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Abstract

The paper describes how stochastic optimization techniques can be used to model profit
maximizing producer behaviour in a spatial continuum. The main methodological issues
to be addressed are, first, that the representation of optimal allocations in a spatial
continuum naturally leads to models that contain integrals over space, and the second that
the resulting model tends to have a multi-level structure, i.e. requires solving nested
optimization problems because it should combine the profit maximization by individual
producers with market clearing at regional level. We specify four regional models that
may illustrate the approach. The first determines the optimal output level for factories that
emit pollutants which reduce the crop output of neighboring farmers. The main issue is to
compute the associated level of compensation to be paid by the factories to the farmers.
The second model deals with optimal zoning. It computes the optimal crop routing for
farmers who can choose to sell their crop to factories situated at given locations. This is
an optimization problem in functional space, which can be reformulated as a dual
stochastic optimization problem. In the third model, the farmer has the possibility of
routing his crop along different roads or distribution nodes to the various factories for
processing. It can describe the optimal choice of distribution centres at given locations,
around plants or cities, and produces optimal boundaries for the zones that supply to or
buy from these centres. The fourth model deals with the problem optimal land
consolidation, distinguishes between consolidation processes with and without side-
payments. To each of these four models we associate a decentralised, stochastic quasi-
gradient (SQG-)procedure for attaining the (global) optimum, which has a natural
interpretation as a device for decentralized adaptive planning.
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Modelling producer decisions on land use in a spatial continuum

Michiel Keyzer and Yuri Ermoliev1

1. Introduction

The growing concern about environmental and social sustainability of current land-utilization

and land-cover patterns has led to a revival of interest in problems of optimal spatial allocation. So

far, the wealth of geographical data on climate, soils, land cover and groundwater flows that

increasingly become available through remote sensing, has mainly been incorporated in Geographical

Information Systems, which can produce highly detailed maps but so far contain only few and very

simple decision support tools to optimize over a spatial continuum. As a rule, the geographically

explicit decision models either describe a separate optimal decision at every point on the map without

accounting for spatial interdependencies, or limit themselves to optimization over a relatively small

number of regional units, severely at the expense of geographical detail.

The optimization over a spatial continuum has been studied in location theory, in connection with the

problem of optimal facility location. This problem usually amounts to finding the geographical location

of an industrial facility that minimizes the cost of transporting goods to that location from a

surrounding region or vice versa. The early location models are classical transportation models and

only select the best out of a finite number of alternatives and treat the region as a finite number of

fields identified by their barycentre (see e.g. Beck and Goodin, 1982, for an application to dairy

farms). Subsequent location/pricing models treat the site as a continuous choice variable and

simultaneously calculate the consumer price at every point in the region on the basis of the distance

from the facility (Hansen et al., 1987, and Drezner, 1995, for a survey).

However, the question of optimal land use requires a broader treatment. It calls for an explicit spatial

representation of land use itself, with land being allocated to competing uses so as to maximize, say,

the total revenue in the region, as opposed to the cost minimization of the location/pricing models.

Consequently, from a modeling point of view new methodological challenges must be addressed. The

first issue is that the representation of optimal allocations in a spatial continuum naturally leads to

models that contain integrals over space, which in general cannot be eliminated analytically, in view

of the variability in the underlying GIS-information. The second issue is that the resulting model,

which combines optimal routing and profit maximizing decisions by individual producers, with market

clearing at regional level, tends to have a multi-level structure, i.e. requires solving nested optimization

problems.

1The first author is affiliated with the Centre for World Food Studies, Vrije Universiteit Amsterdam, the second
author with the International Institute for Applied Systems Analysis, Laxenburg, Austria, and the Academy of Sciences
of the Ukraine.
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The aim of this paper is to show that stochastic optimization techniques allow to address both issues.

We specify four regional models in which profit maximizing producers are operating within a spatial

continuum and compete on land and commodity markets. To every model we associate a decentralised,

stochastic quasi-gradient (SQG-)procedure for attaining the (global) optimum (see Ermoliev, 1988).

Since in this paper we are more interested in such algorithms as practical devices for decentralized

adaptive planning than as efficient tools for computations, we focus on interpretation and only refer

in passing to operational issues such as the efficient choice of step-size, or the speed of convergence.

The paper proceeds as follows. In section 2 we describe by means of simple examples how stochastic

optimization models can be used for planning problems in the spatial continuum. Next, we deal with

applications of increasing complexity. First, in section 3, we study a model that determines the optimal

output level for factories that emit pollutants which spread over the neighbouring environment, and

reduce the crop output of local farmers. The main issue is to compute the associated level of

compensation to be paid by the factories to the farmers. The technical difficulty is to deal with an

integral in the objective of a convex program. Our second problem (section 4) deals with optimal

zoning. It computes the optimal crop routing for farmers who can choose to sell their crop to factories

situated at given locations. We indicate that this zoning aspect generates an optimization problem in

functional space, which can be reformulated as a dual stochastic optimization problem. The model of

section 5 enables the farmer to route his crop along different roads or distribution nodes to the various

factories. This model can describe the optimal choice of distribution centres at given locations, around

plants or cities, and produces optimal boundaries for the zones that supply to or buy from these

centres. Next, we reinterpret this model as a planning tool for optimal land consolidation and describe

how the solution path generated by the SQG-algorithm can interpreted as a sequence of land

transactions with side-payments, that eventually converges to the optimum. However, in many practical

situations it will be unrealistic to suppose that such side payments can be mobilized, because individual

farmers are often reluctant to participate in land transactions if their farm becomes less profitable in

the process. To deal with this case, we formulate an alternative model that maximizes the revenue

without side payments of the least favoured. Section 6 concludes.

2. Solving spatial planning problems by stochastic optimization

To illustrate the difficulties that arise when modeling the decisions in a spatial continuum, let us

consider some typical examples. The calculation of the barycentre of given geographic region is a well

known case. One might think of the possibly dispersed farmland whose "centre" has to be determined,

say, in order to serve as the collection point for the harvest. Let X denote the region and A⊆X the (not

necessarily connected) land of a given farmer. The barycentre of A can now be calculated by

minimizing

F(h) = ∫A x−h 2 dx (2.1)

where is the Euclidean distance, which is equivalent to the stochastic optimization problem of

minimizing the expectation function F(h) =∫A x−h 2 dG(x), where G(x) = x /∫A dx is a probability

measure. This is an important point, as it connects spatial planning problem to stochastic optimization.
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The solution2 h* = ∫A x dx/∫A dx can be computed by discretization, numerical integration, either

directly, or via sequential Monte Carlo simulation. Discretization is common in GIS-packages. It

approximates (2.1) by a grid of N points xj, and computes the barycentre as the average coordinate,

h = Σ
j
xj/N. Sequential Monte Carlo simulation proceeds as follows. Sample at iteration t = 1, 2, ...

a point x(t) at random and independently, such that Prob.[xt∈A] = ∫A dx/∫A dx, and define the

approximate solutions

h(t+1) = h(t) −ρt (h(t)−x(t)), t = 1, 2, ... (2.2)

Notice that (2.2) is actually an SQG-algorithm, since 2(h(t)−x(t)) is the gradient of the random

(sample) function under the sign of the integral in (2.1). If the stepsizeρt satisfies:

ρt ≥ 0, ∑∞
t =1 ρt = ∞, ∑∞

t =1 ρ2
t < ∞, (2.3)

then the sequence {h(t)} will converge to h*. This requirement will be met forρt = 1/t, which

corresponds to the sample mean calculation:

h(t) = 1/t ∑ t
k=1 x(k).

(2.4)

The advantage of (2.2) as opposed to (2.4) is that it does not require to store a large bundle of

information, since in (2.2) the estimation of h* proceeds sequentially, with a simple updating rule after

each new observation. Procedure (2.2) is actually an SQG-algorithm for minimizing the integral (2.1).

However, the squared Euclidean distance will in general not be the appropriate criterion for the profit

maximizing producer, who is interested in, say, minimization of average distance itself rather than

average squared distance. Moreover, it allows for infinitely many routes from point x to the variable

"home" h*. It seems more realistic to treat this home or market outlet as fixed (let this be point b for

base) and the farmer to choose the shortest (or cheapest) route, by searching for collection points hi,

i = 1, ..., r.

The associated zoning pattern defined by a function i(x) which indicates that point i attracts x: i(x) =

argmini x−hi + hi−b . This function can be shown in a GIS zone-map. Other "statistics" could

include, for example, the total cost

z0 = ∫A mini [ x−hi + hi−b ] dG(x), (2.5)

where G(x) might reflect the demand for transport i.e. the crop output at point x) and the traffic on

the various roads:

zi = ∫A δi(x) dG(x), i = 1, ..., r

2 Calculation is coordinate-wise: h1 = ∫A (x1, 0) dx / ∫A (1, 0) dx (1.2)
h2 = ∫A (0, x2) dx / ∫A (0, 1) dx.
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where δi(x) = 1 if i(x) = i and 0 otherwise. These values z0, z1, ..., zr can be estimated by

discretization but also as minimizers of

F(z) = (z0 − ∫A mini [ x−hi + hi−b ] dG(x))2 + ∑i (zi − ∫A δi(x) dG(x))2. (2.6)

The associated SQG-procedure, which is similar to (2.2), will sequentially process a large amount of

information and with probability 1 yield a consistent estimate of z. The examples discussed can all be

dealt with relatively easily by alternative discretization methods, because their first-order optimality

conditions yield an explicit solution for the unknown parameters q. We now turn to models that do

not possess this special property.

3. Optimal land use in the presence of pollution

We consider industrial plants whose pollution negatively affects neighbouring land users. If

the emissions consisted only of pollutants such as CO2-gases that tend to dissipate quickly into the

atmosphere, the analysis could focus on reduction of aggregate emissions, and there would be no need

for a locational study. However, most emissions have definite local component whose cumulative

effects depend on location specific factors such as soil type, hill slope, crop coverage and

climatological factors.

The spreading of cumulative emissions of a given pollutant is naturally represented via two-

dimensional density functions. These are defined over the geographical region under consideration and

measure the incidence (fraction) of pollutant emitted by a factory located at given site that depositions

at every point in the region. The factory might be a chemical plant or an intensive livestock farm. The

decision problem is to confront every factory with the land users in its neighbourhood (actually in its

environment) who suffer from the emissions, i.e. to maximize total income or welfare of the region

while internalizing the environmental effects, and this naturally leads optimization over a spatial

continuum. Polluters will pay compensation to the land users. This will affect their profitability, and

size of operation at every site, as well as the revenues and cropping patterns of the land users around

them.

Model formulation

The model is specified as follows. We denote the given geographical space of region by the

set X⊂R2
+ and consider S fixed factory sites indexed s, located at bs ∈ X. A factory at site s makes

use of an emission permit for a quantity qs
k of pollutant k, for k = 1, ..., K. This use of permits is taken

to increase its revenue Rs(qs) from the factory like an ordinary input; formally:

Assumption R (Revenue function of factory at fixed site s): For every site s, the revenue function

R:RK
+→R, Rs(qs) is increasing, continuously differentiable with respect to qs, with uniformly bounded

derivative, and strictly concave in the input qs.
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The emissions are dispersed around the factory by various physical processes such as winds and

groundwater flows. Let the density functionψs
k(x), defined over X describe the dispersal of emissions

according to ck(x) = Σs qs
kψs

k(x), the incidence of pollutant k at location x, where x is a two- or three-

dimensional vector. This reduces environmental quality at point x, leaving less natural inputs g(x) =

ω(x) - c(x) for crops, whereω is the given resource availability, and the revenue from crop farming

at location x will be affected. The local revenue function r(g, x), for which satisfies:

Assumption r (revenue function of farm at point x in region X): the revenue function r:RK×X→R,

r(g, x) is integrable in x and, almost everywhere on X, continuously differentiable w.r.t. the input g,

with uniformly bounded derivative, and strictly concave in g.

In assumptions R and r, the requirement of continuous differentiability can be relaxed, but it will be

seen to offer the advantage of ensuring uniqueness of the market clearing prices. The concavity implies

that there is no possibility of polluting without further damage an already fully spoiled area. Allowing

for increasing returns in pollution would undermine concavity. Yet the formulation allows to consider

wasteland whose revenue does not dependent on pollution. Concavity is taken to be strict to keep the

optimal q* unique. Finally, in assumption r, integrability in x is obviously necessary for integral

calculations, while uniform boundedness of the derivative to q is a requirement of the SQG-procedure

itself, which could be relaxed but is maintained for simplicity. Below we will comment on the

qualification "almost everywhere".

The problem is now to define the optimal production levels, while maximizing the revenue in the

region and to determine the compensatory payments of the factories to the other users of

environmental resources. The revenue maximizing regional model is:

max Σs Rs(qs) + ∫ r(g(x), x) dG(x)

qs ≥ 0, all s, g(x)≥ 0, all x

subject to (3.1)

gk(x) + Σs qs
kψs

k(x) ≤ ω(x), for k = 1, ..., K, all x,

where G(x) is a distribution on the domain X, and the symbols under the maximization denote choice

variables. This is a convex program, since the objective is concave and the constraint set linear. It has

an infinite number of constraints. Let us briefly characterize the solution of this problem. We assume

that g(q, x) is everywhere on X positive in the optimum. Since Rs(qs) is increasing in qs and the

density is nonnegative, the constraint holds with an equality and we can define gk(q, x) = ω(x) − Σs

qs
kψs

k(x), and the resulting first-order conditions are:

∂Rs(qs)/∂qs
k = − ∫ (∂r(g(q, x), x)/∂gk) ψs

k(x) dG(x), if qs
k > 0. (3.2)

Proposition 1(Compensation payments by polluters): Under assumption R and r, the regional revenue

maximization (3.1) implies that

(1) every factory s pays a total transferΣk ∂Rs(qs)/∂qs
k qs

k to farmers;
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(2) every spot x receivesΣk ∂r(g(q, x), x)/∂gk ψs
k(x) qs

k.

Proof. This follows directly from first-order optimality conditions.

From this proposition follows that the receipts of a crop farmer from factory s will increase with (i)

the emission qsk, (ii) the dispersion densityψs
k(x) to location x, and (iii) the marginal damage∂r(g,

x)/∂gk at location x. Conversely, factory s will have to restrict its emissions (and possibly even close

down) if its pollution dissipates to locations x where the damage is important, either because the

location itself is vulnerable or because other factories can pollute it less harmfully (i.e. can obtain more

revenue from a marginal unit of pollution qs
k. Therefore, the model can be interpreted as a location

model, even though location bs is fixed.

Solution procedure

The model can be solved by an SQG-process. Define the function

f(q, x) = Σs Rs(qs) + r(ω(x)−Σs qs
kψs

k(x)g(x), x), (3.3)

and gradient

∂f(q, x)/∂qs
k = ∂Rs(qs)/∂qs

k + ∂r(g, x)/∂gk) ψs
k(x). (3.4)

The spatial optimization problem (3.1) is now to maximize

F(q) = ∫ f(q, x) dG(x), (3.5)

on the compact convex set Q, which is taken to be specified as Q = {q 0≤ q ≤ q}. The SQG-

algorithm considers a sequence of random drawings x(t) from the set X and starting from a given q(1)

= q1 ∈ Q, adjusts q(t) according to:

q(t+1) = ΠQ(q(t) + ρt ∂f(q(t), x(t))/∂q), t = 1, 2, ... (3.6)

whereΠQ is the projection operator on Q (i.e. the point in Q nearest to the projected point), and the

scalar step-sizeρt converges to zero according to some appropriate step-size rule. From the general

results on the convergence of SQG-methods follows that if f(q, x) is differentiable and concave in q,

almost everywhere on G(x), then process (3.6) converges, with probability 1, to the optimal solution

of (3.5), for stepsizeρt chosen as in (2.3).

As an alternative to the SQG-method one might consider using deterministic techniques after having

approximated the function F(q) by its sample mean:

FN(q) = 1/N ∑N
k=1 f(q, x(k)) (3.7)
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where x(k) are independent samples from G(x). However, for most of the models discussed in this

paper the value N would have to be extremely large, and this would require a large number of terms

f(q, x(k)), which might, moreover, be highly non-smooth and not available explicitly. For the SQG-

procedure (3.6), the convergence principle can be understood as follows. Since the direction∂f(qt,

xt)/∂q) coincides "on average" with the gradient∂F(q)/∂q, i.e.

∫∂f(q(t), x(t))/∂q) dx = ∂∫[f(q(t), x) dx]/∂q, (3.8)

on average the value F(q) increases from one iteration to the next, and for a step-size moving to zero

at appropriate speed, the sequence {q(t)} generated by adjustment rule (2.2) will converge to the

optimal solution. In fact this rule can be viewed as a stochastic decentralisation procedure. It has an

"evolutionary" interpretation as a decentralised learning process. Once a point xt has been selected by

at random within the region (the mutation), the vector q(t)∈ Q gradually changes its composition (the

selection) so as to improve performance (survival). Whereas a deterministic gradient method would

use the gradient∫ ∂f(q(t), x)/∂q) dG(x) and thus assume the distribution G(x) to be known to the

planner, this SQG-adjustment only improves fitness from the perspective of the randomly chosen point

x(t), without any use of information on the distribution or on the value F at any other point x. Thus,

the process is perfectly decentralised and derives its coordination (optimality of allocations) from the

infinite repetition of events and a relatively "naive" adjustment to current pressure as expressed

through the quasi-gradient. And, while the single point has a negligible influence on the final outcome,

the optimal solution is eventually determined by the shape of the distribution G(x), jointly with the

function f(q, x) and the set Q.

Let us now return to the qualification, "almost everywhere" in conjunction with the "integrability in

x" of Assumption r. Both are significant relaxations of the usual demands that differentiability and

concavity properties should apply everywhere on the domain. This is important in a spatial context,

as they allows for the representation of natural discontinuities due to, say, rivers or roads. Technically,

the role of this qualification is expressed in the following simple lemma:

Lemma 1 (Mean value)Consider the distribution G(x) and the function f: Q×X, f(q, x), which is

integrable w.r.t. x. If, almost everywhere (the points where this does not hold have measure zero), f(q,

x) is concave w.r.t. q then F(q) =∫ f(q, x) dG(x) is concave on Q.

Proof. Choose two arbitrary points q1 and q2 from Q and consider an arbitrary convex combination

q3 = λq1 (1−λ)q2, for anyλ ∈ [0,1]. Then, by concavity w.r.t. q,λ v(q1, x) + (1−λ) v(q2, x) ≤ v(q3,

x) almost everywhere on G(x). Therefore,λ ∫f(q1, x)dG(x) + (1−λ) ∫f(q2, x)dG(x)≤ ∫ f(q3, x)dG(x) and

F(q) is concave on Q.

The representation in a continuum has special attraction for spatial problems because, once an optimal

value q* has been estimated, GIS-tools allow to produce, say, an "altitude" map of the farm revenues

r(ω(x)−Σs qs
k*ψs

k(x), x). Furthermore, once problem (3.5) has been solved, the results can be compared

in a spatially explicit manner with those without compensation where the permits have zero price and

the factories maximize Rs(qs), while the land-users are confronted with given pollution levels.
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4. Zoning problem

The problem of assigning land to factories located at given sites is known as zoning. Instead

of describing a physical flow of pollutants from a point s to a surface, the zoning problem assigns

surfaces to given locations. Assume that farm output is carried from the fields to the collection point,

which might be a factory, but also a city and even the farmer’s homestead. Every field is assumed to

grow the most profitable crop (combination) at every spot and the harvest is carried to a central site

to be chosen so as to yield the highest revenue after accounting for transportation costs. Thus, fields

are optimally associated to sites.

Model formulation

The variable q of model (3.1) will, as before, be the input into the factory and will now represent a

physical flow ysk(x) of harvested crop k from point x to site s, located, say, at point bs. The model will,

as in (3.1) have an integral in its objective but, in addition, the objective will contain the spot-specific

endogenous variable ys
k(x). This introduces the difficulty that the exogenously given density function

should be replaced by an endogenous routing decision. Transportation costs are denoted by ws
k(x) a

function that should be integrable on G(x).

Transportation costs might be a function of the Euclidean distance between x and bs. The formulation

could easily be generalized to account for possible asymmetry in transportation costs (up-hill/down-

hill), but here we disregard this aspect for convenience. Let qs now denote the aggregate flow of crop

output to point bs, to be used as input by the factory, and let the revenue function Rs(qs) satisfy

Assumption R. We write r(-Σsy
s(x), x) for the associated land revenue function (that transforms crop

output into revenue), which satisfies Assumption r. Finally, let ps
k denote the purchasing price that

clears the commodity market k at site s, whose balance reads:

qs
k − ∫ ys

k(x) dG(x) ≤ 0, all k and s. (4.1)

To represent this model formally, we proceed in the way that is usual in location analysis and replace

the unknown supply function ysk(x) by a well specified function of prices, as follows. For a given value

ps define the profit functions:

Πs(ps) = max qs≥0 (Rs(qs) − Σk ps
kq

s
k), all s (4.2a)

which is convex non-increasing in input price ps. For spot x, the profit from routing the crop to site

s, is:

πs(ps−ws(x), x) = maxys(x)≥0 Σk (ps
k−ws

k(x))ys
k(x) + r(−ys, x), (4.2b)

which is convex nondecreasing in output price (ps−ws(x)). Competitive market prices ps solve the
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master problem:3

min ps≥0, all s Σs Πs(ps) + ∫ maxs πs(ps−ws(x), x) dG(x). (4.3)

Continuous differentiability in Assumption r implies strict convexity in p of this objective (see

Ginsburgh and Keyzer (1997), ch. 2), while strict concavity in assumption R ensures continuous

differentiability of Πs(ps). Hence, by Hotelling’s lemma, optimal inputs qs satisfy

qs = −∂Πs(ps)/∂ps. (4.4)

while, almost everywhere on X,πs(ps−ws(x), x) is continuously differentiable, and outputs ys are given

by:

ys(x) = δs(x) ∂πs(ps−ws(x), x)/∂ps, (4.5)

whereδs(x) = 1 if routing to s yields maximal profit, and 0 otherwise. Notice that by construction, the

routing will be the same for all commodities produced at point x. Finally, the first-order optimality

conditions of (4.3) ensure satisfaction of the commodity balances:

∫ ys(x) dG(x) = qs. (4.6)

We notice also that by the conjugate function theorem, the problem in quantity terms dual to (4.3) is:

max Σs Rs(qs) + ∫(r(-Σs ys(x), x) - ΣsΣk ws
k(x)ys

k(x)) dG(x)

qs ≥ 0, ys
k(x) ≥ 0 all k, s, all x

subject to (4.7)

qs
k − ∫ ys

k(x) dG(x) ≤ 0, all k and s

which is a problem in functional space.

Solution procedure

Let us now turn to the solution procedure for model (4.3). The problem is to minimize

V(p) = ∫ v(p, x) dG(x) (4.8)

on a compact convex price set = {0 < p≤ p ≤ p}, for v(p, x) = Σs Πs(ps) + maxs πs(ps−ws(x), x).

Due to the maxs-operator, the function v(p, x) is non-smooth but under assumption r, it is almost

3Although model (4.3) only deals with farm output, it is relatively straightforward to account for inputs, by
extending the profit function toΠs(ps, ps) andπ(ps−vs(x−xs), ps+vs(x−xs), x) and requiring it to be, almost everywhere
on X, jointly convex in the first two arguments, increasing in output and decreasing in inputs, and continuously
differentiable in x.
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everywhere on X, convex in ps and any stationary point is a global optimum.

The solution procedure can be cast into an SQG-form for (decentralized) price adjustments. At step

t = 1, 2, ..., the change of prices from p(t) to p(t+1) is initiated by the random choice of a location x(t)

from the distribution G(x). This changes decreases the aggregate profit function v(p, x) =Σs Πs(ps)

+ maxs πs(ps−ws(x), x) at x(t):

p(t+1) = Π (p(t) − ρt ∂v(p(t), x(t))/∂p), t = 1, 2, ... (4.9)

where Π is the projection operator on . In fact, procedure (4.9) defines a stochastic Walrasian

tatonnement of the type described in Ermoliev et al. (1997). Recall from (4.4) and (4.5) that since net

supply is the derivative of the profit function −∂v(p(t), x(t))/∂p is simply the net demand of point x(t),

where the net demand from factories s is taken to be spread uniformly over the surface.

It is straightforward to introduce a spatial spread, say, via the density function gs(x), for the activities

of the factory also. The criterion then becomes v(p, x) =Σs Πs(ps) gs(x) + maxs πs(ps−ws(x), x). This

modification will affect the SQG-path but not the eventual optimum, because this density is fixed and

does not affect commodity balance (4.1). As in the deterministic Walrasian tatonnement, the procedure

changes prices in the direction of net demand (but here this if not the aggregate net demand), until

aggregate (i.e. expected) net demand becomes zero eventually and markets are cleared.

Zoning

The solution of model (4.5) will yield market clearing prices ps, from which input demands qs by

factories and farm supplies ys
k(x) can be recovered via (4.4) and (4.5), respectively. This raises the

question as to the properties of the optimal values ys
k(x). Indeed, under relatively mild assumptions

about transportation costs ws
k(x), and the differentiability of revenue function r(g, x), it is possible to

show that almost everywhere on X, ys
k(x) will be i.e. be nonzero for at most one s and that it will be

the same for all outputs k. This amounts to asserting that the model generates a specialized zoning,

i.e. an integer valued mapping s(x) that is single valued, almost everywhere on x, thus creating a

unique association between spots and factories.

Assumption W(unit cost of transportation from x site s): The cost of transporting one unit of

commodity k to site s, wsk(x) is, almost everywhere on X, (i) nonnegative and continuously

differentiable in x. Moreover, (ii) almost everywhere on X and for every k and pairs [s,s′], s≠s′, the

difference c(x) = ws
k(x) − ws

k
′(x) has non-zero gradient whenever c(x) = 0.

Assumption r2(differentiability) the revenue function r(g, x) is almost everywhere on X continuously

differentiable in x.

Various specific formulations of the cost functions, such as the Euclidean distance, guarantee

satisfaction of assumption W(ii). Geometrically, this is because two circles with different centres can

only share points but no arcs. We can now state and prove:
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Proposition 2 (Specialization of spots): Let assumptions R, r and W hold. Then, (a) program (4.3)

partitions the region X into zones with a common routing such that (a) no zone will produce for more

than one factory, and (b) the number of zones is finite.

proof. Continuous differentiability of the revenue functions ensures that program (4.3) has a unique

solution p*. Now for an arbitrary pair of sites [s,s′], s≠s′, define the function z(x) =πs(ps*−ws(x), x)

− πs′(ps′*−ws′(x), x). By assumptions W(i) and r2, the function z(x) is continuously differentiable

almost everywhere on X. Also partition x into (x1, x2), where x1 refers to the first coordinate of x (a

scalar) and x2 the other coordinate (we assume for convenience that the space is two-dimensional). The

proof proceeds in two stages.

First, we keep x2 fixed at an arbitrary value x02 in X and characterize the fixed points for x1, as defined

by z(x1, x0
2) = 0, as follows. One possibility is that there are no solutions. This means that either z(x1,

x0
2) > 0 (meaning that s dominates s′) or z(x1, x0

2) < 0 (s′ dominates s) for all points on the line x2 =

x0
2. If solutions exist, these can be of two kinds: isolated or on closed segments along the line x2 = x0

2.

Since X is compact the number of closed segments must be finite, and the fixed point counting

theorem in Ortega and Rheinboldt (1970, p. 150) says that, because z(x) is continuously differentiable

and X is compact, the number of isolated solutions is finite as well. We can therefore construct around

the line x2 = x0
2, a band consisting of neighbourhood sets Nj(x

0
2), indexed j = 1, ..., J that fully cover

this line and do not overlap.

Secondly, consider the perturbed fixed points close to x0
2, say, at x02+ within the band. If there where

no fixed points at x02 this may still be the case at x0
2+ but this only means that the domination

persists. Otherwise z(x1, x0
2+ ) = 0 might have some fixed points. Consider in the neighbourhood

Nj(x
0
2) of the j-th solution at x02, the set of perturbed solutions Zj(x

0
2) = {x 1 z(x1, x0

2+y) = 0, 0 ≤ y

≤ , (x1, x2) ∈ Nj(x
0
2)}. If this segment persisted, the set Zj(x

0
2) would have positive surface but would

contradict assumption W(ii). If it does not persist, it can become an intersection or disappear

altogether. In both cases Zj(x
0
2) has zero surface on X (property (a)) and partitions Nj(x

0
2) in a finite

number of zones (property (b)). Alternatively, assume that Nj(x
0
2) is the neighbourhood of an isolated

root. In this case, by the implicit function theorem, the perturbation defines, for positive chosen

sufficiently small, a continuous function on Nj(x
0
2) for which Zj(x

0
2) also has zero surface on X.

Therefore, for all j, the set Zj(x
0
2) has zero surface partitions Nj(x

0
2) in a finite number of zones. This

holds in a band around every x0
2 and since > 0, it follows that the unions of all sets Zj(x2) has zero

surface, and since it holds for an arbitrary pair [s,s′] the property holds for all pair, proving (a) and

(b).

The result has an easy geometric interpretation. For given prices p, the function z(x1, x2) can be

thought of as a mountain. Consider the intersection of this mountain with a horizontal plane at given

altitude (sea level). On this plane, mark the locations where the land that lies below sea level in blue,

and those above sea level in black. Because the function is continuously differentiable, the resulting

map will now delineate islands and lakes. The distinction will only be ambiguous if the mountain is

exactly tangent to sea level. But this tangency will disappear after an arbitrarily small rise in sea level

(property (a)). Assumption W(ii) implies that there are no such plains. Property (b) establishes that the
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number of islands and lakes will be finite.

5. Land consolidation

The zoning approach can also be used to study land consolidation. When applied at village

level, the zoning problem (4.3) allows to reassign land among farmers s, and the potential revenue

from this process can be evaluated. However, this model has several limitations. One of these is that

it does not attach any cost differentials to the configuration of the parcels: their possible fragmentation,

imbalanced shape and lack of contiguity do not affect the cost of production. Here we only address

the aspects of fragmentation and shape, and neglect the issue of contiguity of parcels, which is highly

relevant for problems of real estate management. Nonetheless, a squared Euclidean (or higher) norm

will usually create sufficient "gravity forces" to ensure contiguity of most parcels. The first model in

this section determines the optimal parcel structure from a combined zoning (assigning fields to

households) and location of a facility (in the simplest case: finding the barycentre of the fields

cultivated by a farmer). The second model imposes an additional restriction on equitable distribution

of gains from consolidation.

In model (4.3), the cost of production only depends on the distance between the point x in the

field and the homestead located at bs. This might be unrealistic, as the farmer can visit his plots more

easily if they are located close together than if they are dispersed over a wide area. Hence we must

also account for the distance between plots. To obtain such a measure of spread, we allow every farm

s to be the user of not more than, say, J distribution centres or roads indexed sj, as in (2.5) above.

Farmer s could be thought of as taking his bullock cart with seeds or manure to some roadside location

near his plots and distributing these inputs over his fields with manual labour, or conversely, collecting

his crops with manual labour before loading them on the cart. We continue referring to bs as the

homestead but it might also the location of the marketing post of farmer s, who could choose to live

somewhere along this road.

The main assumption is that there is a finite number of alternative locations given to every farmer

(which might be the same for different farmers), and that have the right of passage through

neighbouring fields. This ensures that lack of contiguity of parcels does not pose any problem. This

amounts to assuming that land fragmentation only matters to the extent it causes parcels to be spread

more widely, but the number of parcels itself does not affect cost. Parcels should be close by, but they

do not have to be consolidated, and their shape is only relevant to the extent it affects distance.

A model of unconstrained land consolidation

Formally, we assign at most J distribution centres or roads to every farm s. We can, for example,

decompose the transportation cost from the field x to the homestead (or market) bs into two parts: from

x to hsj and from hsj to bs. Thus, total transport costs per unit is a function ws
kj(x), say,

as in (2.5):

ws
kj(x) = aj

k x - hsj + bs
k hsj - bs , (5.1)
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where ajk is a unit cost for transport, say, by foot, bs
k a unit cost for transport by cart, and denotes

a vector-norm and measures the distance between x and bs, and a distance between centre of operations

and the homestead. This yields as an immediate extension of model (4.3)

min ps≥0, all s [Σs Πs(ps) + ∫ maxsj πsj(ps−wsj(x), x) dG(x)]. (5.2)

It might be added that issues related to the optimal shape of plots can be dealt with along similar lines.

Rather than imposing some ideal geometry, one can endow each farmer with more detailed options

for establishing central sites. Revenue maximization will then induce a particular concentrated

geometry of spots around these sites. Yet the contiguity issue remains unsolved. It would also be

interesting to allow for endogenous determination of the points hsj by treating these as endogenous

(continuous) variables but this would introduce a nonconvexity in the program.

Regional model with fixed land base

Program (5.2) determines the optimal land consolidation. To represent a given pattern of land

fragmentation, one defines the distribution Gs(x) which specifies the given association between point

x and farmer s.

min ps≥0, all s [Σs Πs(ps) + Σs ∫ maxjπ
sj(ps−ws(x), x) dG(x)], (5.3)

This is actually a regional model with separate farms and a fixed land base per farm. Its solution will,

for every farm, describe the optimal land allocation to various crops and the zones indexed j will

become the fields of the farm. Moreover, every regional model will have a differentiable supply

response function qs(ps), even if we relax the strict convexity in assumption r, and allow for every

point to choose not only the best road j but also the most profitable crop k, with full specialisation i.e.

solve the "linear program": maxjkπsjk(ps−ws(x), x).

Restrictions on land consolidation

Land consolidation transactions obviously generate a change in the land distribution. There is a

distinction between a centralized and a decentralized process of transactions. In a centralized land

consolidation process all participants start the process by pooling their land resources together. Next

the optimum of (5.2) is computed, jointly with the cost for every site (household). Finally, a

compensation is paid to the losers, which is financed either by taxing those who gain, or from external

funds (village development), according to some agreed rules for sharing the surplus from cooperation.

In many situations, the external funds to compensate losers directly or through development of

infrastructure will be lacking. In addition, participants are often reluctant to accept compensation

payments, because the consolidation process has lasting consequences and calls for recurrent payments

which, in view of weak enforcement mechanisms, might not be forthcoming once the consolidation

process has been completed. Moreover, farmers will rarely be able to provide side payments in cash.
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Under such conditions, participants will tend to prefer a system that guarantees to some fairly

distributed gain in the direct revenue from farming, and maximizes the relative gain of the least-

favoured. It is relatively straightforward to modify (5.4) accordingly. Let Vs
0 denote the original income

of farmer s in (5.4), which is assumed to be positive. We will solve:

max mins [1/Vs
0[R

s(qs) + ∫(r(−Σsj ysj(x), x) − ΣsjΣk wsj(x) ys
k
j(x)) dG(x)]

qs ≥ 0, ys
k
j(x) ≥ 0 all k, s, all x

subject to (5.4)

qs
k − ∑j ∫ ys

k
j(x) dG(x) ≤ 0, all k and s

The structure of this problem differs from that of the earlier models because of the mins operator. This

requires some reformulation.

Solution procedure

Let us define the S-dimensional simplexΛ = {(λ1, ..., λS) ≥ 0 ∑s λs = 1} and represent the mins ∫
fs( ) dG(x) part as minλ∈Λ ∫ ∑s λs fs( ) dG(x), because this enables us to compute the gradients

directly. The variablesλs can be interpreted as welfare weights (or as value-added tax rates

incremented by unity). We also define scaled pricesp̃s = λsps, and scaled the profit functions terms

Π̃s(p̃s, λs) = max qs≥0 [λsRs(qs) − Σk p̃s
kqs

k], all s (5.5a)

which is convex non-increasing in scaled input pricep̃s and convex non-decreasing in welfare weight

λs. For spot x, the scaled profit function is:

π̃sj(p̃s−λsws(x), x) = maxys(x)≥0 [Σk (p̃s
k−λsws

k
j(x))ys

k(x) + λsr(−ys, x)], (5.5b)

Noticing thatp̃∈ since 0≤ p̃ ≤ p, the resulting nested formulation is:

min p̃∈ ,λ∈Λ ∫ v(p̃, λ, x) dG(x), (5.6a)

for

v(p̃, λ, x) = 1/Vs
0 [Π̃s(p̃s, λs) + maxsj π̃sj(p̃s−λswsj(x), x)], (5.6b)

which is jointly convex in (̃p, λ). We can solve this problem by an SQG-procedure similar to (4.9):

at each step t = 1, 2, ... theprice vectorp̃(t) is adjusted in the direction∂v(p̃(t), λ(t), x(t))/∂p̃ andλ(t)

in the direction∂v(p̃(t), λ(t), x(t))/∂λ. We propose the following decentralized stochastic adjustment

procedure:

p̃(t+1) = Π (p̃(t) − ρt ∂v(p̃(t), λ(t), x(t))/∂p̃), (5.7a)

λ(t+1) = ΠΛ(λ(t) − ρt ∂v(p̃(t), λ(t), x(t))/∂λ), t = 1, 2, ... (5.7b)

whereρt is the step-size that is supposed to satisfy (2.3). Note that, as in (4.9), the price adjustment

is a stochastic Walrasian tatonnement, but in addition, the weights are adjusted so as to give lower
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weight to those who stand to gain most, relative to the original situation Vs
0. We summarize this as

a proposition.

Proposition 3 (Decentralised land consolidation without losers): Let assumptions R, r and W hold.

Then, with probability 1, procedure (5.7) with stepsizeρt satisfying (2.3) converges to the (global)

optimum of (5.6) which also solves (5.4).

Proof. Since v(̃p, λ, x) is jointly convex in (̃p, λ) on the compact, convex domain ×Λ, convergence

follows as in section 2.

Procedure (5.6) is remarkably simple and transparent, despite the apparent complexity of problem

(5.4). We start from giveñp(t) and λ(t) select a point x(t) at random. Next, we choose the most

profitable destination sj, for all commodities produced at x to be shipped to. Finally, we compute the

SQG as derivative w.r.t.̃ps and λs of the associated "total profit" function 1/Vs0 [Π̃s(p̃s, λs) +

π̃sj(p̃s−λswsj(x), x)] (if there are several, choose, say, the one with lowest index value).

6. Conclusion

In this paper, land was treated as a perfectly divisible commodity and this enabled us to reach

relatively strong conclusions about the convergence of the processes of land allocation and

consolidation, even when restrictions are being imposed on transactions. However, in reality land

transactions are difficult and the question is, therefore, whether the models and adjustment processes

presented here bypass important elements.

First, land in reality is indivisible to some extent. Farmers own plots of different size and quality. and

transactions relate to plot surfaces, not to points, precisely because agents cannot keep on transacting

forever. Now, if the surface X is partitioned into N fixed parcels the optimal land consolidation model

(5.6) becomes

min p̃∈ ,λ∈Λ VN(p̃, λ) (6.1a)

for

VN(p̃, λ) = 1/N ∑N
i =1 [∑s 1/Vs

0 [Π̃s(p̃s, λs) + maxsj π̃sj(p̃s−λswsj(xi), xi)] (6.1b)

To solve this problem, i.e. to clear the land market, the decentralized SQG-procedure (4.9) can be used

as before, now with x(t) sampled from the discrete distribution {x1, ..., xN} instead of G(x). The

difference between the calculated optima VN(p̃, λ) and V(̃p′, λ) will estimate the welfare loss from

maintaining a given parcel size as well as associated price distortion (p̃−p̃′). A similar discretization

approach can be used for the other models in this paper. Clearly, this presupposes that the SQG-

procedure will find the global minimum of (6.1), which is by no means assured because the profit

functionsπ̃sj defined over the parcel might differ from those at say the mid point of the parcel and

therefore if these are very heterogeneous, not be convex in pricesp̃.
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Secondly, the resulting optimum would often be significantly lower than the unconstrained one, even

for divisible parcels, and this might frustrate the progress because some potential gainers might prefer

the status quo to a time consuming negotiation process that only brings marginal improvement, and

might even end before a Pareto-efficient solution is reached, i.e. as soon as the least favoured cannot

improve their condition.

Finally, process (5.7b) illustrates that in the course of the decentralized adjustment process, the welfare

weightsλs are not necessarily zero for all but the least favoured. Hence, in the course of the process

their will as a rule be land allocations that yield income losses for some agents and gains for others.

Then, both in both groups there might be agents who want to step out of the process: the losers

because they are afraid to lose more and the winners because they want to consolidate their gains.

Thus the process of transactions might end for lack of participants, long before the optimum has been

reached. It is possible to adjust the SQG-procedure to account for this, by restricting the random

selection of points to an appropriately defined part of the distribution. One possibility is to look for

"matching" pairs of transactions. This raises various questions about the conditions under which

determine whether the process will converge to a Pareto-optimum or stagnate. This is a subject for

further investigation.

Another challenge for further research is to characterize the type of non-convexities and discontinuities

that can be "healed" by the integral operation. Lemma 1 has illustrated the advantage of modelling in

a spatial continuum, as opposed to a discretized space, since this allows to neglect specific

discontinuities and non-convexities, as characterized by the "almost everywhere"-qualifier. However,

we have only considered problems for which this qualification is given as part of the problem

specification. It would seem useful to formulate conditions on the model itself which allow to neglect

non-convexities and discontinuities that appear in it, because of the "healing" effect of integration. In

the model of pollution control this might enable us to study increasing returns in pollution, and in the

land consolidation model to determine endogenously the location of distribution centres.
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