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The Adaptive Dynamics Network at
IIASA fosters the development of
new mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term im-
plications of adaptive processes in
systems of limited growth, the Adap-
tive Dynamics Network brings together
scientists and institutions from around
the world with IIASA acting as the
central node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability
to provide causal explanations for phenomena that are highly improbable in the
physicochemical sense. Yet, until recently, many facts in biology could not be
accounted for in the light of evolution. Just as physicists for a long time ignored
the presence of chaos, these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Ori-
gin of Species” sparked off the whole evolutionary revolution, oddly enough, the
population genetic framework underlying the modern synthesis holds no clues to spe-
ciation events. A second illustration is the more recently appreciated issue of jump
increases in biological complexity that result from the aggregation of individuals into
mutualistic wholes.
These and many more problems possess a common source: the interactions of
individuals are bound to change the environments these individuals live in. By closing
the feedback loop in the evolutionary explanation, a new mathematical theory of the
evolution of complex adaptive systems arises. It is this general theoretical option
that lies at the core of the emerging field of adaptive dynamics. In consequence a
major promise of adaptive dynamics studies is to elucidate the long-term effects of the
interactions between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary
both for validation and for management problems. For example, empirical evidence
indicates that to control pests and diseases or to achieve sustainable harvesting of
renewable resources evolutionary deliberation is already crucial on the time scale of
two decades.
The Adaptive Dynamics Network has as its primary objective the development of
mathematical tools for the analysis of adaptive systems inside and outside the biological
realm.
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Abstract

To distinguish continuous from discontinuous evolutionary change, a relation of
nearness between phenotypes is needed. Such a relation is based on the probability of
one phenotype being accessible from another through changes in the genotype. This
is exemplified by calculating the shape neighborhood of a tRNA secondary structure,
and provides a characterization of discontinuous shape transformations in RNA.
The simulation of replicating and mutating RNA populations under selection shows
that sudden adaptive progress coincides mostly, but not always, with discontinuous
shape transformations. The nature of these transformations illuminates the key role
of neutral genetic drift in their realization.

Keywords: evolutionary trajectories, neutral evolution, neutral networks, opti-
mization, RNA secondary structures, statistical topology
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Continuity in Evolution:

On the Nature of Transitions

Walter Fontana
Peter Schuster

A much debated issue in evolutionary biology concerns the extent to which the
history of life has proceeded gradually or has been punctuated by discontinuous
transitions at the level of phenotypes (1). Our goal is to make the notion of a
discontinuous transition more precise, and to understand how it arises in a model
of evolutionary adaptation.

We focus on the narrow domain of RNA secondary structure, which is currently
the simplest computationally tractable, yet realistic phenotype (2). This choice
enables the definition and exploration of concepts that may prove useful in a wider
context. RNA secondary structures represent a coarse level of analysis compared to
the three-dimensional structure at atomic resolution. Yet, secondary structures are
empirically well-defined and obtain their biophysical and biochemical significance
from being a scaffold for the tertiary structure. For the sake of brevity we shall
refer to secondary structures as “shapes”. RNA combines in a single molecule both
genotype (replicatable sequence) and phenotype (selectable shape), making it ideally
suited for in vitro evolution experiments (3, 4).

To generate evolutionary histories we use a stochastic continuous time model of
an RNA population replicating and mutating in a capacity constrained flow reactor
under selection (5, 6). In the laboratory a goal might be to find an RNA aptamer
binding specifically to a molecule (4). While in the experiment the evolutionary
end product is unknown, we think of its shape as being specified implicitly by the
imposed selection criterion. Since our intent is to study evolutionary histories rather
than end products, we define a target shape in advance, and assume the replication
rate of a sequence to be a function of the similarity between its shape and the target.
An actual situation may involve more than one best shape, but this does not affect
our conclusions.

Figure 1A shows an instance representing in its qualitative features all simula-
tions we performed. Starting with identical sequences folding into a random shape,
the simulation was stopped when the population became dominated by the target,
here a canonical tRNA shape. The black curve traces the average distance to the
target (inversely related to fitness) in the population against time. Aside from a
short initial phase, the entire history is dominated by steps, that is, flat periods of
no apparent adaptive progress, interrupted by sudden approaches towards the tar-
get structure (7). However, the dominant shapes in the population change not only
at these marked events, but undergo several fitness-neutral transformations during
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the periods of no apparent progress. While discontinuities in the fitness trace are
evident, it is entirely unclear when and on the basis of what the series of successive
phenotypes itself can be called continuous or discontinuous.

A set of entities is organized into a (topological) space by assigning to each entity
a system of neighborhoods. In the present case there are two kinds of entities:
sequences and shapes, which are related by a thermodynamic folding procedure.
The set of possible sequences (of fixed length) is naturally organized into a space,
because point mutations induce a canonical neighborhood. The neighborhood of
a sequence consists of all its one-error mutants. The problem is how to organize
the set of possible shapes into a space. The issue arises, because, in contrast to
sequences, there are no physical processes which directly (and inheritably) modify
shapes. Rather, transformations of a shape are a complicated consequence of changes
in its underlying sequence. To properly frame continuity in the spirit of topology,
we must understand how one shape can be considered to be “near” some other.
We may then call a temporal succession of sequence/shape pairs (an evolutionary
path) continuous, if successive sequences are neighbors in sequence space and their
corresponding shapes are neighbors in shape space. A topology is weaker than a
metric, since the relation of nearness does not quantify distance (or similarity). We
note this to emphasize that continuity does not hinge on the similarity of successive
shapes in time. We next define and explore an appropriate relation of nearness for
RNA shapes, and then return to the discussion of Figure 1.

For a shape β to succeed a shape α, β must obviously be accessible from α.
Accessibility means that a sequence whose shape is β arises by mutation from a
sequence whose shape is α. The issue of accessibility logically precedes any reasoning
about the fitness of β, although fitness will strongly influence the fate of the mutant
in a population under selection. We shall call a shape β “near” a shape α, if β
is very likely to be accessible from α. The issue, then, becomes one of estimating
the statistical frequency with which a mutation in α’s sequence yields the mutant
shape β. It is here that neutrality comes crucially into play (8). When a shape α
is realized by a large class of sequences, “nearness” of β to α comes to mean that β
must arise from α with a high probability when averaged over all sequences folding
into α. Only then is the neighborhood of α a robust property of α itself, independent
of a particular sequence.

This notion of neighborhood is illustrated by considering a tRNA-like shape of
length 76 (9) (inset Figure 2A). A sample of the many sequences folding into this
shape is obtained by an inverse folding procedure (10, 11). For every sequence in the
sample we compute all shapes realized by its 228 one-error mutants (the sequence
neighborhood). From this data we determine the fraction of sequence neighborhoods
in which a mutant shape appeared at least once. The totality of these mutant shapes,
irrespective of how often they occurred, is termed the (shape space) boundary of
the tRNA.

When rank-ordering the boundary shapes with decreasing frequency, we obtain
Figure 2A. The most salient feature is a marked change in the scaling exponent,
suggesting a natural cut-off point for the definition of neighborhood. In the present
case, the high frequency range comprises some 20 shapes, which we define to be near
the tRNA shape (12). These shapes constitute the characteristic set of the tRNA,
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Figure 1: (A) Simulation of an RNA population evolving towards a tRNA target shape
(inset of Figure 2A) in a flow reactor logistically constrained to a capacity of 1,000 se-
quences on average. The replication accuracy per position is 0.999. The replication rate
(=fitness) of a sequence whose shape is α is given by (0.01+d(α, tRNA)/l)−1, where l = 76
is the sequence length and d the distance between α and the target. Linear or exponential
functions did not affect the character of the dynamics. The initial population consisted
of 1,000 identical sequences folding into a random shape. The target was reached after
approximately 11 · 106 replications. The black trace shows the average structure distance
of the shapes in the population to the target. The chain of shape innovations linking
the initial shape to the target (evolutionary path) comprises 43 shapes. To each of these
corresponds one horizontal level placed above the black curve. The topmost (bottom)
level belongs to the initial (target) shape. For these levels only the time axis has a mean-
ing. At each level a series of red intervals represents the time periods during which the
corresponding shape was present in the population. The green step curve indicates the
transitions between shapes, and hence the time spent by each shape on the evolutionary
path. Each transition was caused by a single point mutation in the underlying sequences.
The vertical dotted lines and the labels mark transitions referred to in the text.
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Figure 1: (B) Enlargement of the evolutionary path around event (e) of part (A). The
transition indicated on the left (α to β) is continuous. This is seen by the fact that β is
present (intermittently) in the population well before becoming a link in the evolutionary
path (green trace). In other words, β’s presence is stochastically correlated with that of
α, because it is near α in shape space. The intersecting neighborhood disks (see Figure
3) illustrate schematically that the continuous transition from α to β stays within the
neighborhood of α. In contrast, the transition from β to γ is discontinuous, as seen by the
fact that γ’s presence does not correlate with β’s (mutants of sequences folding into β don’t
typically fold into γ). Here γ has a fitness advantage and almost immediately becomes the
next link in the evolutionary path. Note that β remains intermittently present after γ’s
takeover. This is because β is near γ, despite the fact that γ is not near β. The topological
relationship of nearness need not be symmetric.
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Figure 2: (A) Rank-ordered frequency distribution of shapes in the tRNA boundary.
A sample of 2,199 sequences whose minimum free energy secondary structure is a tRNA
clover-leaf (inset) was generated. All their one-error mutants (501,372 sequences) were
folded. 28% of the mutants retained the original structure (i.e. were neutral). The re-
maining 358,525 sequences realized 141,907 distinct shapes. The frequency f(α) is the
number of one-error neighborhoods in which α appeared at least once, divided by the
number of sequences in the sample. The log-log plot shows the rank of α versus f(α).
Rank n means the nth most frequent shape. The dotted line indicates a change in the
slope which we take to naturally delimit the high frequency domain (to the left) whose
shapes form the characteristic set of the tRNA.

that is, its most specific neighborhood. The topmost 12 shapes are listed in Figure
2B, and exhibit two properties we found to hold for all shapes whose neighborhoods
we studied. First, most shapes in the characteristic set of a shape α are highly
similar to α, typically differing in a stack size by single base pairs (13). Second,
some shapes, such as tRNA8 (the shape ranked 8th in Figure 2B), differ by the
loss of an entire stack. The latter finding illustrates that nearness does not imply
similarity. More importantly, it illustrates that nearness is not a symmetric relation.
In fact, the tRNA shape was not found in the characteristic set of the tRNA8, and
it did not even occur in its boundary sample. Not surprisingly, the destruction of a
structural element through a single point mutation is easier than its creation. While
the high frequency of the event is surprising, it is ultimately a consequence of the
average base pair composition of stacks and the markedly different stacking energies
of AU and GC base pairs (12).

The tRNA boundary has an intriguing property. Intersections with large samples
of coarse grained random shapes of the same length support the conjecture that all
common coarse grained shapes occur in the boundary of any common shape (9, 14).
This conjecture was verified in the case of the exhaustively folded binary (GC-only)
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Figure 2: (B) lists the 12 highest ranked shapes (left to right, top to bottom) in the
characteristic set.

sequence space of length 25.
We may visualize the neighborhood structure (the topology) on the set of all

shapes as a directed graph. Each shape is represented by a node. Directed edges
fan out from a node α to the nodes in its characteristic set. We can think of
a continuous transformation of shape α into shape β as a connected path in the
graph which follows the direction of the edges. Discontinuous transformations are
transitions between disconnected components of the graph.

The preceding data enable us to characterize continuous transformations as those
structural rearrangements which fine tune a shape architecture in a sequential fash-
ion by lengthening or shortening stacks, or which destroy a stack element and the
loop implied by it (Figure 3). Discontinuous transformations are characterized by
the two remaining possible structural changes: (i) the creation of a long stack in
a single step, and (ii) generalized shifts (Figure 3). For example, one strand of a
stacked region slides past the other by a few positions (simple shift). Notice here that
structural similarity does not imply nearness. Both types of discontinuous transfor-
mations require the synchronous participation of several bases (or base pairs) in a
fashion that cannot be sequentialized on thermodynamic grounds (15).

A pertinent issue is whether the folding map from sequences to shapes is con-
tinuous in our topology, that is, whether the shapes realized in the sequence neigh-
borhood of a particular sequence folding into α are in the neighborhood of α. It
turns out that the folding map is almost nowhere continuous. Many of the fre-
quent shapes assumed by the one-error mutants of a sequence folding into α are
not members of the characteristic set of α, and those who are don’t always occur
with high frequency. Each sequence folding into α has, therefore, its own specific
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Figure 3: The strings illustrate transformations between RNA secondary structure parts. Solid (dashed) arrows
indicate continuous (discontinuous) transformations in our topology. Three groups of transformations are shown.
Top: the loss and formation of a base pair adjacent to a stack are both continuous. Middle: the opening of a
constrained stack (e.g. closing a multiloop) is continuous, while its creation is discontinous. This reflects the fact
that the formation of a long helix between two unpaired random segments upon mutation of a single position is a
highly improbable event, whereas the unzipping of a random helix is likely to occur as soon as a mutation blocks
one of its base pairs. Bottom: generalized shifts are discontinuous transformations in which one or both strands of
a helix shift ending up with or without an overlap. Accordingly, we partition generalized shifts into the four classes
shown. The intersecting disks are a schematic representation of continuous and discontinuous transitions between
two shapes α and β. The disk with center α (β) stands for the set of shapes that are near α (β). If β is a member
of α’s disk (neighborhood), a transition from α to β is continuous (solid arrow). A discontinuous transition leaves
the neighborhood of α (dashed arrow). Note that even if α and β are highly dissimilar, α might nontheless be
transformed continuously into β through intermediate shapes whose neighborhoods have sufficient overlap.
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set of accessible shapes. Yet, the local peculiarities disappear and a shape-specific
neighborhood obtains when averaging over a sufficiently large sample of sequences
folding into α.

Equipped with this fitness-independent notion of (dis)continuous shape trans-
formations, we resume the discussion of Figure 1. To obtain an evolutionary path
in shape space we record during a simulation all mutation events that produce
a new shape. New means here that the shape is not present in the population
at the time it is produced, although it may have been present in the past. For
each shape ever seen we obtain a series of presence intervals delimited by the
shape’s entrance and exit times in the population. We define an evolutionary path,
αnαn−1αn−2 · · ·αi+1αi · · ·α1α0, retrospectively by searching in the history log for the
shape αn−1 which first gave rise to the target shape αn, next obtaining the shape
αn−2 which started that presence interval of αn−1 during which αn was produced,
and so on until an initial shape α0 is reached. This backtrack reconstructs the
unique uninterrupted chain of shape innovations which led from an initial shape to
the evolutionary end product. Note that this chain is neither defined with regard to
fitness nor with regard to the frequency of a shape in the population (16). The path
is continuous at the ith succession, if the sequences underlying the ith shape inno-
vation differ by a single point mutation (which they typically do at high replication
accuracy), and if shape αi+1 is near αi in the sense defined above.

The evolutionary path (green trace) of Figure 1A comprises 43 shapes (not
shown). Their presence intervals during the entire history are shown in red, one
horizontal level for each shape. The patterns of presence intervals confirm and nicely
visualize the nearness relation just developed. When a shape α is succeeded by a
shape β that is near α, β is present intermittently in the population well prior to be-
coming part of the path (Figure 1B). That is, once α is present, β is unavoidable, and
a transition to β is continuous. Conversely, at a discontinuous transition, when α is
succeeded by a shape β that is not near α, β has almost always its first ever appear-
ance just prior to that transition (Figure 1B). Seen together, the presence intervals
of successive shapes on the path form blocks of continuous (within-neighborhood)
transitions, separated by discontinuous transitions (neighborhood escapes).

In all computer simulations we observed a few basic patterns of events which
combine to form particular histories. When starting with a random shape, there
is a short initial phase of a few discontinuous transitions rapidly decreasing the
distance to the target. This is understood by noting that many modifications of
a random shape increase its similarity to a (random) target, and by recalling that
such modifications are accessible in the local neighborhood of any random sequence
(discontinuity of the folding map). Both properties effectively establish a funnel in
shape space enabling fast relaxation to a level of similarity beyond which adaptation
becomes harder. Then the character of evolutionary dynamics changes.

In the second phase, the population level (as monitored by distance to target)
is entirely dominated by punctuation events. The point is that these events do
mostly, but not always, line up with discontinuous transitions on the evolutionary
path. In Figure 1A, events (a) and (b) are rapid (17) successions of continuous
transitions shortening and elongating stacks by single base pairs. This shows that
sudden changes in fitness do not imply discontinuous phenotypic transformations.
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The reverse isn’t true either, as shown by the discontinuous shift event (c) which is
silent in terms of fitness. All remaining fitness changes do, however, coincide with
discontinuous transitions in shape space. These are the simple shift events (e), (g),
(h), (i), the double flip (d), and the flip (f) (18). Interestingly, an ancestral shape
which has been on the path in the distant past is reoccurring (but not on the path)
several discontinuous transitions thereafter (events (j) in Figure 1A), arising by a
single point mutation from shapes currently on the path. This is a molecular version
of atavism.

Given its nature, a discontinuous transformation can be triggered by a single
point mutation only if the rest of the sequence provides the appropriate context.
Such sequences are severely constrained and hence rare. When a phenotype is
under strong selection, neutral drift is the only means for producing the required
genotypic context (6, 19). This is why discontinuous transitions are preceded by
extended periods of neutral drift in Figure 1A.

The concept of evolutionary continuity cannot be separated from an understand-
ing of the relationship between genotype and phenotype. It is indeed defined by it.
A necessary step towards formalizing the concept of punctuated equilibrium is the
study of the fitness-independent topological structure of phenotype space induced
by the genotype-phenotype map. In a final analysis punctuation may turn out to
be a phenomenon intrinsic to an evolving entity, and less dependent on external
contingencies than hitherto assumed.
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