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Abstract

Birth and death processes with a finite number of states are used in modeling different
kinds of noisy learning processes in economics. To analyze the long run properties one
looks at the corresponding stationary distribution. When the number of states is large, the
stationary distribution becomes bulky and difficult to analyze. To simplify the analysis in
such a situation and hence to make the long run properties of the learning process more
transparent, a diffusion approximation has been suggested. Unfortunately, quite often
such approximation is not correctly done. Why this happens and how the situation can
be fixed is discussed in this note.
Journal of Economic Literature Classification Numbers: C70, C72.
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On Misapplications of Diffusion Approximations

in Birth and Death Processes of Noisy Evolution

Y.M. Kaniovski (kaniov@iiasa.ac.at)

Quite a few recent models of noisy evolution exploit the machinery of birth and death
processes with a finite number of states. The papers by Orléan (1995), Binmore et al.
(1995) and chapters 4 and 5 of the book by Aoki (1996) are among the most recent exam-
ples of such use. Often people are interested in the long run outcome of the evolutionary
process. So, they look at the stationary distribution of the corresponding birth and death
process. When the numbers of states N is large, this distribution is bulky and difficult
to analyze. To make the picture more transparent, the set {0, 1, . . . , N − 1} where the
distribution nests, is compressed to {0, 1/N, . . . , 1 − 1/N}. Now it looks “almost” like
a continuous distribution on [0, 1] and it is intuitively plausible to look for a continuous
approximation of this distribution as N →∞. For this purpose a diffusion approximation
has been suggested. But, there is a common mistake in many studies exploiting diffusion
approximations. Namely, their limiting stochastic differential equation or, equivalently,
the corresponding Fokker – Plank equation contains a multiplier 1/N in the diffusion
coefficient. Such a term would have not been possible, had the passage to the limit as
N →∞ been done correctly. Examples of this mistake can be found in section 7 of Bin-
more et al. (1995) or in section 2.2.2 of Weidlich and Haag (1983) which is often quoted
by studies on noisy evolution. Thus, what is claimed to be a diffusion approximation of
stationary distribution does not have much to do with it. Let us look at what exactly
causes this mistake.

First, let us recall some basic facts concerning birth and death processes. Following
Feller (1957 p. 407) a system evolving in continuous time t ≥ 0 and having 0, 1, N − 1 as
feasible states is called a birth and death process if during [t, t+ h): (a) it moves from i to

i + 1 with probability λ
(N)
i h + o(h); (b) the probability of shifting from i to i− 1 equals

µ
(N)
i h+o(h); and (c) any shift for more than one digit occurs with probability o(h). Here

λ
(N)
i > 0 for 0 ≤ i ≤ N − 2 and λ

(N)
N−1 = 0. Also µ

(N)
i > 0 for 1 ≤ i ≤ N − 1 and µ

(N)
0 = 0.

Set p
(N)
j,i (τ) for the probability that starting at t = 0 from j the system is at i for

t = τ . Then, regardless of j, limτ→∞ p
(N)
j,i (τ) = d

(N)
i . The values d

(N)
i , 0 ≤ i ≤ N − 1,

form the unique stationary distribution which is defined as follows (see, for example, Hoel
et al. (1972) p. 51)

d
(N)
i = d

(N)
0

i∏
j=1

p
(N)
j−1/q

(N)
j , i = 1, 2, . . . , N − 1, d

(N)
0 =

[
1 +

N−1∑
i=1

i∏
j=1

p
(N)
j−1/q

(N)
j

]−1

.

It is proved to be the same as the stationary distribution of a time homogeneous Markov
chain ξtN , t = 0, 1, 2, . . .. This birth and death chain assumes the values 0, 1, . . . , N − 1
and has the following transition probabilities

P{ξt+1
N = i+ 1|ξtN = i} = p

(N)
i =

λ
(N)
i

λ
(N)
i + µ

(N)
i

,
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P{ξt+1
N = i− 1|ξtN = i} = q

(N)
i =

µ
(N)
i

λ
(N)
i + µ

(N)
i

,

where 0 ≤ i ≤ N−1. Above both the continuous time and the discrete time versions were
referred to as a birth and death process. In the following let us deal with a chain.

To derive a diffusion approximation of the stationary distribution shifted to {0, 1/N, . . . , 1−
1/N}, let us look at the increments of the birth and death chain normalized by 1/N . Set
ζtN = ξtN/N and ∆ζtN = ζt+1

N − ζtN . The state space of the Markov chain ζtN = ξtN/N ,
t = 0, 1, . . . , is {0, 1/N, . . . , 1− 1/N}. The first two conditional moments ∆ζtN are

E(∆ζtN |ζtN = i/N ) =
1

N
[p

(N)
i − q(N)

i ], (0.1)

E[(∆ζtN)2|ζtN = i/N ] =
1

N 2
[p

(N)
i + q

(N)
i ]. (0.2)

For a positive integer M , define a random process xMN (·) on [0,∞) by setting

xMN (0) = ζMN , xMN (u) = ζM+i
N for

i

N
≤ u < i+ 1

N
.

At this point it is already clear that a nontrivial unconstrained diffusion approxima-
tion for xMN (·) is not possible. Nontrivial here means that the diffusion coefficient is not
identically equal to zero. Unconstrained means that there are no barriers.

Indeed, ζtN belongs to [0, 1) and the absolute value of its increment ∆ζtN does not ex-
ceed 1/N with certainty. But a small increment of a nontrivial diffusion without barriers
is approximately Gaussian taking with positive probability values from −∞ to∞. A con-
strained nontrivial diffusion approximation is not possible either as the following argument
shows.

If there is a Lipschitz function f(·) such that

lim
N→∞

sup
0≤i≤N−2

|p(N)
i − q(N)

i − f(i/N )| = 0,

one can expect that as N → ∞, M → ∞ the weak limits of xMN (·) satisfy the following
equation

dx

dt
= f(x). (0.3)

This is a deterministic equation. It cannot be stochastic. Indeed, by (1) and (2) the
conditional variance of ∆ζtN is of the order 1/N 2. Setting ∆t = 1/N , one sees that
if (3) were to be a stochastic differential equation with a nonzero diffusion term, then

E
{
{∆x(t) − E[∆x(t)|x(t)]}2|x(t)

}
would have been of the order of 1/N . Here ∆x(t) =

x(t+ 1/N )− x(t). Thus, as long as (2) is in place, no nonzero diffusion term is possible
in the limit (3).

This looks like a puzzle. Indeed a deterministic limit comes out of a stochastic process.
But the puzzle resolves if one realizes that the randomness of (3) is in its initial state,
x(0). This cannot be revealed by a nontrivial diffusion approximation. For details of what
the distribution of x(0) looks like see Kaniovski and Pflug (1997).

Finally, a guess of how the multiplier 1/N in the diffusion term comes to exist is as
follows. Having recognized the above puzzle, people try to preserve the randomness of the
limit. That is why one 1/N in (2) is used as ∆t in the passage to the limit, while the
other 1/N is “frozen”, turning into the multiplier in the diffusion coefficient.
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