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Abstract

How should ecologists scale up from the microscopic events affecting

individuals, to the macroscopic processes affecting populations and communities?  This

question is becoming important in theoretical ecology due to the increasing use of

individual-based models of spatially-extended populations and communities.  We give

here a dynamical system, derived from an individual-based stochastic process, that

describes the principal features of such a stochastic process.  The stochastic process

models a multispecies community of organisms living in a spatial domain, containing

organisms that (1) give birth and die with probabilistic rates which depend on other

individuals in a specified neighbourhood, and (2) move from one location to another.

The dynamical system describes the change in the first and second spatial moments of

the stochastic process, the first moments being the densities of species averaged over

space, and the second moments being measures of the average spatial structure of the

community in the vicinity of an individual.  We show, by means of an example of two

competing plant species, that the dynamics given by a simpler non-spatial model are

qualitatively incorrect, whereas the dynamical system presented here gives a close

approximation to the first and second moments of the underlying stochastic process.

Key words: Births, Community dynamics, Competition, Competitive exclusion,

Deaths, Dispersal, Dynamical systems, Individual-based models, Moment dynamics,

Plant neighbourhoods, Spatial ecology, Stochastic processes

Key phrases: A dynamical system for describing spatially-extended community

dynamics;  Moment dynamics approximate individual-based birth−death−movement

processes;  Scaling-up from individual-based models;  Spatial structure causes

qualitative changes in the outcome of competition between two species;  A stochastic

process for birth, death and movement of individuals in multispecies communities
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On Scaling Up
from Individual-Based Processes
to Macroscopic Ecological Dynamics
in Spatially-Extended Communities

Richard Law
Ulf Dieckmann

Introduction

Individual plants and animals are the natural starting point for most field-based

ecology.  Yet the questions that ecologists wish to address are often of an aggregate,

macroscopic kind, such as what determines the abundance of species, and what

determines the biodiversity of communities.  How should ecologists scale up from the

microscopic events affecting individuals to the macroscopic events affecting

populations and communities?  In developing a theoretical framework for describing the

dynamics of ecological systems, scaling up is just as important an issue as it is in the

field.  Recent developments in computation have brought ecological modelling down to

the level of the individual, often in explicit spatial settings (DeAngelis and Gross 1992,

Judson 1994).  But again, it is usually the macroscopic dynamics that emerge from

individual-based models that are of interest.

Arguably, we need in ecology a framework to construct macroscopic dynamics

of ecological populations and communities from the stochastic birth, death and

movement events of individual plants and animals.  This is a major challenge for

theoretical ecology (Levin et al. 1997), which is being addressed by several methods,

including the use of metapopulations, diffusion approximations and analysis of
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individual-based stochastic processes (Tilman and Karieva 1997, Dieckmann et al.

1998).

One promising approach is to construct a dynamical system comprising the first

and second spatial moments of the underlying stochastic process (Bolker and Pacala

1997, Dieckmann et al. 1997).  A first spatial moment is simply the spatial average of

population density, and a second moment measures the variability of density over space.

By introducing the second spatial moment, a dynamical system is put in place that

tracks important aspects of the system’s spatial structure and couples this structure to the

dynamics of mean density, thereby allowing a feedback between the two.  This is of

general interest for terrestrial ecology, and becomes especially important in populations

and communities of plants where individuals typically interact locally in small

neighbourhoods and disperse over short distances (Stoll and Weiner 1998);  here the

local spatial structure can profoundly affect the dynamics.

Other approaches for describing spatially-extended stochastic processes, such as

the pair-approximation method, have also been investigated (Matsuda et al. 1992,

Harada and Iwasa 1994).  Pair approximation is typically applied to systems on a

discretized spatial lattice;  the method describes the dynamics of the states of

neighbouring cells in pairs, and in this way holds in place information on local spatial

structure.  But the discretization of space makes this approach less readily applicable to

populations and communities in the field.

This paper builds on and extends the method of moments introduced by Bolker

and Pacala (1997).  The paper places in the literature equations for the dynamics of the

first and second spatial moments of a community containing an arbitrary number of

species, and having arbitrary functions for neighbourhood dependence and movement

(while assuming a linear dependence of per capita birth and death rates on the density of

neighbours).  The model differs from previous work in the following ways: (1) it is

explicitly constructed in a two-dimensional space, (2) it is given for a general n-species

system, (3) it allows for movement both at birth (e.g. seed dispersal) and later on in life

(e.g. clonal growth), and (4) the closure of the hierarchy of equations does not assume

that the third central moment is negligible.  We do not give the technical details of the

derivation here.  Instead we show, by means of an example of two competing species,
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that the dynamics predicted by the equations are a close approximation to those of the

first and second moments of the underlying stochastic process.

We begin by outlining a stochastic process for births, deaths and movements in a

continuous two-dimensional space, and define first and second spatial moments as

convenient measures for summarizing the emerging patterns.  We then give and explain

a dynamical system describing the average behaviour of the moments over the course of

time.  To keep the argument from becoming abstract, we illustrate each step in terms of

a community of two competing plant species, and show that the moment dynamics are

able to capture fundamental effects of their spatial interaction.  Readers who wish to see

what the dynamical system can do without going into the formalism on which it is based

should turn to the section labelled ’Example’.

A Stochastic Birth-Death-Movement Process

Consider a community comprising n species in a large, continuous, two-

dimensional space, with individuals located at points x = ( , )x x1 2  in this plane.

(Individuals could be referenced by further properties such as age or size but, for

simplicity, we deal here only with species and location.)  The spatial pattern of

individuals of species i can be thought of as a function p xi ( ) .  Taking all n species

together, the individuals form a multispecies spatial pattern at time t denoted by a vector

of density functions p(x) = ( )p x p xn1 ( ), , ( )K ;  p(x) thus describes the state of the

system at time t.  (We use Dirac-delta functions δ ′x x( )  to represent discrete individuals

in these functions;  for an individual at point ′x , δ ′x x( )  is peaked at x = ′x  and is 0 at

all other points x.)   The process operates in continuous time in an environment with no

spatial heterogeneity other than that generated by individuals themselves.

There are three primary stochastic events associated with an individual, namely,

movement, death and birth of offspring.  For an individual of species i, located at point

x in a pattern p(x), we write the probability per unit time of movement to location ′x  as

M x x pi ( , , )′    = m x xi ( )′ −   .     (1)



4

In other words, movement depends only on the intrinsic tendency for individuals of

species i to move and on the distance moved ′ −x x .  (More complicated dependencies

could, in principle, be introduced.)

An individual of species i, located at point x in a pattern p(x), has a

probability per unit time of death

D x pi ( , ) = ( )[ ]d d w x x p x x dxi ij ij
d

j ij x
j

+ ⋅ ′ − ⋅ ′ − ⋅ ′ ′∫∑ ( ) ( ) ( ) ( )δ δ   .    (2)

The first term, given by the parameter di, is a neighbour-independent component of

death, and is common to all individuals of species i.  The term inside the summation

describes how the death rate in species i depends on individuals of species j in the

neighbourhood of location x.  The function w x xij
d( ) ( )′ −  weights the effect of a

neighbour of species j at ′x  according to its distance from x;  this function is multiplied

by the density p xj ( )′  of j at location ′x .  Essentially what the integral does is to add

up the contribution of each neighbour of species j, making allowance through the

weighting function for the distance between individual j at location ′x  and individual i

at x.  The integrated expression is multiplied by a parameter dij  making the interaction

species-specific.  It is easily forgotten that the individual of species i at location x

cannot itself be a member of its neighbourhood;  the term δ δij x x⋅ ′( )  comprising the

Kronecker delta δ ij  multiplied by the Dirac delta-function δ x x( )′  subtracts this

individual from the integrated expression (the Kronecker delta δ ij  takes value 1 when i

= j, and 0 otherwise).

An individual of species i, located at point x in a pattern p(x), has a probability

per unit time of giving birth to an individual at location ′x

B x x pi ( , , )′  = ( )[ ]b b w x x p x x dx m x xi ij ij
b

j ij x
j

i
b+ ⋅ ′′ − ⋅ ′′ − ⋅ ′′ ′′









 ⋅ ′ −∫∑ ( ) ( )( ) ( ) ( ) ( )δ δ .(3)

In most respects this birth term has the same structure as the death term (2).  The bi and

bij  are parameters for neighbour-independent and neighbour-dependent births,
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respectively, and w x xij
b( ) ( )′′ −  is a function for weighting the effect of neighbours.  The

main difference from expression (2) is that there is dispersal at birth m x xi
b( ) ( )′ − ,

statistically independent of the production of offspring, which moves the offspring to a

location ′x  with probability density m x xi
b( ) ( )′ − .

The probabilities per unit time above define a stochastic process that changes

the spatial pattern of the community from one state p(x) to another state ′p x( ) .  While

it may seem that expressions (2) and (3) are rather intricate, it would not be easy to

write general expressions for a species-specific neighbourhood dependence with less

information.  The derivation of the equations for dynamics of the moments proceeds

simply with the information above – the specific shapes taken by the functions

m w w mi ij
d

ij
b

i
b, , ,( ) ( ) ( )  are immaterial.  The most important assumption in (2) and (3) is

that births and deaths depend linearly on the local densities of neighbours;  this

assumption could however be removed for small departures from linearity by means of

a Taylor approximation.

To motivate the argument below, we consider a plant community comprising

two species, with parameters as in Table 1.  In such a community, it is natural to assume

that movements occur only at the time of seed production, so m x xi ( )′ − = 0;  we also

assume for simplicity that neighbourhood dependence operates only through deaths, so

bij = 0 .  The species differ in two ways.  (1) The first species is a stronger competitor,

and interactions are set in such a way that species 1 would replace species 2 in the

absence of any spatial effects.  (2) The second species can disperse farther at the time of

reproduction.  In an explicitly spatial system, greater dispersal may help species 2 to

avoid intra-specific competition, because offspring are more likely to escape from the

neighbourhoods of their parents, and this in turn could affect the outcome of

competition between the species.  Communities with this kind of trade-off between

competitive ability and dispersal have been much studied because of their potential to

lead to coexistence of species (Skellam 1951, Hastings 1980, Crawley and May 1987,

Tilman 1994, Dytham 1995).  Here we use the system simply to show the relationship

between an individual-based model and the dynamics of its moments.
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Specifically, the dispersal properties of the species in the community are as

follows.  Offspring of species i move a random distance up to a maximum radius ri
bm( )

relative to the parent.  The direction is a random variable with a uniform probability

density function and the distance is a random variable with a normal probability density

function, peaked at zero and having a standard deviation si
bm( )  determining its width;

the normal distribution is truncated at ri
bm( ) , and normalized so that its integral is one.

In other words, the distance r is drawn from a probability density function

1

2

2

2z

r

si
bm

⋅ −
⋅









exp

( )
, where r ri

bm≤ ( ) , and z is the normalization constant.

Table 1 Non-zero parameters used in defining a community of two competing species.
Parameters defined in the text.

Value for species i:

Parameter i = 1 i = 2

Death di 0.2 0.2

di1 0.001 0.002

di2 0.0005 0.001

ri
d

1
( ) 0.12 0.12

ri
d

2
( ) 0.12 0.12

si
d
1
( ) 0.03 0.03

si
d
2
( ) 0.03 0.03

Birth bi 0.4 0.4

ri
bm( ) 0.12 0.5

si
bm( ) 0.03 0.2



7

Apart from the difference in competitive ability and movement, the species are

ecologically equivalent;  in particular they have the same functions and parameters for

neighbourhood dependence of deaths.  We assume that the effect of a neighbour on the

chance of death of an individual is a normal function of the neighbour’s distance,

truncated at a radius rij
d( ) , with a standard deviation sij

d( )  measuring how slowly the

neighbour’s effect diminishes with distance.

Fig. 1 shows two snapshots of the spatial patterns that develop in the course of a

realization of this stochastic process (modelled with periodic boundaries).  At time 0,

200 individuals of each species are distributed at random across the space.  This density

is markedly greater than the community can support, and substantial mortality occurs

during the first five time units.  By time 5, the spatial pattern departs strongly from

randomness in two respects.  First, species 1, which has less dispersal, shows much

more aggregation than does species 2.  Second, the species are not usually found

together because, where they do so, species 1 tends to eliminate species 2;  this leads to

some spatial segregation of the species.

First and Second Spatial Moments
of the Stochastic Process

The spatial patterns that develop during realizations of a stochastic process have

their own intrinsic interest.  But it is far from straightforward to characterize the major

properties of a stochastic process simply by looking at the patterns.  What is needed are

statistics of the process that capture its most important spatial features.  The first and

second spatial moments of p(x) suggest themselves as obvious contenders.  The first

moment N pi ( )  of a pattern p

N pi ( )      =
1

A
p x dxi⋅ ∫ ( )      (4)

is simply the average density of species i across a space of area A, and needs no further

explanation.

The second moment C pij ( , )ξ  is a product of pairs of densities for a spatial pattern p(x):
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(a)

(b)

(a)

(b)

Figure 1 Examples of spatial patterns of two competing plant species generated as a
realization of the stochastic process described in the text using parameter
values in Table 1.  (a) Time zero, corresponds to a random initial
distribution of 200 individuals of each species.  (b) Pattern after five units of
continuous time have elapsed, showing the spatial structure generated by
interactions and dispersal.  Filled circles are locations of individuals of
species 1;  open circles are locations of individuals of species 2.
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C pij ( , )ξ = ( )1

A
p x p x dxi j ij⋅ ⋅ + − ⋅∫ ( ) ( ) ( )ξ δ δ ξ  .      (5)

It comprises a product of the density of individuals of species i and those of j at location

ξ  relative to i, averaged across a region of area A.  The second moment we use is

related to a spatial covariance, but is not a central moment, because the densities are not

expressed as deviations from the means N pi ( ) .  (We use this non-central moment in

preference to the central one, because this makes the equations for the moment

dynamics simpler later on.)  The term δ δ ξij ⋅ ( )  is subtracted to remove a spurious term

arising from a self pair at i = j and ξ  = (0, 0) which expression (5) would otherwise

contain.  Notice that the second moment is a function of the location ξ  of j relative to i,

and needs to be thought of as describing a surface.  When we show results about second

moments below, we normalize the moment by dividing by the product N p N pi j( ) ( )⋅

and refer to the moment as a spatial correlation function.  Values of this function greater

than one then indicate aggregation of individuals of species i and j, and values less than

one indicate that these individuals are spatially segregated.

It is easiest to see the information carried in the second moment by examining its

shape when calculated for some explicit spatial patterns.  We have therefore computed

the shape of the second moments for the spatial patterns in Fig. 1, and these are given in

Fig. 2.  The stochastic process is isotropic, and this means that the pair densities depend

only on the distance that separates the pairs, and not on the direction from i to j.  In

these circumstances, a spatial correlation has the same overall shape in every direction

from the origin, and we replace it by the radial correlation for the purpose of illustration.

(The radial correlation is a radial section through the spatial correlation function.)

At time zero (Fig. 2a, b, c), the correlation functions are close to unity at all

distances, due to the random locations at which individuals were placed at the start (Fig.

1a).  By time five, however, substantial spatial structure has developed.  Species 1, in

keeping with its tendency to occur in small clumps, has a large auto-correlation close to

the origin (Fig. 2d), but the correlation diminishes with distance, because spatial

structure is localized.  The auto-correlation function of species 2 is much flatter because

dispersal at the time of reproduction is so much greater in this species (Fig. 2f).  Notice
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also that the spatial segregation of species 1 and 2 is evident in the small values of the

cross-correlation between the species close to the origin (Fig. 2e).

Distance
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0
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0
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0 0.1 0.2

0
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0 0.1 0.2
0
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0 0.1 0.2
0

1

2

3

4

0 0.1 0.2

(d) (e) (f)

(a) (b) (c)

Figure 2 Examples of spatial correlation functions computed for the spatial patterns
in Fig. 1.  The graphs in the first row are the correlations at time 0: (a) auto-
correlation of species 1, (b) cross-correlation of species 1 and 2, (c)
autocorrelation of species 2.  Graphs (d), (e) and (f) in the second row are
the corresponding correlations at time 5.

The spatial patterns in Fig. 1 come from a single realization of the underlying

stochastic process.  If we ’reshake the dice’ and run the process again, the spatial
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patterns that emerge are different.  Repeated often enough, one can think of a

probability density function P(p) for the spatial pattern p(x) at time t, arising from the

stochastic process.  To extract the generic features of the stochastic process, one needs

the averages of the first and second moments across the ensemble of realizations, given

by

Ni = P p N p Dpi( ) ( )⋅∫      (6)

Cij ( )ξ = P p C p Dpij( ) ( , )⋅∫ ξ      (7)

where Dp means that the integration is over the space of functions p.  The purpose of

the next section is to give a dynamical system that describes the behaviour of these

moments (6) and (7) over time.

Before giving the dynamical system, a third spatial moment needs to be

introduced.  Eventually this will not be present in the dynamical system, but it appears

at an intermediate stage.  We define the third moment, for a spatial pattern p(x), as

T pijk ( , , )ξ ξ ′      =   [1

A
p xi⋅ ∫ ( )

( )⋅ + − ⋅p xj ij( ) ( )ξ δ δ ξ

( ) ]⋅ + ′ − ⋅ ′ − ⋅ − ′p x dxk ik jk( ) ( ) ( )ξ δ δ ξ δ δ ξ ξ   .       (8)

This is a natural extension of the second moment.  It is esentially the product of the

density of individuals of species i, times the density of individuals of j at location ξ

relative to i, times the density of individuals of k at location ′ξ  relative to i, averaged

across a region of area A.  The delta terms are introduced as before to remove spurious

products arising from self pairs.  The average of the third moment across the ensemble

of realizations of a stochastic process is given by

Tijk ( , )ξ ξ ′ = P p T p Dpijk( ) ( , , )⋅ ′∫ ξ ξ   .      (9)



12

A Dynamical System for the First and Second Moments

The method of moments attempts to describe the dynamics of the moments in

Eqs (6) and (7) as a system of differential equations.  The rates of change of the first

moments are readily obtained by differentiating Eqs (6) with respect to time, giving

d

dt
Ni    = ( ) ( ) ( )b d N b W d Wi i i ij ij

b

j
ij ij

d

j

− ⋅ + ⋅ − ⋅∑ ∑     (10)

where Wij
b( )    = w C dij

b
ij

( ) ( ) ( )′ ⋅ ′ ′∫ ξ ξ ξ

and Wij
d( )    = w C dij

d
ij

( ) ( ) ( )′ ⋅ ′ ′∫ ξ ξ ξ   .

While these equations may seem unfamiliar at first sight, the well-known Lotka-Volterra

equations are a limiting case as neighbourhood size is made large.  With Wij
b( )  and Wij

d( )

equal to N Ni j⋅ , Eqs (10) give

d

dt
Ni    = N b d b d Ni i i ij ij j

j

⋅ − + − ⋅








∑ ( )   .     (11)

Eqs (11) assume that each individual in the community experiences the same local

neighbourhood;  this is commonly refered to as the ’mean-field’ assumption, and is

equivalent to assuming the complete absence of spatial structure.  So the only new

feature about Eqs (10) is the neighbourhood dependence of birth and death rates

introduced in the integrals, and the dependence on the second moments that arises from

this.  The reason why the Lotka-Volterra equations emerge is that the birth and death

rates were made linearly dependent on neighbourhood in defining the stochastic process

above.

The dynamics of the second moments (7) can be thought of as keeping track of

the flux in pairs of individuals of species i and j (pair densities), where j is located at ξ

relative to i.  To account for all components of this flux is basically a matter of careful

bookkeeping but, because there are many terms, the right hand sides of the differential
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equations (12) below are correspondingly somewhat complex.  (In fact there are ten

types of event, for each type involving i, there being an equivalent event involving j.)

The flux of the second moment is obtained by differentiating Eqs (7) with respect

to time.  For clarity, we consider separately the contributions to the flux due to

movements (at times other than birth), deaths and births, and some correction terms that

keep track of self pairs:

d

dt
Cij ( )ξ = (Movements) + (Deaths) + (Births) + (Corrections)  .     (12)

Each term on the right hand side of Eqs (12) has a precise geometric meaning as a gain

or loss of a pair ij, where j is located at ξ  relative to i.  The geometry is shown in Fig. 3,

and it will help understanding to keep this geometry in mind when looking at the

components of Eqs (12) below.

Movement of individuals at times other than birth can both create pairs at ξ  and

cause them to disappear:

(Movements) =    + m C di ij( ) ( )′′ ⋅ + ′′ ′′∫ ξ ξ ξ ξ (12.1)

      + m C dj ji( ) ( )′′ ⋅ − + ′′ ′′∫ ξ ξ ξ ξ (12.2)

      - m Ci ij⋅ ( )ξ (12.3)

      - m Cj ji⋅ −( )ξ   . (12.4)

Terms (12.1) and (12.2) are positive contributions to Cij ( )ξ .  In (12.1) an individual of i

starts at a location such that j is at location ξ ξ+ ′′  relative to i and moves by an amount

′′ξ , so that j is located at ξ  relative to i after this movement;  the integration is needed

to deal with the full range of starting points ′′ξ . Expression (12.2) is the corresponding

term for species j.  The term (12.3) is a negative contribution to Cij ( )ξ  that comes about

from the loss of pairs at a distance ξ  when movement of an individual of species i
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occurs and j is located at ξ  relative to i before i moves;  the term mi  is the total

probability per unit time of movement ( )m m di i= ′′ ′′∫ ( )ξ ξ .  Expression (12.4) is the

corresponding term for species j.

Movement

Death

Birth

′ξ

ξ

(12.11)

′′ξ
t

′ξ

ξ

′′ξ
t

(12.12)

Density-
dependent

ξ

(12.9)

′′ξ

ξ

′′ξ

(12.10)

Density-
independent

ξ

(12.7)

′ξ
t

ξ

(12.8)

′ξ
t

Density-
dependent

ξ

(12.5)

ξ

(12.6)

Density-
independent

(12.1)

ξ

′′ξ

ξ

′′ξ

(12.2)

In

ξ

(12.3) ′′ξ

ξ

(12.4)

′′ξOut

ξ

Figure 3 Geometry of components of flux of the second spatial moment in Eqs (12).
At the top is a pair of individuals ij of species i and j, with j located at
distance ξ  relative to i;  this pair can be created or destroyed by the events
shown below in species i (first column) and j (second column).  Circles
represent individuals of species i, squares represent individuals of j, and
diamonds represent those of k;  arrows are the vectors ξ , ′ξ  and ′′ξ  used in
the text;  numbers denote terms on the right hand side of Eqs (12).  An open
symbol indicates a location at which an individual is no longer present once
the event has taken place.
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The death terms always cause pairs to be lost, but this can happen both in a

manner which is independent of the neighbourhood, and in a manner dependent on the

neighbourhood:

(Deaths) =     - d Ci ij⋅ ( )ξ (12.5)

       - d Cj ji⋅ −( )ξ (12.6)

       - d w T dik ik
d

ijk
k

⋅ ′ ⋅ ′ ′∫∑ ( ) ( ) ( , )ξ ξ ξ ξ (12.7)

       - d w T djk jk
d

jik
k

⋅ ′ ⋅ − ′ ′∫∑ ( ) ( ) ( , )ξ ξ ξ ξ   . (12.8)

The neighbourhood-independent terms (12.5) and (12.6) are straightforward, the ij pair

being destroyed either by the death of i or by death of j.  The neighbourhood-dependent

term (12.7) is more intricate because death is affected by a neighbour k of the ij pair.

For this the third spatial moment Tijk ( , )ξ ξ ′  is needed, in other words, the spatial density

of triplets, comprising: (1) i, (2) j at location ξ  relative to i, and (3) k at location ′ξ

relative to i.  The integral is needed to sum over all individuals of k in the

neighbourhood of i.  The term (12.8) is the corresponding neighbourhood-dependent

death term for species j.

The birth terms always bring new pairs into existence;  like the death terms,

births can occur in a manner independent of the neighbourhood, or dependent on the

neighbourhood:

(Births) =    + b m C di i
b

ij⋅ ′′ ⋅ + ′′ ′′∫ ( ) ( ) ( )ξ ξ ξ ξ             (12.9)

      + b m C dj j
b

ji⋅ ′′ ⋅ − + ′′ ′′∫ ( ) ( ) ( )ξ ξ ξ ξ           (12.10)

      + b w m T d dik ik
b

i
b

ijk
k

⋅ ′ ⋅ ′′ ⋅ + ′′ ′ ′′ ′∫∫∑ ( ) ( )( ) ( ) ( , )ξ ξ ξ ξ ξ ξ ξ        (12.11)

     + b w m T d djk jk
b

j
b

jik
k

⋅ ′ ⋅ ′′ ⋅ − + ′′ ′ ′′ ′∫∫∑ ( ) ( )( ) ( ) ( , )ξ ξ ξ ξ ξ ξ ξ .  (12.12)
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The complication in this case is that newborn individuals disperse.  In the case of

neighbourhood-independent births of i (12.9), we start with a parent of species i such

that j is located at ξ ξ+ ′′  relative to the parent;  the newborn individual of i moves to

location ′′ξ  relative to its parent, thereby forming a new pair such that j is located at ξ

relative to the newborn individual.  The integration accounts for all the positions of the i

parent from which this process could start.  Expression (12.10) is the equivalent

neighbourhood-independent birth term for species j.  The neighbourhood-dependent

term (12.11) has to allow for the effect of neighbours k on the births by the parent i and,

like the death term, this requires the third spatial moment, here Tijk ( , )ξ ξ ξ+ ′′ ′ .  The first

integral sums over all individuals k in the neighbourhood, and the second integral

accounts for all the movements of newborn individuals.  Term (12.12) is the

corresponding neighbourhood-dependent term of species j.

The remaining eight terms correct for effects that were omitted from the third

moment due to the elimination of self pairs:

(Corrections) =    - d w Cij ij
d

ij⋅ ⋅( ) ( ) ( )ξ ξ           (12.13)

      - d w Cji ji
d

ji⋅ − ⋅ −( ) ( ) ( )ξ ξ           (12.14)

      + δ ξij i
b

i im b N⋅ − ⋅ ⋅( ) ( )           (12.15)

      + δ ξji j
b

j jm b N⋅ ⋅ ⋅( ) ( )           (12.16)

      + δ ξ ξ ξ ξij i
b

ik ik
b

ik
k

m b w C d⋅ − ⋅ ⋅ ′ ⋅ ′ ′∫∑( ) ( )( ) ( ) ( )           (12.17)

      + δ ξ ξ ξ ξji j
b

jk jk
b

jk
k

m b w C d⋅ ⋅ ⋅ ′ ⋅ ′ ′∫∑( ) ( )( ) ( ) ( )           (12.18)

      + b w m C dij ij
b

i
b

ij⋅ + ′′ ⋅ ′′ ⋅ + ′′ ′′∫ ( ) ( )( ) ( ) ( )ξ ξ ξ ξ ξ ξ           (12.19)

      + b w m C dji ji
b

j
b

ji⋅ − + ′′ ⋅ ′′ ⋅ − + ′′ ′′∫ ( ) ( )( ) ( ) ( )ξ ξ ξ ξ ξ ξ   .            (12.20)
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Expression (12.13) is the contribution that j itself makes to the neighbourhood-

dependent death of i, and (12.14) is the corresponding term for species j.  The term

(12.15) adds in pairs that are created between a parent of i and its offspring, when the

newborn individual comes to be located at −ξ  relative to its parent, with (12.16) being

the corresponding term for species j.  There is also an effect of k on this birth event

given in (12.17) and (12.18).  Finally, expression (12.19) (respectively (12.20)) adds in

the the effect that j (respectively i) itself has on the neigbourhood dependence of births

in species i (respectively j).  This completes the right hand side for the dynamics of the

second moment.  We have in place a formal derivation for Eqs (10) and (12);  this is

somewhat technical and will be published elsewhere (Dieckmann and Law,

unpublished).

Notice that Eqs (10) and (12) do not yet constitute a closed dynamical system

because Eqs (12) contain terms (12.7), (12.8), (12.11) and (12.12) depending on the

third spatial moment.  The set of equations has to be closed by replacing the third

moment with an expression based on the first and second moments (Bolker and Pacala

1997).  The idea of a moment closure is not a familiar one in ecology, but it is implied

by ecological models such as Eqs (11) that ignore spatial structure and replace the

second moment in Eqs (10) by the product of two first moments.  Here we close the

hierarchy of moments at order two instead of at order one, replacing the third moments

in Eqs (12) by

Tijk ( , )ξ ξ ′ =
C C

N
ij ik

i

( ) ( )ξ ξ⋅ ′
  .    (13)

We have chosen this closure for several reasons.  It satisfies two checks on consistency,

(1) recovering the dynamics of the first moment as the distance between pairs becomes

large, and (2) recovering the dynamics of the first moment when the second moments

are replaced by the products of first moments (mean densities) and interaction

neighbourhoods are made large.  Other closures can be constructed that satisfy these

checks, but the dynamics using closure (13) fit much better to stochastic processes we

have investigated than do the dynamics using three other closures that we have also

studied.   Closure (13) is different from the one that would be obtained by assuming that
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the third central moment is zero:  the latter does not give a good fit when population

density becomes low.

Example

How good an approximation to the stochastic process is the dynamical system

Eqs (10) and (12)?  To answer this question, the population densities predicted by the

dynamical system can be put alongside some realizations of the stochastic process.

Here we examine the fit in the case of two competing plant species with parameter

values given in Table 1.  Notice that Eqs (12) are simplified by virtue of the

assumptions made earlier:  (1) that movements occur only at birth, and (2) that

neighbours affect only the probability of death.  These assumptions leave us with half

the number of terms on the right hand side of Eqs (12), namely, (12.5) to (12.10), and

(12.13) to (12.16).  We assume that, at time 0, individuals are randomly distributed in

the plane.

First consider the dynamical behaviour familiar from the Lotka-Volterra

competition Eqs (11);  these are in effect the mean-field dynamics predicted by the first

moments taken on their own.  Here spatial structure is not taken into account, and the

phase portrait suggests that species 1, the stronger competitor, should eliminate species

2 (Fig. 4a).

However, realizations of the stochastic process (Fig. 4b) show that the dynamics

predicted from Eqs (11) are incorrect:  it is elimination of species 1 that actually takes

place.  (Each line in Fig. 4b corresponds to a mean path, here an average of 20

realizations starting from the same initial conditions.)  The reason for the discrepancy

between Fig. 4a and 4b is that offspring in species 1 are less well dispersed than those in

species 2 and are less likely to escape from the neighbourhoods of their parents.  This

places species 1 at a disadvantage relative to species 2 which is large enough for

species 2 eventually to eliminate species 1.  The mean-field dynamics do not carry

information about the local neighbourhoods, and are qualitatively in error.
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Figure 4 Phase portraits showing the dynamics of two competing species using
parameters in Table 1.  At time 0, individuals are placed at random locations
in space;  the orbits are allowed to develop until time 100 from 16 starting
points.  (a) Assumes that there are no effects of space and uses Lotka-
Volterra dynamics, Eqs (11).  (b) Shows the mean path of the stochastic
process, here constructed from 20 realizations.  (c) Gives the dynamics after
coupling the first and second spatial moments using Eqs (10) and (12).
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The phase portrait using the coupled first and second moments (Fig. 4c) has

flows quite different from those of the first moment on its own.  There is now a close

match between the orbits and the mean paths of the stochastic process.  Evidently, by

coupling the dynamics of the first and second moments, we capture correctly important

effects of spatial structure.  (It should be borne in mind that the paths shown are

projections into the plane of population densities of orbits from a higher-dimensional

system incorporating the second moment, and this means it is quite possible for orbits to

cross one another in the plane of population densities.)

The coupled dynamics of first and second moments hold in place much more

information than just the spatial averages of population densities.  The system tracks the

shape of the spatial correlation functions over time, describing the patterns that

gradually emerge from local interactions and dispersal, in other words, how the spatial

structure of the community develops over time.  Major changes in spatial structure are

taking place, as the realization of the stochastic process in Fig. 1 has already

demonstrated.  Fig. 5 shows the information carried in the spatial correlation functions

corresponding to the snapshot at time five of the stochastic process in Fig. 1b.  Species

1, with auto-correlations greater than one near the origin is clumped in space.  Species

2, with auto-correlations less than one, is over-dispersed at short distances.  The cross-

correlations between the species are less than one at short distances, indicating

segregation of the species in space.  The shape of the functions in Fig. 5 can be

compared with the observed shapes in Fig. 2, although it should be understood that the

latter refer to a single realization whereas the former corresponds to a large ensemble of

realizations.

Time series for the second moments are given in Fig. 6 to illustrate their

dynamics;  these series run over a period of ten time units, and correspond to the

stochastic process on which Fig. 1 was based.  To display the second moments, we have

again made use of radial correlations.  Observe that the functions, which are initially

flat, rapidly build up structure at short distances.  There is a pronounced increase in the

auto-correlation of species 1 because of its limited dispersal, whereas the cross-

correlation decreases because of the tendency of species 1 to eliminate species 2 where

they occur in the same proximity.  There is also some decline in the auto-correlation of

species 2 at small distances.  These changes in the spatial structure feed through to the
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dynamics of the first moment, and change the intensity of competition within and

between species as time goes on.

The spatial correlation functions, being coupled to the first moments, have their

own effects on orbits of population density.  At the start, the absence of clumping of

species 1 leaves species 2 at a disadvantage, and orbits in Fig. 4c initially have the same

direction as the mean-field dynamics in Fig. 4a.  As clumping builds up in species 1,

species 2 gains an advantage over species 1, and starts to increase.  This spatial effect

gives rise to the curl near the start of some orbits in Fig. 4c, sometimes causing them

almost to reverse their direction as they turn towards extinction of species 1.
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Figure 5 Spatial correlation functions given by the dynamics of the first and second
spatial moments at time 5, for a system corresponding to Fig. 1.  (a) Auto-
correlation of species 1,  (b) cross-correlation of species 1 and 2, (c) auto-
correlation of species 2.  Only the positive orthant of ξ  is shown;  the three
other orthants have the same shape.
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Discussion

The principal message from the results above is that a dynamical system is now

available that captures the generic features of a community of interacting species, living

in a continuous space, with stochastic births, deaths and movements.  In conjunction

with work already in place (Bolker and Pacala1997, Pacala and Levin 1997, Bolker et

al. 1998), this establishes a firm, formally-derived link from spatially-extended,

individual-based, stochastic simulations, to macroscopic, deterministic, ecological

models.  It is evident from the example above that, when the dynamics of the second

moment are coupled to those of the first moment, basic effects of space on ecological

processes can be exposed.  Non-random spatial pattern in multispecies communities

emerges from local interactions and limited dispersal of individuals, and in turn feeds

back to affect these interactions.

Incorporating the dependence of the dynamical system on space brings

community theory a step closer to ecology in the field.  This applies particularly in the

context of plant ecology where the important processes often occur within small

neighbourhoods in spatially structured communities (Stoll and Weiner 1998), and there

are a number of other ecological contexts, such as population dynamics in spatially

structured landscapes (Dunning et al. 1995), in which this approach could also prove

useful.

Quite a lot can, of course, be learnt simply from running stochastic realizations

of spatially-extended, individual-based models, as Fig. 4b illustrates.  Such realizations

aid precise thinking about ecological processes (Pacala et al. 1996), can be useful tools

for management (Turner et al. 1995), and are needed in any event to test how good

deterministic approximations are, as we have done above.  Arguably though, more will

be learnt in the long run from deterministic approximations derived from the stochastic

processes, because it is likely to be easier to understand the generic properties of the

underlying stochastic processes from the deterministic models.  For instance, it should

be clearer what the asymptotic states are, whether these states are homogeneous in space

and time, whether there are multiple attractors, what their basin boundaries are, how

initial states (of both the first and second moments) determine which attractors are

reached, and so on.
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It will not come as a surprise that a coupled dynamical system of first and

second moments can have much more complex behaviour than systems just based on

the first moment – the equations are, after all, more intricate and contain parameters for

interactions and dispersal that are absent in simpler models.  We think it likely that a

large class of phenomena is waiting to be unearthed in these systems, even in the case of

single-species systems and that, as a result, some recasting of ecological theory may be

needed.  For instance, how plant species coexist has appeared to be a critical problem

from Gause's competitive exclusion principle (Silvertown and Law 1987);  this theory

has its roots in the Lotka-Volterra competition equations and assumes that mean-field

population dynamics apply.  But spatial clumping of individuals within species is a

common feature of natural plant communities (e.g. Pielou 1974, Mahdi and Law 1987),

and obviously reduces the importance of interspecific relative to intraspecific

competition (Law and Watkinson 1989, Rees et al. 1996, see also Atkinson and

Shorrocks 1981).  With ecological models in place that properly incorporate such spatial

structure, coexistence of species could turn out to be more readily achieved than

previously thought (Pacala 1997, Pacala and Levin 1997).

 Another phenomenon, unanticipated from non-spatial models, is that

community dynamics, at least in the early stages, may be determined by the initial

spatial structure.  A random initial pattern at first gives dynamics close to mean-field;  it

is only as spatial structure builds up that substantial divergence from these dynamics

can develop.  Consider, for instance, the experiment by Pacala and Silander (1990) on a

two-species mixture of annual weeds, initially distributed with a pattern close to

random, and designed to test for departures from mean-field dynamics over the course

of time;  the mean-field model gave a good fit to the data, rather as one would expect in

the early stages given the intial spatial structure.  The initial spatial pattern has

implications more generally in the design of plant competition experiments and

community microcosms (Firbank and Watkinson 1990, Naeem et al. 1994);  seeds of

plant species are often scattered roughly at random across some spatial region, and this

is likely to have its own effects on the outcome of competition in the short term.

Reliable insights into competitive interactions may entail running such experiments for

a number of generations, or setting the spatial structure close to its asymptotic state at

the start.  It is even possible, if there is more than one attractor, for different starting

patterns to move the initial state from one basin to another, leading to different
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asymptotic states.  Clearly, the role of initial spatial structure deserves more attention

than it has received.

Choice of a moment closure may seem a purely technical matter, but our

investigations suggest that it is critical.  Closures which are second order with respect to

the correlation functions (products of two correlation functions) appear to work best.

The second-order closure we have used (Eq. 13) gave a close match between the cross-

correlations observed in stochastic realizations and those predicted by the dynamical

system, and this close fit plays an important part in bringing about the match between

the phase portraits in Fig. 4b and 4c.  But there is still room for improvement in the fit

to the auto-correlations;  it can be seen from Fig. 4c that the dynamical system gives an

equilibrium density of species 2 after extinction of species 1 which is a little too high.

A first-order closure we investigated, equivalent to assuming that the third central

moment is zero (Bolker and Pacala 1997), became unstable at low population density.

A third-order closure gave a phase portrait which was qualitatively incorrect.  There are

no systematic ways at present of establishing what kind of closure would be appropriate,

and there is much that needs to be learnt about how best to close the hierarchy of

equations in spatial ecology.

It is important to appreciate that the method of moments can never be more than

an approximation to an underlying stochastic process, and there are circumstances in

which it is likely to fail.  If important properties of spatial structure lie in higher-order

moments, then a second-order closure of the hierarchy is obviously not adequate.  (It

ought to be relatively straightforward to establish how serious a problem this is from

analysis of multispecies spatial patterns collected in the field.)  In particular, the method

rests on the idea that the average neighourhood of an individual adequately characterises

the spatial structure.  If structure occurs at large spatial scales, so that individuals are

either in one type of environment or another, the average may not help understanding of

the dynamics.  Interestingly, we noticed quite large single-species patches developing in

our stochastic realizations;  the success of the method of moments in these systems

suggests that it could be quite robust, remaining reliable even if there are substantial

departures from the mean-field.  Another constraint is that births and deaths are

assumed to depend linearly on the density of neighbours;  it is this that is responsible for
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the close link to Lotka-Volterra dynamics.  But this assumption is not essential, and

could be removed by a Taylor approximation for small departures from linearity.

In sum, the method of moments needs to be used cautiously with due regard to

its limitations.  But dynamics based on the first and second spatial moments have the

potential to provide new insight into spatially structured systems.  We believe that, as

the basic core of theory is developed, the method of moments will lead to a much

improved understanding about processes in terrestrial populations and communities.
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