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On the Optimal Adaptive Parameter Estimation of

water Resources Control Systems

As water resource systems have grown larger and more

complex, the importance of optimum operation of these systems

has increased. Several IIASA papers have been published

attacking these problems which are in essence, the problems of

estimating/controlling the state of WR systems. Casti (1974)

gave algorithms for the stochastic inflow-nonlinear objective

reservoir control problem; Szollosi-Nagy (1975) outlined the

closed-loop control of linear stochastic water quality systems

with quadratic performance measure; and quite recently, Takeuchi

(1976) dealt with the problem of typhoon forecasting using

stochastic filtering techniques.

There is at least one aspect which is common to these

approaches, and that is the way they look at the dynamics of

the WR systems. In one way or another, they assume that the

system dynamics is linear and given by

x(t + 1) = <P(t + 1,t)x(t) + ret + 1)u(t) + wet), (1)

where

x(t) is a vector of the system states belonging

nto a bounded set, of state space X C R ;

<P (t + 1,t)

u (t)

is the n x n state transition matrix;

is the vector of control variables belonging

to the compact set of admissible controls
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is the n x p control transition matrix;

is a vector white gaussian noise (WGN)

sequences called process disturbances with

the statistics w(t) ~ N(O,R1 (t»;

is the discrete time variable,

T = {t : t = O,1,2, ••• }

It is also assumed that the collection of measurement equipments

which are attached to the system, modelled by Eq. (1), to monitor

its behavior has an output (collection of measured variables)

which can be modelled by the relation

where

z(t) = H(t)x(t) + v(t) (2)

z(t) is the m vector of measurements (output

vector);

v(t) is a vector of WGN sequences called measure­

ment errors with the statistics

v(t) - N(O,R 2 (t»;

H(t) is the m x n measurement matrix.

Moreover, it is generally assumed that the uncertainties are

independent of each other, i.e.

e{w(t)vT(t + T)} = 0, VT E T

Clearly, the measurement sequence z(t) generates an increasing

a-algebra

Z t '= [ z (1), z ( 2) , . . . z (t) ]

with the obvious chain property of
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To get an optimal control sequence u*(t) E U which minimizes

certain expected loss C{J}, the famous sepa.ration principle

(Kalman and Koepcke, 1958) is utilized which states that the

optimal stochastic control can be separated into two parts.

The first is the estimation/prediction of the state variables

and the second is the determination of the closed-loop feed­

back control u(o) based upon the estimated states x(o). It

is well known that the estimated values are given by the Kalman

filter algorithms (provided that the statistics of the initial

state x(O) is known and gaussian, x(O) - N(x(O),P(O)), while

the optimal control is obtained through a deterministic dynamic

programming performed on the estimated state variables. ·Due to

the separation principle here we cuncentrate ourselves on the

estimation part only, noting that the synthetization of the

control strategies is then really straightforward.

Due to the unknown parameters of the matrices in Eq. (1)

the separated system dynamics and measurement becomes

x(t + 1) = <l>(t + 1, t;8 )x(t) + w(t)

z(t) = H(t,8)x(t) + v(t),

( 3)

(4 )

where 8 is a q-vector of unknown parameters in ¢, H, R1 , R z , x(O)

belonging to a finite dimensional parameter space e q , e E eqo

It is assumed that 8 is time invariant and has an a priori

pdf p(8). Again, when the parameters of the model are exactly

known, the solution is straightforward. In our case, however,

the parameters are uncertain and life becomes much more
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complicated. As Eykhoff (1974) showed, ~he joint eatimation of

the uncertain states/parameters becomes nonlinear even in the

case of linear system dynamics. Following Lainiotis (1971), the

optimal mean sqare estimate x(tlt) of the state x(t) is then

given by

where

x(t!t) = ~x(tlt,S)p(SlZt)d8

eq

(5 )

x(tlt,s) is called 8-conditional (or model conditional)

estimation and can be obtained from the Kalman

filter applied for a fixed parameter vector

8 e: eq ;

is called weighting coefficients which assigns

different weights to the different parameter

vectors.

Since the 8-conditional estimates are given by the Kalman filter

algorithms the mean square estimation problem is reduced to

finding the weighting coefficient which is in fact a posteriori

pdf of the parameter vector 8 given the measurement sequence Zt.

If it is found then the 8-conditional estimates are weighted

with respect to the a posteriori pdf and integrated over the

q-dimensional parameter space eq .

We are going to deal, here, with the discrete case, noting

that the continuous case based upon BUCY'S representation

theorem is treated in Lainiotis (1974). The conditional proba-

bility function of the parameter vector 8, when the measurement

sequence Zt is given, is defined by
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p(e, ~t-1 ,z(t)}
= -------

P ( ~t - 1 ' z (t) )
I

or, according to the chain-rule of conditional probabilities,

as

p(el~)
p(z(t) Ie, c:tt_,)p(el ~t-1)P(~t-')

(6 )=
p ( ~t- 1 I z (t) ) p ( z (t) )

Since

P(t;C.t_1 Iz (t» = jP(8'~t_llz(tl)d8
q

e
and

p(e'~t_1Iz(t»
p(e'~t-1 ,z(t»

=
p(z(t»

we get for the marginal distribution

P(~t-1 Iz(t»= --,---­
p(z(t»

jP(S,'l! t_l,z(tl ld8

e
q

Substituting this into the denominator of Eq. (6) and considering

that

we have

p(z(t) I e'~t-1)
----------- ---------- p (e I~ t -, )j P (z (tll 8 "~\-1 l P (8 I 'i. t-l ) d8

q
e

(7)
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which is in fact a recursive Bayesian algorithm for the

calculation of the weighting coefficients with the initial

condi tion p (S I<;i 0) = p (S) .

For the case when the parameter space e q is discrete and

consists of M elements, the a priori pdf is

p (S )

M

="LP(S i)o (8

i=1

- e.)
1

and the a posteriori pdf is given by

M

= LP(Sil~t)O(S
i=1

- e.)
1

A(tISj)p(8jIZt_1)

M

L
j=1

then the recursive algorithm becomes

A(tIS i )

where the likelihood function A(tIA i ) stands for p(z(t) lei'~t-1).

Now, let us consider the derivation of the likelihood

function p(z(t) IS,f}tt_1). It is known from the innovation

theory (Kailath, 1968) that if we are given a stochastic pro-

cess {z(t) : t E T} we can define its innovation representation

{v(t) : t E T} as a WGN process such that z(o) can be calculated

from v(o) by a causal (i.e. nonanticipative) and causally

invertible transformation. The point is that v(o) and z(o)

contain the same 'statistical information' since we can go back

and forth in real-time from one process to the other, but, of

course, v(o) will generally be a much simpler process than z(o).
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Moreover, since the values of v(o) at different time instants

of time are statistically independent of each other, each

observation v(t) brings 'new information' only, unlike the

observation z(t) which is, in general, statistically related

to past values of z(o) 0 (This is the reason why v( 0) is called

'new information' or 'innovation' process of z(o) ) 0

Therefore, the a-conditional innovation is defined as

v( t, a) = z (t) - z(tjt - 1,8)

= z(t) - e{H(t,e)X(t) + v(t)1 tX t-"}

= z(t) H(t,e)x(tlt 1 , a) ( 8)

since it is part of the measured output which contains some

information which was not previously available. So, we can

replace z(o) by v(o) and according to the theory of derived

distributions, we have

where due to the linearity, the Jacobian is equal to

J =Ia(z (t) - H( t,O H{( tit - "~~) '" = I
dZ (t)

the identity matrixo Since the innovation process is WGN and

is independent of the previous measurements ~t-1' we have

on the one hand

p(S,z(t) l~t-1) = p(slCi. t _ 1)p(v(t,a))

and on the other
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p(e,z(t)1 ~t-1) = p(z(t), el~t-1)

= p(z(t)le'~t-1)P(81~t_1)

Combining the above two expressions, we get for the likelihood

function

p (z (t) Ie, ~ t _ 1) = p (v (t, 8 » = Pv (z (t) - H( t ,8 ) ~ (tit - 1,8» .

It is easy to see that the innovations form a zero mean WGN

process with covariance Pv (t,8), v(t,e) - N(O,pv(t,e». The

covariance matrix can readily be determined from an equivalent

representation of

v(t,e) = - H(t,O)x(tlt - 1,0) + v(t)

where

~(tlt - 1,8) = x(t) - ~(tlt - 1,8)

is the one-step-ahead prediction error, as

Pv (t , 8) = cov [v (t , 8) , v (t, fl) 1 = e{v (t , 0 ) vT (t , 8 ) }

= e{ [- H(t,8)x(tlt - 1,8) + v(t)] ColT}

= e{H(t,e)x(tlt - 1,8)xT (tlt - 1,S)HT (t,8)}

+ S{V(t)VT(t)}

T= H (t , e)P ( tit - 1, e )H (t , e) + R2 (t, e) (9 )

where

p(tlt - 1,8) = e{x(tlt - 1,8)3?(tlt - 1,8)}

is the 8-c o nditional error covariance matrix.
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Summing up, we have the following recursive scheme for

calculating the weighting coefficients

(10)

where

v(t,B) = z(t) - H(t,B)~(tlt - 1,B)

and the initial conditions are

A(o!e) = 1

The conditional error covariance matrix p(tlt), which is

useful for the on-line evaluation of the estimator performance,

is given by Lainiotis (1974) as

p(tlt) - f {P(tlt,8) + [x(tlt,8) - ,,(tit») [~(tlt,8) ­

e
q

-X(tlt)]T} .p(BI"tt)dB

The complete Bayesian recursive algorithm is shown in

Table I and the related block diagram is depicted in Figure 1.

It should be mentioned that the notion of structure adapt ion can
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also be imbedded into the above algorithms. We should only

. guess an upper bound n to the system dimensionality and to

augment the parameter vector e u? to n. Then the adaptive

algorithms automatically give us an estimate n for the system

order. Surely, n ~ n. In other words, it gives zero elements

for the 'superfluous' parameter values.

Since the speed of the evaluation of Eq. (10) highly depends

upon the dimension of the parameter space, some tricky numerical

integration technique, like the one based upon Monte Carlo

simulation, should be used.

Having the estimated values, it is easy to synthetize the

optimal contral policies. For details, see Aoki (1967).
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