18) (with ε(N ) instead of ε) follows (15).
From (18) with ε = 1/N1/γ and (17) follows (16).

Let us now come back to W (q) = V (q) + N
∑n
i=1 min{0, Rϕii }. If we use functions

F (x) := V (q), g(x, ω) := −∑n
i=1 min {0, Rϕii } in (10), (11), then lemmas 3.1, 3.2 and

theorem 3.1 show that the maximization of W (q) for a large N indeed approximates the
maximization of V (t) subject to the ruin probability constraint.

4 Nonsmooth Adaptive Monte Carlo Optimization

4.1 Generalized Differentiability

Problems (5) and (7) have the following general structure. Let {V t(x, ω), 0 ≤ t ≤ T − 1}
be a real-valued discrete time random (risk) process depending on deterministic vector
parameter x ∈ X ⊂ Rn and random parameter ω. Define a stopping time

τ(x, ω) = min
[
T − 1,min{t : V t(x, ω) < 0, 0 ≤ t ≤ T − 1}

]
.

Consider a risk function F t(x) = Ef t(x, ω),

f t(x, ω) = min
0≤i<t

V i(x, ω) + γt(V
0, ..., V t),

where γt(·) is a nonsmooth function, and F (x) = Ef(x, ω)

f(x, ω) = min
0≤t<τ (x,ω)

V t + γt(V
0, ..., V t)|t=τ (x,ω).

If functions V i(x, ω), γt(·) are concave in x then F t(x) is also concave, but this is not
the case with function F (x) due to the dependence of τ(x, ω) on x. Let us show that
F (x) is a generalized differentiable (GD) function assuming generalised differentiability
of V t(x, ω), 0 ≤ t ≤ T − 1, γt(·). The class of GD-functions is especially important for
problems with general coverage functions, involving deductable and reinsurance ”caps”.

Definition 4.1 [18] Function f : Rn −→ R is called generalized differentiable at x ∈ Rn
if in some vicinity of x there exists an upper semicontinuous at x multivalued mapping ∂f
with closed convex compact values ∂f(x) such that

f(y) = f(x) + 〈g, y− x〉+ o(x, y, g), (19)

where 〈·, ·〉 denotes an inner product of two vectors, g ∈ ∂f(y) and

lim
k

|o(x, yk, gk|
‖yk − x‖ = 0 (20)

for any sequences yk −→ x, gk ∈ ∂f(yk). Function f is called generalized differentiable if
it is generalized differentiable at each point x ∈ Rn.
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The GD-functions possess the following properties ([17],[18]): they are continuously dif-
ferentiable almost everywhere in Rn; and ∂f(x) is a singleton for almost all x ∈ Rn.
GD-functions are locally Lipschitzian, for Clark subdifferential ∂Cf(x) ⊆ ∂f(x); contin-
uously differentiable, convex and concave functions are generalized differentiable; class
GD-functions are closed with respect to max, min operations and superpositions; there is
a calculus of subgradients:

∂min(f1, f2)(x) = co{∂fi| fi(x) = min(f1(x), f2(x))}, (21)

where co{·} denotes a convex hull of {·} and the subdifferential ∂f0(f1, . . . , fm) of a com-
posite function f0(f1, . . . , fm), where f0(·) is a GD-function, is calculated by the chain
rule.

In addition, the class of GD-functions is closed with respect to taking expectations.

Theorem 4.1 ([17]). Let (Ω,Σ,P) be a probability space, function f : Rn × Ω −→ R1

is generalized differentiable at x ∈ Rn for almost all ω ∈ Ω and integrable in ω for all
x ∈ Rn. Assume that gradient (in x) mapping ∂f(x, ω) is measurable in ω for all x (such
mapping exists and can be constructed [17]), and for any compact X ⊂ Rn there exists an
integrable function LX(ω), such that

sup{|f(x, ω)| | x ∈ X} ≤ LX(ω),

sup{‖g‖ | g ∈ ∂f(x, ω), x ∈ X} ≤ LX(ω).

Then F (x) = Ef(x, ω) is generalized differentiable at x with ∂F (x) = E∂f(x, ω).

Assuming that V t(x, ω), t = 0, 1, . . . , T − 1, are generalized differentiable functions,
the above properties imply that f t(x, ω) and (under appropriate assumptions) F t(x) are
also generalized differentiable functions. The same is not so evident for f(x, ω) and F (x)
because τ(x, ω) depends on (x, ω). The following theorem shows that under practically
important conditions F (x) is also a GD- function with a quite natural calculus of subgra-
dients.

Theorem 4.2 Assume that
(i) functions V t(x, ω), γt(·), 0 ≤ t ≤ T, are genralized differentiable in x ∈ X for

almost all ω and
sup{|V t(x, ω)| |x ∈ X} ≤ L(ω), |γt(·)| ≤ L(ω)

with integrable function L(ω), t = 0, 1, . . . , T ,
(ii) generalized gradient (in x) mappings ∂V t(x, ω), ∂γt are measurable in ω and

bounded by L(ω) for all x ∈ X
(iii) for all x ∈ X and t = 0, 1, . . . , T, the probability

P{V t(x, ω) = 0} = 0.

Then
(a) function f(x, ω) is a.s. generalized differentiable with

∂f(x, ω) = co{∂V t| t ∈ t∗(x, ω)}+ ∂γt(V
0, ..., V t)|t=τ (x,ω) (22)

t∗(x, ω) = {t| V t(x, ω) = min
0≤t<τ (x,ω)

V t(x, ω), 0 ≤ t < τ(x, ω)},

(b) expectation function F (x) = Ef(x, ω) is generalized differentiable with

∂F (x) = E∂f(x, ω).
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Proof of Theorem 4.2. Let us fix a point x ∈ X . Denote Ω the set of ω such that
V t(x, ω) = 0 for at least one t, 0 ≤ t ≤ T−1. By condition (iii) P{Ω} = 0. Fix an abitrary
ω ∈ (Ω \Ω) and denote τ(ω) = τ(x, ω). Then V t(x, ω) > 0, 0 ≤ t < τ(ω), V τ (ω)(x, ω) < 0
or V t(x, ω) > 0, 0 ≤ t ≤ T − 1. By continuity of V t(x, ω) there is a vicinity U(ω) of x
such that for x ∈ U(ω) the following holds: V t(x, ω) > 0, 0 ≤ t < τ(ω), V τ (ω)(x, ω) < 0
or V t(x, ω) > 0, 0 ≤ t ≤ T − 1. Thus τ(x, ω) = τ(ω) and f(x, ω) = f(x, ω) for x ∈ U(ω),
where f(x, ω) = min0≤t<τ (ω) V

t + γt|t=τ (x). Function f(x, ω) is generalized differentiable
at x with (upper semicontinuous) subdifferential

∂f(x, ω) = co{∂V t|t ∈ t(x, ω)}+ ∂γt|t=τ (ω),

t(x, ω) = {t| V t(x, ω) = min
0≤t<τ(ω)

V t(x, ω), 0 ≤ t < τ(ω)}.

Since ∂f(x, ω) given by (22) coincides with ∂f(x, ω) in a vicinity of x, f(x, ω) is generalized
differentiable at x with subdifferential (22).

To prove statement (b) we check the conditions of Theorem 4.1. Obviously,

sup{|f(x, ω)| | x ∈ X} ≤ 2L(ω),

sup{‖g‖| g ∈ ∂f(x, ω), x ∈ X} ≤ 2L(ω).

The stopping time τ(x, ω) is a measurable in ω function, since

{ω| τ(x, ω) ≤ t < T} = {ω| min
0≤i≤t

V i(x, ω) < 0},

{ω| τ(x, ω) = T} = {ω| min
0≤t<T

V t(x, ω) ≥ 0, V T (x, ω) < 0} ∪ {ω| min
0≤t≤T

V t(x, ω) ≥ 0},

and for any t multivalued mapping ∂f t(x, ω) is measurable; i.e., for any compact K ⊂ Rn
the set

{ω| ∂f t(x, ω) ∩K 6= ∅}
is measurable, which can be easily demonstrated. Then multifunction ∂f(x, ω) is measur-
able, since for any compact K ⊂ Rn the set

{ω| ∂f(x, ω) ∩K 6= ∅} = ∪0≤t≤T
(
{ω| τ(x, ω) = t} ∩ {ω| ∂f t(x, ω) ∩K 6= ∅}

)
is measurable. Thus, the multifunction ∂f(x, ω) is convex, compact valued, and measur-
able. By (a) for any fixed x function f(x, ω) is almost sure generalized differentiable at x
with subdifferential (22). Then statement (b) follows from Theorem 4.2.

4.2 Method

Maximization ofW (q) for general coverage functions (see Remark in section 2) and explicit
insolvency constraints leads to a general nonsmooth stochastic optimization problem of
the type: maximize F (x) = Ef(x, ω), x ∈ X ⊆ Rl with GD-functions F (·), f(·, ω),
and X = {x|Ψ(x) ≤ 0} defined by a GD-function Ψ(x). Assume the following regularity
condition: inf {‖g‖ : g ∈ ∂Ψ(x)} > 0, where ∂Ψ is defined according to (4.1). The following
key result was proved in [8]. Consider the stochastic quasigradient (SQG) procedure:

xk+1 ∈ Πx(x
k − ρkξk), x0 ∈ X, (23)

where xk, ξk, k = 0, 1, ... are defined on a probability space (Ω,F , P ),

E
{
ξk|x0, ..., xk

}
∈ ∂f(xk, ω),
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and Πx is a (multivalued) projection operator on the set X ; ρk ≥ 0,
∑∞
k=0 ρk =∞,

∑∞
k=0

ρ2
k < ∞. Define X∗ = {x|0 ∈ ∂F (x) +NX(x)}, where NX(x) = {λ∂Ψ(x) : λ ≥ 0} if

Ψ(x) = 0 and NX(x) = 0 if Ψ(x) < 0. Let X be a compact and
∥∥∥ξk(ω)

∥∥∥ ≤ C <∞(which

usually follows from the compactness of X).

Theorem 4.3 All cluster points of
{
F (xk)

}
a.s. constitute an interval in F ∗. If set F ∗

does not contain intervals (for example, F ∗ is a finite or countable), then all cluster points

of
{
xk(ω)

}
a.s. belong to a connected subset of X∗ and

{
F (xk(ω)

}
has a limit in F ∗.

Theorems 4.2, 4.3 allow us to develop adaptive Monte Carlo optimization for rather
general catastrophic risk selection problems. Assume that after k simulations of catastro-

phes ω(0), ω(1), ..., ω(k−1) a set of coverages q(k) =
{
qtij(k), i = 1, n, j = 1, m, t = 0, T − 1

}
is obtained. Coverages q(k) correspond to approximate solutions xk, k = 0, 1, ... in (23).
From (22) follows a simple rule for calculating ξk: for given q(k) simulate a new in-
dependent sequence of catastrophes ω(k) = (ω0(k), ω1(k), ..., ωT−1(k)), observe stopping
times τkj = τj(q(k), ω(k)), τki = τi(q(k), ω(k)), and calculate subgradients of functions

f tj (q, ω(k)), gti(q, ω(k)) with respect to qt(k), t ≤ τkj and correspondingly t ≤ τki . Compute

ξk =
m∑
j=1

αjf
t
jq (q(k), ω(k)) |t=τkj +

n∑
i=1

βig
t
iq (q(k), ω(k)) |t=τki .

After that a new set of coverages q(k + 1) is adjusted from q(k) according to (23), etc.,
where the projection on the set defined by (6) is splited into T independent subproblems
for each group of variables qt, t = 0, 1, ..., T − 1.

5 Numerical Experiments

Numerous numerical experiments on design of catastrophic risk insurance portfolios using
the proposed approach are described in [6], [7]. They show a satisfactory speed of major
improvements of initial coverages. Thus, Figure 1 illustrates typical dynamics of improve-
ments during iterations k = 0, 1, .... In this example the number of locations m = 100,
insurance companies n = 5, the time span T = 1000, the stopping time coincides with
the time of the first catastrophe, coverage functions are linear and do not depend on t.
The indicator of improvements is the sample mean of dependent variables W (q(k), ωk),
k = 0, 1, ..., W k = (1/k)

∑k−1
s=0 W (q(s), ωs). It is possible to show [9] that the law of large

numbers holds for this type of indicators and W k approaches W (q(k)) when k →∞. Fig-
ure 1 shows the adaptation of initial coverages to catastrophes. As we can see, the initial
coverages are sensitive to catastrophes. The sequential adaptive adjustments (23) improve
their spatial diversification, which increases the “welfare” functions W (q), i.e., provides
Pareto optimal improvements with respect to the profits of insurers, losses of individuals
and insurer insolvency. Numerical experiments in [6],[7] show that desirable histograms of
insolvency can easily be achieved by simple “manipulations” with risk coefficients δi.
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6 Concluding Remarks

A key feature of a catastrophe risk selection problem is the insolvency (probability of ruin)
of insurers. In this paper the insolvency is taken into account by a nonsmooth risk function.
It leads to concave stochastic optimization problems in the case of a concave with respect
to q functions Rti(q, ω), W t

j (q, ω) and stopping times independent of q. In contrast, explicit
introduction of a constraint on the probability of ruin destroys the concavity. Optimal
selection of catastrophic risks for models of present complexity with stopping times can not
be fully studied by analytical techniques and deterministic sample mean approximations.
Therefore we use adaptive Monte Carlo optimization. Specific stochastic quasigradient
methods enable us to deal with nonsmooth risk functions and implicit dependencies of
stopping times on decision variables. Theorem 4.3 establishes the use of common random
numbers resulting in a considerable increase of computational efficiency. Combination of
proposed methods with other approaches and the variance-reduction techniques require
special attention. The efficiency of the approach presented requires also the development
of dynamic catastrophe models incorporating key variables responsible for the random
occurance of specific catastrophes and dependencies (see discussion in [14] concerning
natural catastrophes). This approach can be extended to more general problems with
nonlinear coverage functions and other insurance-related variables, since the class of GD-
functions is rich enough to model the nonsmooth character of various risk management
situations (see discussion in [5]).
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