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Abstract

This paper presents a summary of reference point methodology in vector opti-
mization and decision support. The methodology was developed at IIASA since
1980 and applied in numerous projects, both in IIASA and elsewhere. The paper
presents methodological foundations, basic concepts and notation, reference points
and achievement functions, neutral and weighted compromise solutions, issues of
modeling for multi-objective analysis, some basic applications of reference point
methods and a discussion of a decision process type supported by reference point
methodology.

Keywords Vector optimization, multi-objective model analysis, model-based
decision support, reference point methods.
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Reference Point Methods

in Vector Optimization

and Decision Support

Andrzej P. Wierzbicki* (a.wierzbicki@itl.waw.pl)

1 General assumptions and features

Reference point approaches might be seen as a generalization of goal programming.
They were developed later than goal programming, starting with research done at
the International Institute for Applied Systems Analysis (IIASA) in Laxenburg near
Vienna, Austria, since 1980 – see Wierzbicki (1980), Kallio et al. (1980) – specifically
as a tool of environmental model analysis, although these approaches have found
applications also in engineering design and other fields of decision support since that
time. Almost parallely, similar or equivalent approaches were developed, e.g. the
weighted Chebyshev1 procedure by Steuer and Cho (1983) or the satisficing trade-off
method by Nakayama and Sawaragi (1983). Later, Korhonen and Laakso (1985)
drawn the attention to the fact that reference point methods can be considered as
generalized goal programming. This generalization tries to preserve main advantages
of goal programming and to overcome its basic disadvantage.

The main advantages of goal programming are related to the psychologically
appealing idea that we should set a goal in objective space and try to come close
to it. Coming close to a goal suggests minimizing a distance measure between an
attainable objective vector (decision outcome) and the goal vector.

The basic disadvantage relates to the fact that this idea is mathematically in-
consistent with the concept of vector-optimimality or efficiency. One of basic re-
quirements – a general sufficient condition for efficiency – for a function to produce
a vector-optimal outcome (when minimized or maximized) is an appropriate mono-
tonicity of this function. But any norm, representing the concept of a distance
measure, is obviously not monotone when its argument crosses zero. Therefore,
norm minimization cannot, without additional assumptions, provide vector-optimal
or efficient solutions.

Consider, for example, the simplest case when the goal vector is in itself an
attainable decision outcome but not an efficient objective vector; then norm min-
imization leads to the obvious solution with objectives equal to the goals. Even

*Institute of Telecommunications Szachowa 1, 04-894 Warsaw, Poland
1In the original paper, the authors used the word Tchebycheff, not Chebyshev; the former is a

German transliteration of this Russian name.
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for convex outcome sets, either special tricks or rather restrictive assumptions are
needed in goal programming to provide for efficiency of obtained decision outcomes.
If, however, the set of attainable objectives is not convex – for example, discrete, as
in Fig. 1a – then norm minimization cannot result, generally, in efficient outcomes.
Both components of decision outcomes or objectives y1 and y2 in this Figure are
to be maximized and the efficient outcomes, denoted by circles, are to the “North-
East” of the attainable outcome set; there are many intuitively reasonable vectors
of goals, such as ȳ1, which would produce inefficient outcomesm, such as y1, if a
norm as a measure of the distance is minimized.
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Figure 1: Examples of selections of discrete outcomes by using various approaches:
a) goal programming or norm minimization; b) displaced ideal; c) max-min approach
d) reference point approach

However, setting a goal and trying to come close to it is psychologically a very
appealing procedure; the problem is “only” how to provide for efficiency of resulting
outcomes. There are two ways to do it: either to limit the goals or to change the
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sense of coming close to the goal.

Trying to limit the set of goals is the essence of the displaced ideal method of
Zeleny (1976): we should select goals that are sufficiently distant from the set of
attainable outcomes, and we can prove that norm minimization will result only in
efficient outcomes, no matter what norm we use or what properties has the set
of attainable outcomes. This is illustrated by Fig. 1b, where the goal ȳ is in
the displaced ideal area and the outcomes resulting from norm minimization are
efficient. However, such limitation means precisely loosing the intuitive appeal of
the goal programming approach: if we can set only unrealistic goals, the approach
looses its basic advantages.

Trying to change the sense of coming close to the goal might result in a change of
the nature of the goal. The essence of reference point approaches is that a reference
point is a goal interpreted consistently with basic concepts of vector optimality; thus,
the sense of “coming close” to it is rather special and certainly does not mean
distance minimization, but an optimization of a different function. Before we discuss
such functions, however, let us discuss in detail what this special sense of “coming
close” really means.

If we accept the logic of various concepts of vector optimality, as discussed in the
introductory chapters, then “coming close” to a given reference point should mean:

• decision outcomes in some sense uniformly close to the given reference point, if
the latter is not attainable (while the precise sense of uniform closeness might
be modified by selecting e.g. weighting coefficients and by demanding that the
resulting decisions and their outcomes remain efficient i.e. vector-optimal);

• decision outcomes precisely equal to the given reference point, if the latter
is efficient, vector-optimal – which, somewhat simplifying, means attainable
without any surplus;

• decision outcomes in some sense uniformly better than the given reference
point, if the latter is attainable with some surplus – thus inefficient, not vector-
optimal (where the sense of uniform improvement can be again variously in-
terpreted).

The first two cases coincide (almost) with goal programming; the third case is,
however, essentially different: it means not “coming close” in any traditional sense,
but “coming close or better”.

This change of the sense of coming close is in fact deeply related to the discussion
how people make decisions in reality and how computers should support decisions.
In turn, this is related to the concept of satisficing decisions of Simon (1957), which
was used as a description how people make actual decisions (particularly in large
organizations) and the concept of quasi-satisficing decisions of Wierzbicki (1983)
which describes how a computerized decision support system should help a human
decision maker.

According to Simon, real decision makers do not optimize their utility when
making decisions, for many reasons. Simon postulated that actual decision makers,
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through learning, adaptively develop aspiration levels for various important out-
comes of their decisions. Then they seek decisions that would result either:

• in outcomes as close as possible to the aspiration levels, if the latter are not
attainable (which corresponds to an optimization of decisions, but in the sense
of the distance from aspiration levels);

• in outcomes equal to aspiration levels, if the latter are attainable (which cor-
responds to stopping improvements in this case).

We see that satisficing decision making can be in fact mathematically represented
by goal programming. In the case of attainable aspiration levels, the decision maker
might learn to increase them, but usually not for current, only for future decisions.
One can ask why; the most probable answer is that decision making processes are
difficult and this assumption reflects some inherent human lasiness. Many further
studies have shown that such a behavior of a decision maker as described by Simon,
though might seem peculiar, is very often observed in practice. In particular, the
use of various reference levels by decision makers – such as aspiration levels, but
including also reservation levels, very important e.g. in the theory of negotiations –
has been repeatedly confirmed in practice and incorporated in theory.

Independently, however, from the issue whether a real, human decision maker
would (or could, or should) optimize in all cases, we can require that a good com-
puter program supporting decisions through model analysis should behave like a
hypothetical, perfectly rational decision maker – with one important exception: the
program should not outguess its user, the real decision maker, by trying to construct
a model of his/her preferences or utility function, but should instead accept simple
instructions which characterize such preferences.

Thus, the methodology of reference point approaches assumes that the instruc-
tions from an user to the computerized decision support system (DSS) have the
convenient form of reference points, including aspiration levels and, possibly, reser-
vation levels – and that the user will not necessarily use optimization to determine
the reference points, but much rather will rely on his/her intuition. An essential
departure from Simon asumptions and from goal programming techniques, however,
is as follows: the methodology of reference point approaches assumes that the com-
puterized DSS tries to improve a given reference point, if this point is attainable.
Therefore, the behavior of the DSS – not that of its user – is in a sense similar to
perfect rationality. It does not minimize a norm, but optimizes a special function,
called achievement scalarizing function which is a kind of a proxy utility or value
function (of the DSS) such that the decisions proposed by the DSS satisfy the three
cases of “coming close or better” described above. Because of the difference – in
the last case of “coming better” – to the satisficing behavior, we call such behavior
quasi-satisficing. It can be compared to the behavior of a perfect staff (one staff
member or a team of them) which supports a manager or boss, who gives instruc-
tions to this staff in the form of reference (say, aspiration) levels. The staff works
out detailed decisions which are guided by the given reference point.
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However, being perfect, the staff does not correct attainability estimates (a real,
human staff might behave otherwise) and does not report to the boss that the ref-
erence point is attainable when it really is not. Instead, the staff proposes decisions
that result in outcomes as close as possible to the desired reference point and reports
these decisions together with their not quite satisfactory outcomes to the boss. If
the reference point is attainable without any surplus, the perfect staff just works
out the decisions how to reach this point and does not argue with the boss that a
different point and different decisions might be better (if not specifically asked about
such opinion). If the reference point is attainable with surplus, the perfect staff does
not stop working and start gossiping over drinks – as Simon’s model of satisficing
behavior would suggest – but works out decisions that would result in an uniform
improvement of outcomes as compared to reference levels, and proposes such de-
cisions together with improved outcomes to the boss. Obviously, only a computer
program could behave all times in this perfect, quasi-satisficing manner.

Precisely because of this difference to satisficing behavior, the achievement func-
tion – the proxy utility or value function of the computerized DSS working in a
quasi-satisficing manner – cannot be described just by a distance from the reference
point. The use of achievement measures based on distance functions is known in goal
programming, but goal programming corresponds precisely to satisficing behavior:
if the aspiration levels are attainable, then there exist attainable outcomes precisely
equal to them, thus the corresponding distance is zero; since we cannot get distance
less than zero, the optimization is stopped (the staff prepares drinks for relaxation).

Thus, reference point optimization is a generalization of the goal programming
approach to such cases when we can and want to improve (minimize or maximize)
certain outcomes beyond their reference points. For this purpose, a special class
of order-consistent achievement functions, similar but not equivalent to distance
functions, was developed, investigated in detail and applied in many examples and
DSS’s.

We shall describe in further sections the theory and applications of such achieve-
ment functions; here we only indicate some of their general properties. Vector
optimization corresponds to some partial order of the objective space, which might
be defined with the help of a positive cone D; if we e.g. want to maximize two ob-
jectives, the positive cone is just IR2

+, the positive ortant of the plane. Following the
mathematical definition of vector optimality with respect to a positive cone, comes
the idea of choosing an achievement function whose level-sets represent or closely
approximate the positive cone, possibly with vertex shifted to the reference point.

Actually, the idea of using an achievement function with level sets precisely rep-
resenting the positive cone is rather old and corresponds to the max-min approach2.
However, if the level sets of an achievement function precisely represent the shifted
positive cone, the decisions and their outcomes obtained by a maximization of this
function are only weakly efficient, i.e. the decision outcomes cannot be improved
jointly but can be improved componentwise. This is illustrated in Fig. 1.c: the

2See e.g. Polak (1976); contemporary, the max-min approach is used as a tool for multi-objective
optimization e.g. in the Optix toolbox of Matlab – however, without warning the user that it
might result in weakly efficient outcomes.
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decision outcomes y′ and y′′ differ only in the coordinate y1, hence might be both
on the boundary of the cone ȳ + IR2

+; therefore, a max-min approach might produce
as well y′ as y′′, while y′ is clearly worse than y′′ (if we maximize both objectives
y1 and y2). Such situations often occur in practical applications, particularly with
linear or discrete-linear models; therefore, the max-min approach should be used
with extreme care, if at all.

For this reason, typical achievement functions used in reference point methods
do not precisely represent, but only approximate the shifted positive cone ȳ + D.
A specific way of this approximation was developed to obtain an important the-
oretical property that each properly efficient decision outcome with a given prior
bound on trade-off coefficients between objectives can be obtained when maximizing
an achievement function with suitably chosen reference point. This property can be
guaranteed by selecting a cone Dε “slightly broader” than the cone D and choosing
an achievement function which level sets precisely represent not the cone D, but
the slightly broader cone Dε. Such theoretical property has two important practical
consequences.

The first consequence concerns the concept of proper efficiency with a prior bound
on trade-off coefficients. This is, in fact, the most practical concept of efficiency or
vector-optimality (though it might be the most difficult to express theoretically, see
further sections): the decision makers do not usually care if an objective might be
worsened by a small percentage of its value, if other objectives could be considerably
improved instead. The second consequence concerns the possibility of obtaining any
of such properly efficient objective outcomes. As opposed, for example, to a weighted
linear aggregation of objectives, achievement functions in reference point methods
can produce any desired properly efficient outcome also in nonconvex, in particular
in discrete cases. This is illustrated in Fig. 1d: the properly efficient outcomes y1

and y2 cannot be obtained by the maximization of a linear combination of their
components y1 and y2 with linear level sets (because y1 and y2 are contained in
the convex cover of y3, y4 and y5), but they can be reached by maximizing an
achievement function with level sets either ȳ1 +Dε or ȳ2 +Dε. Observe that we can
either choose ȳ1 = y1 or, more broadly, ȳ2 6= y2; in the latter case, the maximal
value of the achievement function indicates whether y2 is “more attainable” or “less
attainable” than ȳ2.

2 Basic concepts and notation

In order to discuss above general ideas and properties in more mathematical detail
we need some notation and concepts.

We distinguish here two parts of a model of a decision situation. One part, called
here a preferential model, concerns the preferences of the decision maker or DSS user
(most often, the real users of decision support systems are not the final decision
makers, but their advisors – analysts, modelers, designers etc.). The preferential
model can have the form of a preference relation, of partial, weak or complete order
in the objectiove space, of a value or utility function. In reference point methodology,
the attention is not concentrated on the precise form of a preferential model; on the
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contrary, it is assumed that the preferential model might change during the decision
process and the decision support tools should be flexible enough to accommodate
such changes. Therefore, we typically assume that the preferential model is very
general – similar to the partial order of Pareto type (which corresponds just to the
desire to maximize all decision outcomes) and that the specifics of this model (say,
the selection of decision outcomes to be maximized) might also change during the
decision process.

The second part of a model of decision situation is called here a substantive model
which expresses the available knowledge about possible decisions and their possible
outcomes. Therefore, we assume here that the general form of a substantive model
is:

y = f(x, z); x ∈ X0; z ∈ Z0 (1)

where x ∈ IRn denotes a vector of decision variables, z is a parameter vector fixed
by the modeler, X0 is a set of admissible decisions which is usually defined by a set
of additional inequalities or equations called constraints, y ∈ IRm is a vector of model
outputs or decision outcomes which includes also various intermediary variables that
are useful when formulating the model, even when determining the constraints –
thus, the set X0 is often defined implicitly. The function f : IRn × Z0 → IRm that
determines model outputs is usually defined also implicitly, often by a quite com-
plicated model structure. In actual applications, substantive models might express
dynamic system behavior, uncertainty of results of decisions (while the outcomes
y might be understood e.g. as mathematical expectations of such results, see e.g.
Ermolev et al., 1988) etc. We shall discuss later some more complicated substan-
tive model forms; here we assume its explicit and simple form. Moreover, we shall
suppress the dependence of this function on parameters z when not directly needed
by writing y = f(x).

In such a case, Y0 = f(X0) is called the set of attainable outcomes. It should be
stressed that this set is not given explicitly (even in the simple case when f is given
explicitly) and we can only compute its elements by assuming some x ∈ X0 and
then determining the corresponding y = f(x) by simulating the model.

The modeler, when analyzing the substantive model, might specify several model
outputs as especially interesting – we call them objectives or criteria and shall denote
by qi = yj, forming an objective vector q ∈ IRk – a vector in the objective space.
While this vector and space might change during the decision process according to
specific tasks and changes of preferences specified by the modeler, we shall denote
the relation between decisions and their outcomes by q = F(x, z) or shorten it to
q = F(x). Q0 = F(X0) is called the set of attainable objectives.

Since we can change minimization to maximization by changing the sign of an
objective, we can as well assume that all objectives are, say, maximized. Recall
that a Pareto-optimal decision and its outcome are such that there are no other
admissible decisions and thus attainable outcomes which would improve any outcome
component without deteriorating other outcome components. A closely related, but
slightly broader and weaker concept is that of weakly Pareto-optimal decision and
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outcome: these are such that there are no other admissible decisions which would
result in a joint improvement of all outcome components. This concept is actually
too weak for applications, as already indicated.

In fact, even the concept of Pareto-optimality is sometimes too weak for appli-
cations, in cases where we could improve significantly one outcome component at
the cost of an infinitesimally small deterioration of another outcome component.
The (limits of) ratios of improvements and deteriorations of outcome components,
determined at a Pareto-optimal outcome, are called trade-off coefficients; we de-
fine properly Pareto-optimal decisions and outcomes as such that the corresponding
trade-off coefficients are bounded. Even this concept is too weak for applications,
since the mathematical sense of “bounded” means “anything smaller than infinity”.
Truly important for applications are rather decisions and outcomes which are prop-
erly Pareto-optimal with a prior bound, i.e. such that a finite bound on trade-off
coefficients is a priori given and satisfied.

In each of these specific cases of Pareto-optimality (weak, proper, etc.), the sets of
Pareto-optimal decisions and outcomes contain typically many elements, not just a
singleton decision and its outcome. Thus, Pareto-optimality is an essentially weaker
concept than single-criterion optimality: Pareto-optimality does not tell us, which
decision to choose, it tells us only which decisions to avoid. This non-uniqueness of
Pareto-optimal decisions has been considered a drawback in the classical decision
analysis; thus, on top of a substantive model, a preferential model was usually
assumed in the form of at least weak order which could be specified by a given utility
or value function whose maximum defined – hopefully, uniquely – “the optimal”
decision and outcome.

However, in interactive decision support, when we assume that the preferences
of the user of the DSS (or the modeler, the analysts etc.) can change during the de-
cision process, the non-uniqueness of Pareto-optimal decisions is an advantage, not
a drawback. We need only an additional way of controlling the selection of Pareto-
optimal decisions by parameters specified by the user. However, we do not assume
that this selection will necessarily be guided by utility maximization. Therefore, we
shall speak often about multiobjective model analysis in which (vector) optimization
is treated as a tool, not as a goal.

We recall that Pareto-optimality can be generalized by using a partial order
implied by a positive cone, while the positive cone indicates what do we understand
by an improvement in the space of objectives. In the case of Pareto-optimality (if all
objectives are maximized), the positive cone is the positive “part” of the objective
space:

D = IRk
+ = {q ∈ IRk : qi ≥ 0 ∀i = 1, . . . k} (2)

A strictly positive cone (assuming an improvement of at least one objective com-
ponent, which is needed for the definition of Pareto-optimality) can be written as:

D̃ =IRk
+ \ {0} = {q ∈ IRk : qi ≥ 0∀i = 1, . . . k; ∃i = 1, . . . k : qi > 0} (3)
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A strongly positive cone (assuming an improvement of all objective components,
as needed in the definition of weak Pareto-optimality) is defined simply as the interior
of the positive cone, IntD = IntIRk

+.

In the case when some objectives (from 1 to k1) are maximized, some (from k1+1
to k2) are minimized and some (from k2 + 1 to k) are stabilized (i.e. kept close to a
given reference level), the positive cone can be defined as:

D = {q ∈ IRk : qi ≥ 0, i = 1, . . . k1, qi ≤ 0, i = k1 + 1, . . . k2,

qi = 0, i = k2 + 1, . . . k} (4)

Note that the cone describes only changes in objective values, hence qi = 0
means that the objective component is kept equal to its reference level. If we define
similarly the strictly positive cone as D̃ = D \ {0} and the strongly positive cone
as IntD, we can give more general definition of Pareto-optimality, called efficiency
with respect to the cone D; the set of efficient objectives or outcomes is defined as:

Q̂0 = {q̂ ∈ Q0 : (q̂ + D̃) ∩Q0 = ∅} (5)

and the set of efficient decisions is defined equivalently, while taking into account
that q̂ = F(x̂), as:

X̂0 = {x̂ ∈ X0 : (F(x̂) + D̃) ∩ F(X0) = ∅} (6)

Note that, if D = IRk
+ and D̃ = IRk

+ \ {0}, the above definition of efficiency
coincides with the descriptive definition of Pareto-optimality given earlier. Similarly,
the generalization of weak Pareto optimality to weak efficiency is obtained by simply
replacing, in the above definitions, the strictly positive cone D̃ with the strongly
positive cone IntD:

Q̂w
0 = {q̂ ∈ Q0 : (q̂ + IntD) ∩ Q0 = ∅} (7)

and:

X̂w
0 = {x̂ ∈ X0 : (F(x̂) + IntD) ∩ F(X0) = ∅} (8)

Note that if k > k2 (there are stabilized objectives), then the cone (4) has empty
interior, hence Q̂w

0 = Q0 and the concept of weak efficiency is quite useless in such
a case.

In order to define proper efficiency, we must specify first the concept of trade-off
coefficients. We shall assume here, for simplicity, that all objectives are dimension-
free and can be directly compared (we shall relax this assumption later). At an
efficient point x̂ ∈ X̂0 with q̂ = F (x̂) ∈ Q̂0, if the efficient frontier is smooth at
this point, the local trade-off coefficient tij(q̂) between maximized objectives qi, qj
is defined as:

tij(q̂) = lim
l→∞

sup
q(l)∈Q̂0

q
(l)
i − q̂i
q̂j − q(l)

j

; lim
l→∞

q(l) = q̂ (9)
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where the supremum is taken over all sequences {q(l)}∞l=1 ⊂ Q̂0 converging to
q̂. If an objective i or j is minimized, the sign of the appropriate increment in
the above equation must be changed. In the case of stabilized objectives, we must
consider them as such that might be either maximized or minimized, with alternative
trade-offs.

For non-convex sets Q0, it is useful to define also global trade-off coefficients
which might be greater (but not in the convex case) than the local ones:

tij(q) = sup
q∈Q(j)(q̂)

qi − q̂i
q̂j − qj

;

Q(j)(q̂) = {q ∈ Q0 : qj < q̂j, qi ≥ q̂i} (10)

with the signs of inequalities in the definition of Q(j)(q̂) appropriately changed
for minimized (or stabilized) objectives.

The computation of trade-off coefficients according to their definitions is a diffi-
cult problem, see e.g. Kaliszewski (1994). It turns out that we can obtain bounds
on trade-off coefficients if we express the concept of proper efficiency in terms of
modified positive cones. There are various approaches to such representation – see
e.g. Henig (1982), Sawaragi et al. (1985). It can be shown – see Wierzbicki (1986,
1992), Kaliszewski (1994) – that properly efficient outcomes and decisions with a
prior bound M on trade-off coefficients can be defined as weakly efficient outcomes
and decisions with respect to a “slightly broader” positive cone. For this purpose,
we define first ε = 1/(M − 1) (note that there is no sense in considering M ≤ 1)
and define an ε-neighborhood IntDε of the positive cone D:

IntDε = {q ∈ IRk : dist(q, D) < ε ‖ q ‖} (11)

where we could choose any norm in IRk and a (Haussdorf) concept of distance
between the point q and the set D in order to obtain an open3 set IntDε. However,
in order to obtain the needed bound on trade-off coefficients, it is useful to choose
rather specific norms: l1 on the right-hand side and mixed l1 and l∞ for the distance
on the left-hand side. Let q(−) denote the part of the vector q that is not in the
cone D, i.e. a vector with the following coordinates:

q
(−)
i = min(0, qi) for i = 1, . . . k1

q
(−)
i = max(0, qi) for i = k1 + 1, . . . k2

q
(−)
i = qi for i = k2 + 1, . . . k

(12)

Then the cone IntDε can be e.g. written as:

IntDε = {q ∈ IRk : ‖ q(−)‖l1 +2ε ‖ q(−)‖l∞< ε ‖ q ‖l1}

= {q ∈ IRk :
k∑
i=1

| q(−)
i | +2ε max

1≤i≤k
| q(−)

i |< ε
k∑
i=1

| qi |} (13)

3The concept of distance can correspond even to another norm in IRk than on the right-side,
since all norms in IRk are topological equivalent.
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Note that IntDε 6= ∅ even if IntD = ∅ (as stressed before, the later holds for
cones D of the form (4) including some stabilized objectives). Moreover, if we define
weakly efficient solutions with respect to the “broader” cone IntDε, we can prove
that they are equivalent to properly efficient solutions with (global, not only local)
trade-off coefficients bounded a priori by M = 1 + 1/ε; we shall call such outcomes
and decisions ε-properly efficient. Thus, the sets of ε-properly efficient outcomes
and ε-properly efficient decisions can be defined as:

Q̂pε
0 = {q̂ ∈ Q0 : (q̂ + IntDε) ∩Q0 = ∅} (14)

and:

X̂pε
0 = {x̂ ∈ X0 : (F(x̂) + IntDε) ∩ F(X0) = ∅} (15)

The traditional proper efficiency – with only an existential bound on trade-off
coefficients – can be then defined by:

Q̂p
0 =

⋃
ε>0

Q̂pε
0 , X̂

p
0 =

⋃
ε>0

X̂pε
0 (16)

The cone IntDε or its closure Dε can be better understood by observing that
Dε is simply a “slightly broader” cone than D. For example, if D = IRk

+, in case of
Pareto-optimality, the cone Dε of the form (13) can be also written as:

Dε = {q ∈ IRk : q =
k∑
j=1

λjq
(j)
ε , λj ≥ 0},

q(j)
ε = (−ε, −ε, . . . 1 + (k − 1)ε(j), . . . ,−ε, −ε)T ;

Dε = {q ∈ IRk : −qj ≤ ε
k∑
i=1

qi, j = 1, . . . k}

= {q ∈ IRk : min
1≤i≤k

qi + ε
k∑
i=1

qi ≥ 0} (17)

The last representation is particularly important: Dε can be represented as a
zero-level set of the function min1≤i≤k qi + ε

∑k
i=1 qi.

In any case (convex or not) the definitions of various types of efficiency imply
that:

Q̂pε
0 ⊆ Q̂p

0 ⊆ Q̂0 ⊆ Q̂w
0 ; X̂pε

0 ⊆ X̂p
0 ⊆ X̂0 ⊆ X̂w

0 (18)

After specifying any variables in a model as objectives qi, we should first know
– at least approximately – the ranges in which these variables might vary. This is
also important beacuse we shall often aggregate objectives – that is, combine them
into one function (not necessarily by summation) – and many objectives might
have various units of measurement and must be re-scaled to dimension-free units
before aggregation. Thus, any system supporting vector optimization must include
a function of estimating such ranges.
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The usual way of such estimation is to compute the ideal or utopia point by
optimizing separately each objective and to estimate its counterpart – the nadir point
(a lower bound on objectives that are maximized, upper on those minimized). While
the utopia point components do not usually change, if we change the number of
objectives selected (we might need to compute utopia components for new objectives,
but they do not influence old objectives), the nadir point components do change.

This is because of the difference in definitions of the utopia and nadir points. The
utopia point consists of best values of objectives in both the sets Q0 and Q̂0 – but it
is simpler to compute the best values in the larger set Q0. The nadir point consist
of worst values of objectives, but only in the smaller set of efficient outcomes Q̂0 –
there might be worse values, than at nadir point, in the set of non-efficient points
Q0 \ Q̂0. Although the computations of the nadir point might be quite difficult (see
e.g. Korhonen and Steuer, 1997), the information contained in this point is quite
important; therefore, we need at least an approximation of the nadir point.

A simple way (though certainly not the best) of such approximation of nadir
components is to take the worst values of objective components that occur while
computing the best values of other components during the calculations of utopia
point:

qi,uto = max
q∈Q0

qi, q̂(i) = argmax
q∈Q0

qi,

i = 1, . . . k1 (for maximized objectives)

qi,uto = min
q∈Q0

qi, q̂(i) = argmin
q∈Q0

qi,

i = k1 + 1, . . . k2 (for minimized objectives)

q
(1)
i,nad = min

1≤j≤k
q̂

(j)
i , i = 1, . . . k1 (max)

q
(1)
i,nad = max

1≤j≤k
q̂

(j)
i , i = k1 + 1, . . . k2 (min) (19)

Such worst values q
(1)
i,nad might be still better than the actual nadir components

(they are equal to nadir components only in some special cases, including the case
k = 2). Thus, in order to estimate the nadir approximately, it is sufficient to

increase the range qi,uto − q(1)
i,nad somewhat arbitrarily. There exist various ways of

further improvement of estimates of nadir components, see e.g. Lewandowski at al.
(1989). Similarly as with trade-off coefficients, it is more difficult to interpret utopia
and nadir point for stabilized objectives, see also Lewandowski at al. (1989). In
any case, we can assume that there are defined (either arbitrarily or by computing
the utopia point and estimating the nadir point) some estimates of ranges of each
objective values:

qi,lo ≤ qi ≤ qi,up i = 1, . . . , k (20)

where qi,up for maximized objectives (qilo for minimized ones) is at least as high
(low) as the corresponding utopia point component and the range qi,up − qi,lo is ap-
proximately as large as the range utopia-nadir. First after specifying such ranges, we
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can reduce objectives to dimension-free (e.g. percentage) scales and then speak about
relative importance of criteria, their weights, interpret the trade-off coefficients, etc.

3 Reference Points and Achievement Functions

We assume here that for each objective – which can be maximized, minimized or
stabilized – reference levels in the form of either aspiration levels q̄i (which would be
good to achieve) or, additionally, reservation levels ¯̄qi (which should be achieved if it
is at all possible) are specified by the modeler. These reference levels will be used as
main interaction parameters by which the modeler controls the selection of decisions
and their outcomes. The values of these reference levels are subject to reasonability
constraints only, given lower and upper bounds qi,lo, qi,up for each objective:

qi,lo < ¯̄qi < q̄i < qi,up, i = 1, . . . , k1 (max)
qi,lo < q̄i < ¯̄qi < qi,up, i = k1 + 1, . . . , k2 (min)

(21)

For stabilized outcomes we can use two pairs of reservation and aspiration levels:
one “lower” pair ¯̄qi,lo < q̄i,lo as for maximized outcomes and one “upper” pair q̄i,up <
¯̄qi,up as for minimized ones.

A way of aggregating the objectives into an order-consistent achievement func-
tion4 consists in specifying partial achievement functions σi(qi, q̄i) or σi(qi, q̄i, ¯̄qi)
which should:

a) be strictly monotone consistently with the specified partial order – increasing
for maximized objectives, decreasing for minimized ones, increasing below (lower)
aspiration level and decreasing above (upper) aspiration level for stabilized ones;

b) assume value 0 if qi = q̄i ∀i = 1, . . . , k and aspiration levels are used alone – or
assume value 0 if qi = ¯̄qi ∀i = 1, . . . , k and assume value 1 if qi = q̄i ∀i = 1, . . . , k,
if both aspiration and reservation levels are used.

This seeming inconsistency results from the fact that the number 0 is more
important than the number 1: if the aspiration levels are used alone, we just check
with the help of the sign of an achievement function, whether they could be reached.
In such a case, it is useful to define partial achievement functions with a slope that
is larger if the aspiration levels are closer to their extreme levels:

σi(qi, q̄i) = (qi − q̄i)/(qi,up − q̄i) (max),

σi(qi, q̄i) = (q̄i − qi)/(q̄i − qi,lo) (min), (22)

σi(qi, q̄i) =

{
(q̄i − qi)/(qi,up − q̄i), if qi > q̄i
(qi − q̄i)/(q̄i − qi,lo), if qi ≤ q̄i

}
(stab)

where q̄i,lo = q̄i,up = q̄i was assumed for stabilized objectives. An alternative
way is to use piece-wise linear functions, e.g. to change the slope of the partial
achievement function depending on whether the current point is above or below the
aspiration point:

4For a more detailed theory of such functions see e.g. Wierzbicki, 1986.
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σi(qi, q̄i)
(max)

=

{
(qi − q̄i)/(qi,up − q̄i), q̄i ≤ qi ≤ qi,up
β(qi − q̄i)/(q̄i − qi,lo), qi,lo < qi ≤ q̄i

}

σi(qi, q̄i)
(min)

=

{
(q̄i − qi)/(q̄i − qi,lo), qi,lo ≤ qi ≤ q̄i
β(q̄i − qi)/(qi,lo − q̄i), q̄i < qi ≤ qi,up

}

σi(qi, q̄i)
(stab)

=

{
(qi,up − qi)/(qi,up − q̄i), q̄i ≤ qi ≤ qi,up
(qi − qi,lo)/(q̄i − qi,lo), qi,lo ≤ qi < q̄i

}

(23)

where the coefficient β > 0 is selected in such a way that the functions are
not only monotone, but also concave (thus can be expressed as minima of their
component linear functions, which is useful for their applications together with linear
models).

If both aspiration and reservation levels are used, it is more useful to define the
partial achievement functions as piece-wise linear functions e.g. of the form:

σi(qi, q̄i, ¯̄qi)
(max)

=


1 + α(qi − q̄i)/(qi,up − q̄i), q̄i ≤ qi ≤ qi,up

(qi − ¯̄qi)/(q̄i − ¯̄qi), ¯̄qi < qi < q̄i
β(qi − ¯̄qi)/(¯̄qi − qi,lo), qi,lo ≤ qi ≤ ¯̄qi


σi(qi, q̄i, ¯̄qi)

(min)
=


1 + α(q̄i − qi)/(q̄i − qi,lo), qi,lo ≤ qi ≤ q̄i

(¯̄qi − qi)/(¯̄qi − q̄i), q̄i < qi < ¯̄qi
β(¯̄qi − qi)/(qi,lo − ¯̄qi), ¯̄qi ≤ qi ≤ qi,up


σi(qi, q̄i, ¯̄qi)

(stab)
=


β(¯̄qi,up − qi)/(qi,up − ¯̄qi,up), ¯̄qi,up ≤ qi ≤ qi,up

(¯̄qi,up − qi)/(¯̄qi,up − q̄i), q̄i < qi < ¯̄qi,up
(qi − ¯̄qi,lo)/(q̄i − ¯̄qi,lo), ¯̄qi,lo < qi < q̄i

β(qi − ¯̄qi,lo)/(¯̄qi,lo − qi,lo), qi,lo ≤ qi ≤ ¯̄qi,lo


(24)

The coefficients α, β should be positive and chosen in such a way that partial
achievement functions are not only monotone, but also concave. Other forms of
piece-wise linear partial achievement functions satisfying these conditions are also
possible – e.g. an achievement function for stabilized objectives might be defined as
greater than 1 inside the interval [q̄i,lo; q̄i,up] if q̄i,lo < q̄i,up, see Fig. 2.

If the values of σi(qi, q̄i, ¯̄qi) would be restricted to the interval [0;1], then they
could be interpreted as fuzzy membership functions µi(qi, q̄i, ¯̄qi) (see e.g. Zadeh, 1978,
Seo et al. 1988, Zimmermann et al. 1994) which express the degree of satisfaction of
the modeler with the value of the objective qi. More complicated forms of such fuzzy
membership functions can be also used, see e.g. Vincke (1992), Fodor and Roubens
(1994), Granat et al. (1994); for illustrative simplicity, we shall not consider these
more complicated forms here.



– 15 –

qi

0
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σiµi σi

µi
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µi

σi
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σi, µi σi, µi

qqi,up qqi,loqqi,lo qqi,up

Figure 2: The difference between a partial achievement function σi(qi, q̄i, ¯̄qi) and
a corresponding fuzzy membership function µi(qi, q̄i, ¯̄qi) in the case of a stabilized
objective.

A partial achievement function can be looked upon as simply a nonlinear trans-
formation of the objective range satisfying some monotonicity requirements. The
essential issue is how to aggregate these functions as to obtain a scalarizing achieve-
ment function with good properties for vector optimization or multi-objective model
analysis. There are several ways of such aggregation. One way is to use fuzzy logic
and select an appropriate representation of the “fuzzy and” operator5. The simplest
operator of this type is the minimum operator:

µ(q, q̄, ¯̄q) =
∧

1≤i≤k
µi(qi, q̄i, ¯̄qi) = min

1≤i≤k
µi(qi, q̄i, ¯̄qi) (25)

which, however, would result only in weakly Pareto-optimal or weakly efficient
outcomes when used for multi-objective analysis. To secure obtaining ε-properly
efficient outcomes, we have to augment this operator by some linear part (compare
the last expression for the cone Dε in (17)). The corresponding overall membership
function would then have the form:

µ(q, q̄, ¯̄q) = ( min
1≤i≤k

µi(qi, q̄i, ¯̄qi) + ε
k∑
i=1

µi(qi, q̄i, ¯̄qi))/(1 + kε) (26)

An interpretation in terms of membership functions can be in fact used in a
graphic interaction with the modeler; however, membership functions µi(qi, q̄i, ¯̄qi)
and µ(q, q̄, ¯̄q) are not strictly monotone if they are equal to 0 or 1. Therefore,

5In selecting “fuzzy and” operator for aggregation, we actually assume that all objectives are
similarly important and non-compensative. This assumption is fully justified in multi-objective
model analysis (we do not ask the modeler for reasons why she/he has selected a given set of
objectives), but it might be not necessarily satisfied in other cases of aggregation of attributes.
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inside a vector optimization system, a slightly different overall achievement function
must be used, with values not restricted to the interval [0;1]:

σ(q, q̄, ¯̄q) = ( min
1≤i≤k

σi(qi, q̄i, ¯̄qi) + ε
k∑
i=1

σi(qi, q̄i, ¯̄qi))/(1 + kε) (27)

In both above equations, ε > 0 is the same coefficient as the one used when
defining the proper ε-efficiency, with a prior bound M = 1 + 1/ε on corresponding
trade-off coefficients. Actually, this bound limits here trade-off coefficients not be-
tween various objectives qi and qj, but between their transformed values σi(qi, q̄i, ¯̄qi)
and σj(qj, q̄j, ¯̄qj); in order to obtain bounds on original trade-off coefficients between
qi and qj, it is necessary to take into account the current slopes of partial achieve-
ment functions. However, if these slopes have prior bounds, the original trade-off
coefficients will also have prior bounds.

The above derivation of an order-consistent achievement function from a “fuzzy
and” operator is not the only one possible. In fact, simpler versions of order-
consistent achievement functions were used originally. Some of such versions can
be looked upon as a simplification of function (27). For example, suppose only
aspiration levels q̄i are used, all objectives are maximized and dimension-free and
the partial achievement functions have a simple form σi(qi, q̄i) = qi − q̄i. Then the
order-consistent achievement function takes the form:

σ(q, q̄) = ( min
1≤i≤k

(qi − q̄i) + ε
k∑
i=1

(qi − q̄i)) (28)

where we do not have to subdivide by 1 + kε because only the value 0, not 1, of
this function is significant. This function can be seen as a prototype order-consistent
achievement scalarizing function. It is monotone with respect to the cone IntDε and
its zero-level set represents this cone – compare (17):

q̄ + IntDε = {q ∈ IRk : σ(q, q̄) > 0} (29)

Other order-consistent achievement functions similar to (27) were also used in
reference point methodology or other similar approaches to multi-objective opti-
mization – see e.g. Wierzbicki (1986), (1992), Nakayama et al. (1983), Steuer
(1986).

Since function (27) is also strictly monotone with respect to the cone IntDε, we
have:

• Sufficient condition for ε-proper efficiency. For any q̄, ¯̄q (with compo-
nents strictly contained in the ranges [qi,lo; qi,up]) a maximal point of σ(q, q̄, ¯̄q) with
respect to q ∈ Q0 = F(X0) is a properly efficient objective vector with a prior
bound on trade-off coefficients and, equivalently, a maximal point of σ(F(x), q̄, ¯̄q)
with respect to x ∈ X0 is a properly efficient decision with a prior bound.

In order to derive a corresponding necessary condition, consider σ(q, q̄, ¯̄q) as a
function not of q = (q1, .qi, .qk)T but of their transformed values y = (y1, .yi, .yk)T ,
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yi = σi(qi, q̄i, ¯̄qi). In the transformed space, the reservation point ¯̄y = 0, since
¯̄yi = σi(¯̄qi, q̄i, ¯̄qi) = 0. Denote by ρ(y) = σ(q, q̄, ¯̄q) the achievement scalarizing
function in the transformed space. Then, according to (17), we can write the cone
Dε (actually, with its vertex shifted to ¯̄y, which is conveniently equal to 0 in this
case) in the following form:

¯̄y +Dε = {y ∈ IRk : ρ(y) ≥ 0} (30)

and, when taking into account the monotonicity of ρ(y), we obtain similarly as
in (29):

¯̄y + IntDε = {y ∈ IRk : ρ(y) > 0} (31)

Now, suppose q̂ = F(x̂) is a properly efficient outcome of an admissible decision
x̂ ∈ Q0 with such bounds on trade-off coefficients that they are less than M = 1+1/ε
in the transformed space of yi = σi(qi, q̄i, ¯̄qi). Let us shift the reservation point to this
properly efficient point, ¯̄q = q̂. According to the definition of the ε-proper efficiency,
the cone ¯̄y + IntDε cannot intersect the (transformed by yi = σi(qi, q̄i, ¯̄qi)) set Q0.
However, relation (31) indicates that, in such a case, ŷ = ¯̄y = 0 corresponding to
q̂ = ¯̄q will be a maximal point of ρ(y) in the transformed set Q0, or, equivalently,
q̂ will be a maximal point of σ(q, q̄, ¯̄q) with respect to q ∈ Q0.

Such a way of deriving the necessary conditions of efficiency is actually an adapta-
tion of the concept of separation of sets to the case of nonlinear separating functions
which represent conical sets: the function ρ(y) separates (by a cone) the sets ¯̄y+Dε

and transformed Q0, if ¯̄q = q̂, see Wierzbicki (1983, 1992b). We conclude that we
have:

• Necessary condition for ε-proper efficiency. For any properly efficient
q̂ = F(x) with appropriate prior bounds on trade-off coefficients, there exist ¯̄q
and/or q̄ such that q̂ maximizes σ(q, q̄, ¯̄q) with respect to q ∈ Q0 = F(X0).

Actually, we can prove even more – see Wierzbicki (1986): the user can influence
the selection of q̂ = F(x̂) Lipschitz-continuously by changing ¯̄q and/or q̄ (except
in cases when the set of properly efficient objectives is disjoint). We say that this
selection is continuously controllable.

Moreover, the scaling of the partial achievement functions and the scalarizing
achievement function is such that the user can draw easily:

• Conclusions on the attainability of reservation and/or aspiration
points. If the maximal value of σ(q, q̄, ¯̄q) with respect to q ∈ Q0 = F(X0) is
below 0, it indicates that the reservation point is not attainable, ¯̄q 6∈ Q0 = F(X0),
and also that there are no points q ∈ Q0 dominating ¯̄q, i.e. {q ∈ IRk : q ≥
¯̄q} ∩ Q0 = ∅. If this maximal value is 0, it indicates that the reservation point is
attainable and properly efficient. If this maximal value is 1, the same can be said
about the aspiration point q̄. Similar conclusions concerning the values between 0
and 1 and above 1 can be made. If we use aspiration levels alone, there is only one
critical value 0 of the achievement function corresponding to the aspiration point q̄.
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This property justifies the name “achievement function” since its values measure
the achievement as compared to aspiration and reservation points. The name “order-
consistent” achievement scalarizing function is used to indicate that the function is
strictly monotone with respect to the cone IntDε, hence it preserves the (partial)
order implied by the cone, and its zero-level-set corresponds to the set ¯̄q+Dε, hence
it represents the order implied by the cone.

The achievement function σ(q, q̄, ¯̄q) – and other similar functions – is nondif-
ferentiable. Moreover, the maximum of this achievement function is in most cases
attained at its “corner”, i.e. at the point of nondifferentiability. In the case of
linear models, the nondifferentiability of the achievement function σ(q, q̄, ¯̄q) does
not matter, since the function is concave and its maximization can be equivalently
expressed as a linear programming problem by introducing dummy variables – see
e.g. Steuer (1986) or Lewandowski et al. (1989).

In the case of nonlinear models, however, optimization algorithms for smooth
functions are more robust (work more reliably without the necessity of adjusting
their specific parameters to obtain results) than algorithms for nonsmooth func-
tions. Therefore, there are two approaches to the maximization of such achievement
functions. One is to introduce additional constraints and dummy variables as for
linear models. Another is a useful modification of the achievement function by its
smooth approximation, which can be defined e.g. when using an lp norm (with
p > 2, because a circle or a ball rather badly approximates the piece-way linear
achievement function; it would be best approximated by very large p, but usually
p = 4 . . . 8 suffices, since larger p result in badly conditioned optimization problems).
We quote here such an approximation only for the case of using aspiration point q̄
alone, assuming that partial achievement functions σi(qi, q̄i) ≤ 1 (e.g. σi(qi, q̄i) = 1
if qi = qi,up for maximized objectives):

σ(q, q̄) = 1− (
1

k

k∑
i=1

(1− σi(qi, q̄i))p)1/p (32)

although a similar formula can be given also when using both q̄ and ¯̄q, see J.
Granat et al., (1994).

We stress again that σ(q, q̄), even in its above form, is not a norm or a distance
function between q and q̄; it might be equivalent to such a distance function only if
all objectives are stabilized. As discussed above, a norm would not preserve needed
properties of monotonicity for maximized or minimized objectives.

Until now we discussed reference (reservation and/or aspiration) points as if
they were simple collections of their components. However, for more complicated
models – e.g. with dynamic structure – it is often advantageous to use reference
profiles or reference trajectories of the same outcome variable changing e.g. over
time. Suppose (see Kallio et al., 1980) that a model describes ecological quality of
forests in a region or country, expected demand for wood, forestry strategies and
projected prices for some longer time – say, next fifty years because of the slow
dynamic of forest growth. The user would then interpret all model variables and
outcomes rather as their profiles over time or trajectories than as separate numbers
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in given years. Mathematically, we can represent such a profile as a vector in a – say,
fifty-dimensional – space, hence the methodology presented above is fully applicable.
From the user point of view, however, it is much easier to interpret model outcomes
and their reference points as entire profiles. Actually, psychological studies show that
it is too difficult to evaluate jointly more than seven to nine outcomes. However, this
applies to separate numbers, not to their profiles or trajectories. A mental evaluation
of such profiles is not as difficult as that of a large number of separate variables; such
profiles become aggregated mentally, particularly if graphically presented. There
are also other issues related to applications of reference trajectory optimization to
dynamic models. For example, the user might like to specify the growth ratios or
the increments of selected model outcomes as an additional objective trajectory; the
dynamic properties of the model might be exploited when preparing or executing
optimization of model outcomes, etc. – see Makowski et al. (1991) and Wierzbicki
(1988).

4 Neutral and Weighted Compromise Solutions

By a neutral compromise solution, we understand typically in multi-criteria analysis
a decision with outcomes located somewhere in the middle of the efficient set; a more
precise meaning of “somewhere in the middle” specifies the type of a compromise
solution. This notion was investigated in detail first by Zeleny, see e.g. (1974). He
has shown (for the case of maximizing all objectives) that, in order to be sure of
efficiency of solutions minimizing the distance even if the set Q0 is not convex, the
reference point q̄ for a scalarizing function s(q, q̄) =‖ q − q̄ ‖ should be taken at
the utopia point, called also ideal point, q̄ = quto, or “above to the North-East”
of this point, at a “displaced ideal” or simply upper bound q̄ = qup ∈ quto + D.
Then, when minimizing a distance related to a lp norm with 1 ≤ p < ∞, properly
efficient (Pareto-optimal) compromise solutions are obtained. The Chebyshev (l∞)
norm results in only weakly efficient solutions, unless its minimization is supple-
mented by a lexicographic test. Dinkelbach and Isermann (1973) have shown that
an augmented Chebyshev norm – with a linear part added such as in achievement
functions discussed earlier in this chapter – results in properly efficient solutions.

As we have stressed earlier, in order to use a norm we must be sure that all
objective components are of the same dimension or dimension-free. Thus, we have
anyway to rescale the increments of objectives – from | qi − qi,up | to | qi − qi,up |
/ | qi,up − qi,lo | (where qi,lo is a lower bound, e.g. an approximation of the nadir
point component). After such rescaling, when fixing the reference point at the
upper bound point, we can define neutral compromise solutions (actually, neutral
compromise solution outcomes, while neutral compromise solution decisions are just
the decisions needed to reach these outcomes) with equal weighting coefficients as:

q̂(p)
neu = argmin

q∈Q0

(
k∑
i=1

| qi,up − qi |p
| qi,up − qi,lo |p

)1/p

, 1 ≤ p <∞

q̂(∞)
neu = argmin

q∈Q0

(
max
1≤i≤k

| qi,up − qi |
| qi,up − qi,lo |

)
,
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q̂(1,∞)
neu = argmin

q∈Q0

(
max
1≤i≤k

| qi,up − qi |
| qi,up − qi,lo |

+ ε
k∑
i=1

| qi,up − qi |
| qi,up − qi,lo |

)
(33)

the last one with some small ε > 0. As noted above, q̂(∞)
neu might be only weakly

efficient – and not uniquely defined in such a case. However, we can select then an
efficient solution by additional testing, e.g. an additional lexicographic optimization,
see Ogryczak et al. (1989).

The neutral solution q̂(1,∞)
neu can be obtained also in a different way, since qi,up ≥

qi ≥ qi,lo and:

qi,up − qi
qi,up − qi,lo

=
1

2
− qi − q̄i,mid
qi,up − qi,lo

, q̄i,mid =
qi,up + qi,lo

2
(34)

therefore:

max
1≤i≤k

| qi,up − qi |
| qi,up − qi,lo |

+ ε
k∑
i=1

| qi,up − qi |
| qi,up − qi,lo |

=

− min
1≤i≤k

qi − q̄i,mid
qi,up − qi,lo

− ε
k∑
i=1

qi − q̄i,mid
qi,up − qi,lo

+
1

2
(1 + εk) (35)

Hence, minimizing the distance (induced by the augmented Chebyshev norm)
from the upper bound point is equivalent to maximizing the following order-consistent
achievement function (which is just a re-scaled version of (28)):

σ(q, q̄mid) = min
1≤i≤k

qi − q̄i,mid
qi,up − qi,lo

+ ε
k∑
i=1

qi − q̄i,mid
qi,up − qi,lo

,

q̄i,mid =
qi,up + qi,lo

2
(36)

with the reference point q̄mid located precisely in the middle of the ranges be-
tween upper bound and lower bound point.

However, such neutral solutions as defined above might serve only as a starting
point for interaction with the user. More general is the concept of weighted com-
promise solutions. Suppose weighting coefficients αi > 0, ∀i = 1, . . . k,

∑k
i=1 αi = 1,

are given (by the decision maker or by a special identification method, e.g. Analyt-
ical Hierarchy as proposed by Saaty, 1980). Once the weighting coefficients α are
determined, the weighted compromise solutions q̂(p)

α are defined by:

q̂(p)
α = argmin

q∈Q0

(
k∑
i=1

αi
| qi,up − qi |p
| qi,up − qi,lo |p

)1/p

, 1 ≤ p <∞

q̂(∞)
α = argmin

q∈Q0

(
max
1≤i≤k

αi
| qi,up − qi |
| qi,up − qi,lo |

)
, (37)

q̂(1,∞)
α = argmin

q∈Q0

(
max
1≤i≤k

αi
| qi,up − qi |
| qi,up − qi,lo |

+ ε
k∑
i=1

αi
| qi,up − qi |
| qi,up − qi,lo |

)
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While the concept of weighted compromise results in sufficient conditions of
Pareto-optimality – all weighted compromise solutions q̂(p)

α for 1 ≤ p < ∞ are
properly efficient (Pareto-optimal) – necessary conditions are more complicated.
We cannot generally say that we can obtain any properly efficient outcome desired
by the decision maker by changing weighting coefficients. Moreover, the character
of the dependence of q̂(p)

α on α is not easy to interpret. In some applications, this
might be a procedural advantage; however, in the case of a decision maker who is an
analyst, designer or a modeler, the lack of a clear interpretation of this dependence
is disadvantageous.

There is, fortunately, one case in which the dependence of a weighted compromise
solution on weighting coefficients is easy to interpret, namely the case of Chebyshev
norms. We shall discuss here the augmented Chebyshev norm and q̂(1,∞)

α . Suppose
we choose a weighting coefficient vector α with αi > 0,

∑k
i=1 αi = 1, and a scalar

coefficient η ≥ 1/αi ∀i = 1, . . . k in order to assign to each αi an aspiration level:

q̄i = qi,up −
qi,up − qi,lo

ηαi
(38)

Then we obtain qi,lo ≤ q̄i < qi,up ∀i = 1, . . . k because of the inequality satisfied
by η – although the aspiration levels q̄i might change with η, in which case equation
(38) describes a line segment in IRk starting with qlo and ending at qup as η →∞.
Conversely, for any aspiration point q̄ such that qi,lo ≤ q̄i < qi,up ∀i = 1, . . . k we can
set:

αi =
qi,up − qi,lo
qi,up − q̄i

/
k∑
j=1

qj,up − qj,lo
qj,up − q̄j

η =
k∑
j=1

qj,up − qj,lo
qj,up − q̄j

(39)

which defines the inverse to the transformation (38). We can interpret this
inverse transformation in the following way: the ratios ωij = αi/αj of importance of
criteria are defined by selected aspiration levels as an inverse ratio of their relative
distances from upper bound levels:

ωij =
αi

αj
=
qj,up − q̄j
qi,up − q̄i

(40)

The transformation (39) has been used by Steuer and Choo (1983) in a procedure
using the augmented Chebyshev norm and q̂(1,∞)

α , but controlled interactively by the
decision maker who specified aspiration points (called definition points by Steuer and
Choo) that were used to define the weighting coefficients. The outcomes of such a
procedure are properly efficient; Steuer and Choo show that any properly efficient
outcome can be obtained by this procedure for convex sets Q0.

However, we can show more: under transformations (38), (39), the weighted
compromise solution q̂(1,∞)

α can be equivalently obtained by the maximization of an
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order-consistent achievement scalarizing function with such aspiration levels used as
a reference point. This is because we have:

αi
qi,up − qi
qi,up − qi,lo

=

(
qi,up − qi
qi,up − q̄i

)/
η =

(
1− qi − q̄i

qi,up − q̄i

)/
η (41)

therefore, since qi,up ≥ qi ≥ qi,lo:

max
1≤i≤k

| qi,up − qi |
| qi,up − qi,lo |

+ ε
k∑
i=1

| qi,up − qi |
| qi,up − qi,lo |

=

(− min
1≤i≤k

qi − q̄i
qi,up − q̄i

− ε
k∑
i=1

qi − q̄i
qi,up − q̄i

+ 1 + εk)/η (42)

Hence, minimizing the weighted distance (induced by the augmented Chebyshev
norm) from the upper bound point is equivalent to maximizing the following order-
consistent achievement function (again defined as in (28) with re-scaling):

σ(q, q̄) = min
1≤i≤k

qi − q̄i
qi,up − q̄i

+ ε
k∑
i=1

qi − q̄i
qi,up − q̄i

(43)

with the aspiration point q̄ defined as the transformation (38) of the vector of
weighting coefficients α with any (sufficiently large) parameter η.

Moreover, even if the set Q0 is not convex (or even if it is a discrete set), we can
take any properly efficient outcome q̂ with trade-off coefficients scaled down by the
deviations from the upper levels and bounded by:

tij(q̂)
qj,up − q̂j
qi,up − q̂i

≤ (1 + 1/ε) (44)

At any such point, we can define a reference point and weighting coefficients – by
taking q̄ = q̂ and applying the transformation (39) – in such a way that the maximal
point of σ(q, q̄), equal to the weighted compromise solution q̂(1,∞)

α , coincides with
q̂. This can be shown by an appropriate modification of the argument on separating
the set Q0 and the conical set q̂ + IntDε by a level set of the function σ(q, q̄), as
discussed in the previous section, see also Wierzbicki (1992b).

5 Modeling for Multiobjective Analysis

Reference point methods can be used for a wide variety of substantive model types.
However, methods of optimization of an achievement function attached to a compli-
cated model depends very much on the model type. Moreover, this concerns even
model building: constructing a complicated model is an art and requires a good
knowledge not only of the disciplinary field concerned, but also of the properties of
models of the particular class. Thus, analysts which can build such models require
special skills; we shall sometimes call them modelers.
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There exist today special software tools for building analytical models, called gen-
erally modeling systems or algebraic modeling languages – such as Gams, Aimms,
Ampl, see e.g. Brooke et al. (1988), Bisschop et al. (1993), Fourer et al. (1993).
However, they usually represent the perspective of single-objective optimization and
can be adapted to multiobjective model analysis only through additional tricks.

Linear models provide a good starting point in modeling. In the case of large-
scale models, a practical way to develop a model is to prepare first a linear version
and then augment it by necessary nonlinear parts.

In a textbook, the standard form of a linear programming problem is usually
presented as:

”maximize”
x∈X0

(q = Cx ∈ IRk); (45)

X0 = {x ∈ IRn : Ax = b ∈ IRm, l ≤ x ≤ u} (46)

where “maximize” might either mean single-objective optimization if q is a scalar,
or be understood in the Pareto sense, or in the sense of another predefined partial
order implied by a positive cone. Much research has been done on the specification
of Pareto-optimal or efficient decisions and objectives for linear models. However, we
must note that the standard form above uses the equality form of constraints Ax = b
in order to define X0. Other forms of linear constraints can be converted to equality
form by introducing dummy variables as additional components of the vector x, but
the reason for doing so is actually a theoretical elegance. In the practice of linear
programming it is known, however, that the standard form is rather unfriendly to
the modeler. Thus, specific formats of writing linear models have been proposed,
such as MPS or LP-Dit format, see e.g. Makowski (1994). Without going into
details of such formats, we shall note that they correspond to writing the set X0 in
the form:

X0 = {x ∈ IRn : b ≤ y = Ax + Wy ≤ b + r ∈ IRm, l ≤ x ≤ u} (47)

where the vector x denotes rather actual decisions than dummy variables, thus
x,m, n denote different variables than in the standard textbook form. The model
output y is composed of various intermediary variables (hence it depends implicitly
on itself, though often in a directly computable way related to a lower-triangular
form of matrix W: outputs defined “later” depend on outputs defined “former”,
but not vice versa). Essential for the modeler is her/his freedom to choose any of
outputs yj, including actually decisions xj, as an objective variable qi and to use
many objectives – not only one, which is typical for algebraic modeling languages.

Even more complicated formats of linear models are necessary if we allow for the
repetition of some basic model blocks indexed by additional indices, as in the case
of linear dynamic models:

X0 = {x ∈ IRn : wt+1 = Atwt + Btxt; bT ≤ yt = Ctwt + Dtxt
≤ bt + rt ∈ IRm, lt ≤ xt ≤ ut; t = 1, . . . T} (48)
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where wt is called the dynamic state of the model (the initial condition w1

must be given), the index t has usually the interpretation of (discrete) time, and
x = (x1, . . .xT ) is a decision trajectory (called also control trajectory). Similarly,
w = (w1, . . .wT+1) is a state trajectory while y = (y1, . . .yT ) is the output trajec-
tory. Actually, the variable w should be considered a part of the vector y (it is an
intermediary variable, always accessible to the modeler) but is denoted separately
because of its special importance – e.g. when differentiating the model, we must
account for the state variables in a special way, see e.g. Wierzbicki (1984). Other
similarly complicated forms of linear models result e.g. from stochastic optimization.

A modeler that has developed or modified a complicated (say, dynamic) large
scale linear model should first validate it by simple simulation – that is, assume
some common sense decisions and check whether the outputs of the model make
also sense to her/him. Because of multiplicity of constraints in large-scale models it
might, however, happen that the common sense decisions are not admissible (in the
model); thus, even simple simulation of large-scale linear models might be actually
difficult.

An important help for the modeler can be inverse simulation, in which she/he
assumes some desired model outcomes ȳ and checks – as in the classical goal pro-
gramming – whether there exist admissible decisions which result in these outcomes.
Generalized inverse simulation consists in specifying also some reference decision x̄
and in testing, whether this reference decision could result in the desired outcomes
ȳ. This can be written in the goal programming format of norm minimization, while
it is useful to apply the augmented Chebyshev norm (with changed sign, because
we keep to the convention that that achievement functions are usually maximized
while norms are minimized):

σ(y, ȳ,x, x̄) = −(1− ρ)( max
1≤i≤n

|xi − x̄i | +ε
n∑
i=1

|xi − x̄i |)

− ρ( max
1≤j≤m

|yj − ȳj | +ε
m∑
j=1

|yj − ȳj |) (49)

The coefficient ρ ∈ [0; 1] indicates the weight given to achieving the desired
output versus keeping close to reference decision. It is assumed for simplicity sake
that all variables are already re-scaled to be dimension-free.

A multi-objective optimization system based on reference point methodology
can clearly help in such inverse simulation. In such a case, we stabilize all outcomes
and decisions of interest and use for them partial achievement functions of the form
σi(yi, ȳi) (or even σi(yi, ȳi, ¯̄yi)), similar to those defined in a previous section in terms
of objectives qi. An overall achievement function has then the form:

σ(y, ȳ,x, x̄) = (1− ρ)( min
1≤i≤n

σi(xi, x̄i) + ε
n∑
i=1

σi(xi, x̄i)

+ ρ( min
1≤j≤m

σj(yj, ȳj) + ε
m∑
j=1

σj(yj, ȳj)) (50)
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It is more convenient for the modeler, if such functions are defined inside the deci-
sion support system which also has a special function inverse simulation, prompting
her/him to define which (if not all) decisions and model outputs should be stabilized
and at which reference levels.

Even more important for the modeler might be another interpretation of the
above function, called simulation with elastic constraints or softly constrained sim-
ulation. Common sense decisions might appear inadmissible for the model, because
it interprets all constraints as hard mathematical inequalities or equations. On the
other hand, we have already stressed that it is a good modeling practice to distin-
guish between hard constraints that can never be violated and soft constraints which
in fact represent some desired relations and are better represented as additional ob-
jectives with given aspiration levels. Thus, in order to check actual admissibility of
some common-sense decision x̄, the modeler should answer first the question which
constraints in her/his model are actually hard and which might be softened and
included in the objective vector q. Thereafter, simulation with elastic constraints
might be performed by maximizing an overall achievement function similar as above.

If (50) is maximized with concave piece-wise linear partial achievement functions
σi and for a linear model, then the underlying optimization problem can be converted
to linear programming. In fact, if a partial achievement function – say, σi(xi, x̄i) – is
piece-wise linear but concave, then it can be expressed as the minimum of a number
of linear functions:

σi(xi, x̄i) = min
l∈Li

σil(xi, x̄i) (51)

where σil(xi, x̄i) are linear functions. Assume that a similar expression is valid for
σj(qj, q̄j). The maximization of the function (50) can be then equivalently expressed
as the maximization of the following function of additional variables z, zi, w, wj:

(1− ρ)(z + ε
n∑
i=1

zi + ρ(w + ε
m∑
j=1

wj) (52)

with additional constraints:

σil(xi, x̄i) ≥ zi, ∀l ∈ Li
zi ≥ z, ∀i = 1, . . . n

σjl(qj, q̄j) ≥ wj, ∀l ∈ Lj
wj ≥ w, ∀j = 1, . . .m (53)

Similar conversion principles apply if we have a mixed integer linear programming
model – that can even express piece-wise linear models which are not concave (or not
convex in the case of function minimization). Thus, we can use inverse simulation or
even softly constrained simulation for mixed integer programming models (although
not all heuristic algorithms, related to some specific forms of objective functions in
mixed integer optimization, would work for such optimization problems).

Even less developed than user-friendly standards of defining linear models are
such standards for nonlinear models. The classical textbook format for (multi-
objective optimization of) such models is simply:
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”maximize”
x∈X0

(q = f(x) ∈ IRk); (54)

X0 = {x ∈ IRn : g(x) ≤ 0 ∈ IRm} (55)

where fi(x) models consecutive objective functions and gj(x) models consecutive
constraints of the set of admissible decisions. However, such a format is seldom
convenient for more complicated models, in which it is useful to consider various
model outputs y and define both objectives and constraints in terms of such model
outputs.

While there exist some standards for specific nonlinear optimization systems –
such as in Minos, Gams, Aimms, Ampl, see e.g. Brooke et al. (1988), Bisschop
et al. (1993), Fourer et al. (1993) – they are devised more for single-objective
optimization purposes than for practical multi-objective modeling and analysis (ex-
perience in modeling shows that a model should be analyzed multi-objectively even
if it is later used for single-objective optimization only). A useful standard was
developed in the multi-objective nonlinear optimization system Didas-N

6 (see e.g.
Krȩglewski at al. 1988). Briefly, it consists in defining subsequent nonlinear model
output relations:

y1 = f1(x, z);

. . . = . . .

yj+1 = fj+1(x, z, y1, . . . yj), j = 1, . . .m− 1;

. . . = . . .

ym = fm(x, z, y1, . . . ym−1) (56)

together with bounds for decision variables and outputs:

xilo ≤ xi ≤ xiup, i = 1, . . . n; yjlo ≤ yj ≤ yjup, j = 1, . . .m (57)

(bounds for model parameters z are less essential). This way, a directly com-
putable (explicit, except for bounds) nonlinear model is defined. Implicit models can
be defined by specifying yjlo = yjup for some j, which is then taken into account and
resolved during optimization. Any variable yj (and xi, if needed) can be specified
as maximized, minimized or stabilized objective.

The model equations and bounds are specified using a computer spreadsheet
format. The Didas-N system includes rather advanced automatic (algebraic) func-
tions of model differentiation: it presents to the modeler all required partial and full
derivatives and prepares an economical way of computing numerically the deriva-
tives of the overall achievement function in a smooth form similar to Eq. (32). A
specific robust optimization solver, based on a shifted penalty function approach,
was developed and included in the system.

6Developed in the Institute of Control and Computation Engineering, Technical University
of Warsaw, in cooperation with IIASA. Available as a public domain software from IIASA, see
Appendix, in Poland from system authors.
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However, Didas-N is a closed, nonmodular system written in Pascal, difficult
for working with larger models, particularly when including large-scale linear model
parts. Therefore, a new system called Didas-N++ was developed, see Granat et
al. (1994). This system was written in C++ with a modular structure, includes
the possibility of selecting optimization solvers, and a choice and customization
of a graphical user interface, together with a preferred option of specifying user
preferences in terms of fuzzy membership functions controlled by aspiration and
reservation levels (as discussed in a previous section; the membership functions
µi(qi, q̄i, ¯̄qi) are displayed and modified graphically while the achievement functions
σi(qi, q̄i, ¯̄qi) are actually used in computations).

The format of nonlinear model definition in Didas-N++ is similar to that of
Didas-N (while the equations (56) do not need to be written consecutively; the
system checks their sequence and direct computability while warning the modeler
about any loops in model definition). However, the nonlinear part can be also linked
with a linear part, which is indicated by the general format:

y1 = A1x1 + Acxc,

y2 = f(x2,xc, z,y1,y2) (58)

where y1,y2,x1,x2 denote the vectors of model outputs and decision variables
specific for the linear and nonlinear parts, while xc is the vector of decision variables
common for both parts.

The model is first analyzed by an algebraic processing and compiling module
to produce an executable file easily linked with other modules of the system – the
organizing module, a graphic interface, a selected solver – and containing all in-
formation how to compute model outputs and their derivatives, together with the
possibility of modifying values of decision variables, bounds and parameters. Thus
the compiling process might be long for complicated models, but the repetitive runs
of the compiled model needed in its simulation and optimization are relatively short.

Especially difficult for such compiling are dynamic nonlinear models, of the gen-
eral form indicated e.g. by following equations:

y1,t+1 = h1(wt,xt, zt, t),

. . . = . . .

yj,t+1 = hj(wt,xt, zt, y1,t, . . . yj−1,t, t),

. . . = . . .

ym,t+1 = hm(wt,xt, zt, y1,t, . . . ym−1,t, t) (59)

where the dynamic state wt+1 to be used in next time instant t = 1, . . . T is
defined as a part of model outputs selected by the modeler, wt+1 = {yj,t}j∈Jst or,
shortly, wt+1 = Isyt, where Is denotes a selection matrix; w1 is a given parameter
vector.
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Note that if we wanted to compute the derivatives of model outputs with respect
to given parameters7 zj, then we would have to solve equations (59) together with
the corresponding linearized equations defined for each such parameter and for t =
1, . . . T . If we denote equations (59) shortly by:

yt = h(wt,xt, zt,yt, t); wt+1 = Isyt; t = 1, . . . T ; w1 - given (60)

then the linearized equations take the form:

∂yt
∂zj

=
∂h

∂w (t)
∆wt +

∂h

∂x (t)
∆xt +

∂h

∂y (t)

∂yt
∂zj

+
∂h

∂zj (t)

∆wt+1 = Is
∂yt
∂zj

; t = 1, . . . T ; w1 = 0 (or given) (61)

where the derivatives are evaluated at the solutions of the model (60):

∂h

∂w (t)
=
∂h

∂w
(wt,xt, zt,yt, t) (62)

etc., while ∆xt = 0 if we do not assume an explicit dependence of xt on zj in
the model. We see that the necessary computations of derivatives can be rather vo-
luminous. Fortunately, there exist special techniques of backward sweep or utilizing
adjoint equations that considerably shorten both algebraic and numerical determi-
nation of derivatives in such complicated models, see e.g. Wierzbicki (1984) or
Griewank (1994).

6 Applications of Reference Point Methods

The reasoning presented in previous sections might seem rather abstract. Nonethe-
less, all development of reference point methods was very much applications-oriented,
starting with the original work of Kallio et al. (1980) on forestry models, including
many other applications to energy, land use and environmental models at IIASA,
applications of satisficing trade-off methods by Nakayama et al. (1983) to engineer-
ing design, various applications of Pareto Race of Korhonen et al. (1985), and many
others. Recent applications of a reference (aspiration-reservation) point method
have been developed at IIASA using a modular tool MCMA (MultiCriteria Model
Analysis)8 by Granat and Makowski (1995, 1998) in relation to regional management
of water quality (Makowski, Somlyódy and Watkins, 1996), land use planning (An-
toine, Fischer, Makowski, 1997) and urban land-use planning (Matsuhashi, 1997).

Here we present only two short examples: one application to engineering design
and another to ship navigation support.

7The parameters are assumed here, for simplicity, to be constant in time; if they change in time
or if we compute derivatives with respect to decisions xi,t, we must increase their number.

8The MCMA tool is available from the URL: www.iiasa.ac.at/∼marek/soft freee of charge
for research and educational purposes.
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The first case concerns a classical problem in mechanical design – the design of a
spur gear transmission unit, see e.g. Osyczka (1994). The mechanical outlay of this
unit is shown in Fig. 3. The design problem consists in choosing some mechanical
dimensions (the width of the rim of toothed wheel, the diameters of the input and
output shafts, the number of teeth of the pinion wheel, etc.) in order to obtain a
best design. However, there is no single measure of the quality of design of such a
gear transmission. Even when trying only to make the unit as compact as possible
– which can be expressed by minimizing the volume of the unit while satisfying
various constraints related to mechanical stresses and to an expected lifetime of
efficient work of the gear unit – we should take into account other objectives, such
as the distance between the axes or even the width of the rim of toothed wheel
(which is, at the same time, a decision variable).

The specification of a mathematical model that expresses the available knowledge
on designing such gear units is obviously a question of expert opinion. After all,
the modeler is a specialist in her/his specific field and knows best how to choose
substantive models for a given problem; that is also the reason why we present here
mostly methods for supporting the modeler in model analysis, not supplementing
her/him in final decisions. Therefore, in the example of gear unit design, we follow a
specialist who has selected a specific model in this case (Osyczka, 1994) and comment
only on the methodology of preparing the model for analysis and analyzing it.

d_
p2

d_
p1

d_
1

d_
2

l1
b

a
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Figure 3: A diagram of the spur gear unit

The equations of the corresponding model contain some tables of coefficients ob-
tained by empirical, mechanical studies. While such original data are very valuable,
an analytic approximation of them might be more useful for model analysis. Thus,
these tables were approximated by exponential functions. The problem might be
then specified in a classical textbook format such as (54, 55) by defining three objec-
tive functions fi(x) and 14 constraints gj(x), some nonlinear and some expressing
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simple bounds. We present it here in a form similar to the textbook format (al-
though the model was actually rewritten in the DIDAS-N++ format, because this
system was used for further analysis).

1. The decision variables are: the width of the toothed wheel rim b (which is also
an objective), the diameters d1 and d2 of the input and output shafts, the number
of teeth of the pinion wheel z̃1 and the pitch of gear teeth m̃ (the last two decision
variables are actually discrete).

2. The objectives are: the volume of the gear unit q1 = f1 [mm3], the distance
between the axes q2 = f2 [mm], the width of the toothed wheel rim q3 = f3 [mm]:

q1 = ((
π

4
m̃2(z̃2

1 + z̃2
2)b) +

π

2
d3

1 +
π

2
d3

2) ∗ 10−5

q2 =
(z̃1 + z̃2)

2
m̃

q3 = b (63)

3. The constraints on the decisions concern various geometric relations and
mechanical stresses:

• g1 expresses the bending stress of the pinion:

g1 = kg1 − Pog ∗ w1/(b ∗ m̃) (64)

where:

V = π ∗ m̃ ∗ z̃1 ∗ ñ/60000; Kd = (14.5 + V )/14.5;

Pmax = 102 ∗N ∗ 9.81/V ; Pog = Pmax ∗Kp ∗Kb ∗Kd;

w1 = 4.7607 ∗ exp(−0.104531 ∗ (z̃1 + 1.28627)) + 1.67421

• g2 expresses the bending stress of the gear:

g2 = kg2 − Pog ∗ w2/(b ∗ m̃) (65)

where:

w2 = 4.7607 ∗ exp(−0.104531 ∗ (z̃2 + 1.28627)) + 1.67421

• g3 expresses the surface pressure of smaller wheel:

g3 = ko1 − Po1/(b ∗ m̃ ∗ z̃1) ∗ (1 + z̃1/z̃2) ∗ y1 (66)

where:

Po1 = Pmax ∗Kp ∗Kb ∗Kd ∗Kz̃1 ;

y1 = 28.4869 ∗ exp(−0.290085 ∗ (z̃1 − 1.78811)) + 3.31178
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• g4 expresses the surface pressure of the greater wheel:

g4 = ko2 − Po2/(b ∗ m̃ ∗ z̃2) ∗ (1 + z̃2/z̃1) ∗ yc (67)

where:
Po2 = Pmax ∗Kp ∗Kb ∗Kd ∗Kz2

• g5, g6 express the torsional stresses of input and output shafts:

g5 = ks −Ms1/W01; g6 = ks −Ms2/W02 (68)

where:

Ms1 = 9549296 ∗N/n; W01 = (π ∗ d3
1)/16;

Ms2 = Ms1/(z1/z2); W02 = (π ∗ d3
2)/16

• g7, g8, g9 express the deviations of the velocity ratio and the relation between
m̃ and d1:

g7 = i− z̃1/z̃2 + ∆i; g8 = z̃1/z̃2 − i+ ∆i; g9 = m̃ ∗ (z̃1 − 2.4)− d1 (69)

• Other constraints are:

g10 = m̃ ∗ (z̃2 − 2.4) − d2; g11 = b/m̃− bm̃min; g12 = bm̃max − b/m̃
g13 = amax − (z̃1 + z̃2)/2 ∗ m̃; g14 = z̃2 − z̃1/i (70)

4. In the above model, the following parameters were used:

N = 12.0 ñ = 280.0; i = 0.317; ∆i = 0.01; z̃1 = 20

where N is the input power [kW], ñ is the rotational input speed [rev/min], i is
the velocity ratio, ∆i is the allowable deviation of velocity ratio, z̃1 is the number
of teeth of the pinion;

Geometric data are:

bm̃min = 5.0; bm̃max = 10.0; amax = 293.8

where bm̃min is the minimum b/m̃ coefficient (m̃ = dpi/zi, i = 1, 2, is the pitch of
the gear teeth, while dpi are the standard diameters of the gear wheels and b is the
teeth width), bm̃max is the maximum b/m̃ coefficient, amax is the maximum distance
between the axes [mm];

Material data are:

kg1 = 105; kg2 = 105; ko1 = 62; ko2 = 62; ks = 70

where kg1 is the allowable bending stress for the pinion [MPa], kg2 is the allowable
bending stress for the gear [MPa], ko1 is the allowable surface pressure for the pinion



– 32 –

[MPa], ko2 is the allowable surface pressure for the gear [MPa], ks is the allowable
torsional stress of the shaft [MPa];

Other data are:

Kb = 1.12; Kz1 = 1.87; Kz2 = 1.3; Kp = 1.25

where Kb is the coefficient of the concentrated load, Kz1 is the coefficient of the
equivalent load for the pinion, Kz2 is the coefficient of the equivalent load for the
gear, Kp is an overload factor;

Calculated data are:

T = 8000; yc = 3.11

where T is the time of efficient work of the gear, yc is a coefficient for the assumed
pressure angle.

The exponential approximations of empirical data tables are expressed by the
functions w1, w2, y1. We presented all these equations with a purpose: in order to
stress that a computerized mathematical model might be very complicated. The
model presented above is actually rather small – because it is static, not dynamic
– as compared to other models used in applications. However, the model repre-
sents rather advanced knowledge in mechanical engineering and the selection of its
various details relies on expert intuition: good modeling is an art. Moreover, even
for such rather small model, the reader should imagine programming the model,
supplying it with all necessary derivatives, selecting by hand such values of deci-
sion variables which would satisfy required constraints, all done without specialized
software supporting model analysis.

When using such a specialized software, the modeler should use first a model
generator, then model compiler; a good model compiler will automatically deter-
mine all needed derivatives. Even when such fast executable, compiled core model
is available, the modeler might have trouble with simple model simulation. The form
of the model is rather complicated (actually – not convex) and without a good ex-
perience in mechanical design it is difficult to select such values of decision variables
which are acceptable.

This is illustrated in Fig. 4 which shows the results of an inverse simulation of the
model with two model outcomes – objectives q1 and q3 denoted respectively by f1

and f3 – and two decision variables denoted by d1 and d2, all stabilized9. However,
since the aspiration and reservation levels were arbitrarily selected, even the inverse
simulation cannot give satisfactory results. The optimization of a corresponding
achievement function indicates that such arbitrary reference levels cannot be realized
in this model. The contours indicated in Fig. 4 represent the values of membership
functions µi(qi, q̄i, ¯̄qi) and the circles on these contours indicate the attained levels
of objectives. Values 0 of these membership functions at circled points indicate that
the requirements of the modeler cannot be satisfied.

9In Fig. 4 – Fig. 6 we use actual interaction screens of Isaap-Tool in Didas-N++.
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Figure 4: Interaction screen of DIDAS-N++ in the inverse simulation case, arbitrary
aspiration levels

Figure 5: Interaction screen of DIDAS-N++ in the inverse simulation case, aspira-
tion levels based on mechanical experience

Figure 6: Interaction screen of DIDAS-N++ in the softly constrained simulation
case, improvements of both objectives
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In order to find results that are admissible for the model, other aspiration levels
must be selected using the experience of a designer, see Fig. 5 where the aspirations
were set according to data given by Osyczka (1994). Since the model was actually
changed – by using the exponential approximation of data tables – from the one
described by Osyczka, the results of the inverse simulation with membership values
close to 1 indicate a positive validity test of the model. However, the inverse simu-
lation results are not efficient in the sense of minimization of objectives (the results
given by Osyczka might be efficient for his model, but the model was changed by
including approximating functions).

Improvement of both (or even all three) objectives considered can be obtained
by switching to softly constrained simulation, as shown in Fig. 6, where the soft con-
straints on decision variables were relaxed in such a way as to obtain efficient results
for the problem of minimizing both selected objectives. In Fig. 6, the improvement
of objective values is shown by line segments leading to circles that indicate the
attained values. A serious model analysis would clearly not stop at the results of
such an experiment – many other experiments, including post-optimal parametric
analysis, might be necessary. However, the above example is presented only as an
illustration of some basic functions of a system of computerized tools for multi-
objective model analysis and decision support.

Another application example shows the usefulness of including dynamic formats
of models. This case concerns ship navigation support (see Śmierzchalski et al.
1994): the problem is to control the course of a ship in such a way as to maximize
the minimal distance from possible collision objects while minimizing the deviations
from the initial course of the ship, see Fig. 7.

Own ship

Ship Bi

Ship Bj

CPBj

w2

w1

(w1, w2)

(vj,ψj)

(vi, ψi)

(w1i, w2i)

DABi

DABj
CPA

CPBi

(w1j, w2j)

(v1, ψ1)

Figure 7: A diagram of ship collision control situation (CPA – safe zone for ship A)

This is a dynamic problem, with the equations of the model described initially
by a set of differential equations for t ∈ [0;T ]:
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ẇ1(t) = v1 sinx(t)

ẇ2(t) = v1 cosx(t)

ẇ1j(t) = vj sinψj, j = 2, . . . n̆

ẇ2j(t) = vj cosψj, j = 2, . . . n̆ (71)

where x(t) is the course of ”our” ship, ψj – courses of other ships, with initial
values of ship positions given as the vector w(0); between other model outcomes,
the objectives can be modeled as:

q1 = min
t∈[0;T ]

min
j=2,...n̆

((w1(t)−w1j(t))
2 + (w2(t)−w2j(t))

2)

q2 =
∫ T

0
(x(t)− ψ1)

2dt (72)

where q1 represents the (squared) minimal distance which should be maximized
and q2 represents the (squared) average deviation from initial course, which should
be minimized.

To be used in a DIDAS-N system, this model was simply discretized in time,
with the resulting model form similar to Eq. (59). We do not describe the anal-
ysis of this model in more detail here (the results of such analysis are given e.g.
in Śmierzchalski et al., 1994); this example was quoted only to show the practical
sense of using dynamic models with multi-objective analysis and optimization. Ex-
periments with this model support the conclusions about the usefulness of algebraic
model differentiation and model compiling, of multi-objective modeling and inverse
or softly constrained simulation for the modeler.

7 A Decision Process in Reference Point Methods

We turn now back to a broader discussion and interpretation of the underlying
methodological assumptions, theoretical results and the decision process considered
in the reference point methodology.

We assume in this methodology that the decision maker – for example, a scientist
analyzing environmental models, an analyst or an engineering designer – develops,
modifies and uses substantive models which are specific for her/his profession and
express essential aspects of the decision situation as perceived by her/him. In the
decision process, the decision maker might have to specify at least partly her/his
preferences and thus to define a preferential model. However, we assume that the
decision maker preserves the right to change these preferences and thus the form of
the preferential model is rather general, for example, restricted to specifying only
which decision outcomes should be maximized or minimized.

Such a decision process might be subdivided into various phases. We might
either include into it the early phases concerned with problem recognition and model
building, or consider them as lying outside of the decision process. We include them
for the sake of completeness and consider the following phases:
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1. Problem recognition and formulation, data gathering and substantive model
selection.

2. Formulation of a substantive model; initial analysis, including model valida-
tion.

3. Selection of a partial preferential model, detailed analysis of the substantive
model, generation of scenarios or design options.

4. Final selection of a scenario or a design, implementation, feedback from
practice.

Phase 1, though extremely important, is not supported by reference point method-
ology. Many known methods of decision analysis and support can be applied for
phase 4; however, they require more detailed specification of preferential models.
The reference point methodology concentrates on methods and techniques that
might be used to support phases 2 and 3.

While it is well known that vector optimization provides various techniques for
supporting phase 3, we stress that such techniques, in particular the reference point
methodology, can be usefully extended to support also phase 2 – often very impor-
tant and time-consuming for the modeler. The application of such techniques in
phase 2 might be called multi-objective model analysis, which is understood here
mainly as a tool of learning by the modeler of various possibilities and outcomes
predicted by her/his models.

Such learning should enhance the intuitive capabilities of an analyst or decision
maker as an expert in the field of his specialization. If we aim to support such
learning by optimization and decision-analytical tools in the early stages of such a
decision process, we cannot concentrate on modeling explicit preference or utility
representation. We cannot even require that the decision maker should be con-
sistent: the inconsistency of the decision maker is valuable in learning. We must
rather concentrate on supporting various experiments performed with the help of
the substantive model. During all such experiments, the final choice of decisions is
not explicitly supported but even actually postponed. In fact, we suggest the use
of “hard” optimization tools to support “soft” learning, deliberation and intuition
formation.

This “hard” optimization concerns an achievement function – a proxy utility
or value function of the computerized DSS working in a quasi-satisficing manner –
which, as already stressed, cannot be described just by a distance from the reference
point. The use of achievement measures based on distance functions in vector opti-
mization and DSS was suggested in several approaches, mostly in the framework of
goal programming. However, goal programming corresponds precisely to satisficing
behavior. Reference point methods are a generalization of the goal programming
approach to such cases when we can and want to improve (minimize or maximize)
certain outcomes beyond their reference points. For this purpose, the special class
of order-consistent achievement functions – the proxy value functions of the DSS,
not necessarily of its user – similar but not equivalent to distance functions was
developed, investigated in detail and applied in many examples and DSS’s.

The main assumption of this approach is the use of multiple criteria optimiza-
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tion as a tool supporting not necessarily actual decision selection, but much rather
facilitating learning about various possible outcomes of decisions as predicted by rel-
evant models or helping in generating scenarios for possible development patterns in
response to the accumulated expertise of the analyst. This approach is thus devised
for a specific type of decision process which typically arises when using environmen-
tal or economic models for generating future development scenarios10 or when using
engineering models for computer-aided design.

The main conclusion of the reference point methodology is that, if we want to
learn, we must postpone choice; if we postpone choice long enough, it might become
self-evident. In this sense, optimization in the reference point methodology is used
not necessarily in a sense of the goal of choice, but rather in the sense of a tool
of learning. That does not mean that the decisions obtained by applying reference
point methodology are arbitrary; if the decision maker learned enough, her/his value
function has stabilized and he/she would like to have a support in the final stage of
actual decision choice, such a support can be also provided by the reference point
methodology, including interactive procedures of choosing best decisions with proven
convergence (see Wierzbicki, 1997).
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[29] M. Makowski and L. Somlyódy and D. Watkins (1996), Multiple Criteria Analysis for Water
Quality Management in the Nitra Basin, Water Resources Bulletin, volume 32, number 5,
pages 937–951

[30] Makowski, M. and J. Sosnowski (1991) HYBRID: Multicriteria Linear Programming System
for Computers under DOS and UNIX. In J. Wessels and A.P. Wierzbicki (eds.) User-Oriented
Methodology and Techniques for Decision Analysis and Support. Lecture Notes in Economics
and Mathematical Systems 397, Springer-Verlag, Berlin-Heidelberg.

[31] Matsuhashi, K. (1997), Application of Multi-Criteria Analysis to Urban Land-Use Planning,
Interim Report, IR-97-091, International Institute for Applied Systems Analysis, Laxenburg,
Austria.

[32] Ogryczak, W., K. Studziński and K. Zorychta (1989) A generalized reference point approach
to multiobjective transshipment problem with facility location. In A. Lewandowski and A.
Wierzbicki, eds.: Aspiration Based Decision Support Systems Lecture Notes in Economics
and Mathematical Systems, Vol. 331, Springer-Verlag, Berlin-Heidelberg.

[33] Osyczka, A. (1994) C Version of Computer Aided Multicriterion Optimization System
(CAMOS). Workshop on Advances in Methodology and Software in DSS, IIASA, Laxen-
burg.

[34] Polak, E. (1976) On the approximation of solutions to multiple criteria decision making
problems. In M. Zeleny, ed: Multiple Criteria Decision Making, Springer-Verlag, New York.

[35] Rios, S. (1994) Decision Theory and Decision Analysis: Trends and Challenges. Kluwer
Academic Publishers, Boston-Dordrecht.

[36] Roy, B. and Ph. Vincke (1981) Multicriteria Analysis: Survey and New Directions. European
Journal of Operational Research 8, 207-218.

[37] Saaty, T. (1980) The Analytical Hierarchy Process. McGraw-Hill, New York.

[38] Sawaragi, Y., H. Nakayama and T. Tanino (1985) Theory of Multiobjective Optimization.
Academic Press, New York.

[39] Seo, F. and M. Sakawa (1988) Multiple Criteria Decision Analysis in Regional Planning.
Reidel Publishing Company, Dordrecht.

[40] Simon, H. A. (1957) Models of Man. Macmillan, New York.
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