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Abstract

Our basic model is a noncooperative multi-player game in which the governments of neigh-
boring countries trade emission reductions. We prove the existence of a market equilibrium
(combining properties of Pareto and Nash equilibria) and study algorithms of searching
a market equilibrium. The algorithms are interpreted as repeated auctions in which the
auctioneer has no information on countries’ costs and benefits and every government has
no information on the costs and benefits of other countries. In each round of the auction,
the auctioneer offers individual prices for emission reductions and observes countries’ best
replies. We consider several auctioneer’s policies and provide conditions that guarantee
approaching a market equilibrium. From a game-theoretical point of view, the repeated
auction describes a process of learning in a noncooperative repeated game with incomplete
information.
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Introduction

The problem we shall be concerned with has a reasonable background in economic theory.
At the general level it is the problem of finding an exchange equilibrium between agents
which produce and consume a public good, where each agent’s valuation and production
costs are unknown to other agents, where each agent can only contribute by participation
in the production of the public good (contributing by paying money is not allowed) and
where a central authority, that can impose a solution, is lacking. As an example one could
mention the early history of the Netherlands where inhabitants in an area threatened
by floods had to join hands in building and maintaining the dykes. An example from
more recent history are multilateral negotiations on reciprocal reduction of arms. In this
paper we shall focus on international environmental cooperation. Many international
environmental conventions have the form of agreements between governments to reduce
emissions of transboundary pollutants reciprocally. As recent examples one can mention
the Second Sulphur Protocol (1994) and the Framework Convention on Climate Change
(1992). The commitments can vary much: in the Second Sulphur Protocol from reduction
of emissions by 87 percent, to 4 percent in 2010 relative to 1980. This observation raises the
question whether it is possible to design procedures to improve the process of negotiations
to obtain commitment that are preferred by all parties in the convention.

In economic theory this problem has been rather neglected. Economists have mainly
concentrated on the question whether there will be sufficient incentives to participate in a
convention. Such issues of formation and stability of the coalition of states are discussed,
for example in [Barrett 1990, 1994]. Closer related to our research question is the work of
[Maeler 1989], [Tulkens 1991], [Chandler, Tulkens 1990]. They have proposed algorithms
to find an equilibrium solution that specifies the emission reduction commitments of par-
ticipants. The drawback of their approach is that money transfers between parties are
involved in searching the cooperative solution. These publications lack in realism, since
multilateral agreements where some countries pay the other ones for cleaning up are quite
exceptional. In this paper we concentrate on the case of reciprocal transboundary pollu-
tion where countries “pay” each other by reducing their emissions on a “quid pro quo”

∗This author has been partially supported by the Russian Foundation for Basic Research under grant
97-01-00161.
∗∗This author has been partially supported by the Russian Foundation for Basic Research under grants

96-01-00219, 96-15-96245, 97-01-00161.
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base. The case of reciprocal emission reduction as trade, which is the dominant actual
practice, has been researched by [Hoel 1991], [Nentjes 1993, 1994a, 1994b] and [Pethig
1982], but only for the simple two country case and they give only static cooperative so-
lutions. The question how these can be found is not discussed. The n-country case has
been investigated by [Nentjes 1990], but analytically it lacks in rigour.

In the game theory the analogous ideas can be found in the works [Ehtamo, Hamalainen
1993], [Ehtamo, Hamalainen, Verkama 1994] in which the problem of computing Pareto
optimal solutions with distributed algorithms was analyzed.

In this paper we combine the mathematical model of noncooperative games with the
economic model of “trading” emission reductions at the auction. Specific for our approach
is that we interpret international environmental negotiations as a kind of multilateral trade
between governments in which the “goods” traded consist of emission reduction by each
party. The basic idea is that country i is willing to increase its emission control effort
if it gets in return a sufficient reduction of transboundary emissions “imported” from
other countries, i = 1, ..., n. In the process each country tries to maximize a national
utility function in which the costs of reducing national emissions are balanced against the
national benefits of a lower pollution load arising from reducing emission in all countries
that participate in the international convention.

The first analytical problem to be solved is whether there exists an equilibrium so-
lution to such a multilateral exchange of emission reductions. We shall call it a market
equilibrium. A next question is, if such an equilibrium exists, under which conditions the
equilibrium solution is optimal in the Pareto sense. These questions will be discussed in
sections 2 and 3. The definition of a market equilibrium has the decomposition prop-
erty: each equation depends on only one utility function. In this sense the definition
of a market equilibrium looks in form like the definition of a Nash equilibrium. In sec-
tion 1 we will establish links, show differences between market and non-cooperative Nash
equilibria and prove that a market equilibrium dominates a non-cooperative Nash equi-
librium. After solving these problems we shall focus on the dynamic question of how to
discover the equilibrium. In sections 4, 5 and 6 we shall design algorithms that approach
an equilibrium in a stepwise way. The algorithms are formulated in terms of an auction.
An auctioneer proposes prices, for each country a specific price, or exchange rate, which
defines how much reduction in national pollution load the country receives in return for
a unit of reduction in its emissions. The countries-participants are replying iteratively
by mentioning emission reductions they are willing to make, given the prices (exchange
rates) proposed by the auctioneer. In the process the auctioneer has information about
the emission transport coefficients between the participants. He uses it to translate the
proposed emission reductions of the countries in the reduction of the pollution load per
country. The auctioneer does not have exact information about the utility functions of the
participants. He may have only rough estimates of their rate of growth and convexity. The
auctioneer compares emission/pollution load reductions offered by the participants with
those demanded by the participants. In case of a gap between “supply” and “demand”
he proposes new prices. From their side, the participants reply by the emission reductions
based only on their own utility functions. In section 5 we prove a convergence result for
a particular auction algorithm. In section 6 we discuss several modifications of searching
algorithms.

We conclude the Introduction with a brief game-theoretical characterization of the
proposed approach. We view trading on emission reductions as a noncooperative game
between the governments (see, e.g., [Germeyer 1971, 1976], [Basar, Olsder 1982], [Vorobyev
1985], [Ehtamo, Hamalainen 1993]). A market equilibrium closely related to the classical
Pareto and Nash equilibria is treated as one of the acceptable situations in the game.
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After stating the existence results we pass to the question: How can the participants
choose an acceptable situation? Unfortunately, game theory does not give general answers
to this question. We follow the approach of the theory of repeated games which assumes
that the players learn in an infinite sequence of game rounds (see, e.g., [Brown 1951],
[Robinson 1951], [Axelrod 1984] [Smale 1980], [Fudenberg, Krebs 1993], [Nowak, Sigmund
1992], [Kaniovski, Young 1995], [Kryazhimskii, Tarasyev 1998]). The proposed auction
determines a learning process for the governments. A strong uncertainty in information
(a government has no information on the utility functions of other countries) is partially
compensated by the auctioneer who regulates individual decisions indirectly and can, to a
certain extend, be associated with the market player described in [Zangwill, Garcia 1981].

1 Market equilibrium, Nash equilibrium and Pareto max-
imum

We deal with a model of trading emission reductions (see [Hoel 1991], [Nentjes 1990, 1994],
[Pethig 1982]). The model involves n countries and an auctioneer. Each country i controls
its emission reduction value, xi ≥ 0. Country i is interested in the maximization of its
utility function, wi given by

wi(x) = −Ci(xi) + Bi

 n∑
j=1

ajixj

 . (1.1)

Here x = (x1, . . . , xn) is the full emission reduction vector, Ci(xi) is the cost paid by
country i for the emission reduction xi, Bi(

∑n
j=1 ajixj) is the ecological benefit gained by

country i thanks to the reduction of the total pollution load to its territory,
∑n
j=1 ajixj , and

aji, a transport coefficient, is a proportion of the emission of country j which is transported
to country i. It is assumed that aji > 0 and

∑n
i=1 aji ≤ 1. Every cost function Ci is

convex and monotone increasing. Every benefit function Bi is strictly concave, monotone
increasing and has a finite saturation level ȳi, that is, remains constant on the interval
[ȳi,∞). Finally, Ci and Bi are assumed to be twice differentiable, which implies

C′i(xi) > 0, C′′i (xi) ≥ 0 (xi ≥ 0), (1.2)

B′i(yi) > 0, B′′i (yi) < 0 (0 ≤ yi < yi), B′i(yi) = 0, (yi ≥ yi). (1.3)

We view the process of choosing an emission reduction vector x as an n-person non-
cooperative game between the countries (see, e.g., [Basar, Olsder 1982], [Vorobyev 1985],
[Barrett 1990, 1994], [Ehtamo, Hamalainen 1993]). The admissible strategies of country i
are emission reductions xi ≥ 0 and its payoff function is wi. We assume that in trading
emission reductions (in international negotiations), or, equivalently, searching a solution
of the game, a delegate of country i is fully informed about the transport matrix

A =


a11 a12 ... a1n

a21 a22 ... a2n

...

an1 an2 ... ann


and the utility function of the government it represents (wi), and has practically no infor-
mation on the utility functions of other countries. The countries enter the game with no
emission reductions; the initial emission reduction vector, x0, is, therefore, zero. We shall
call an emission reduction vector x = (x1, . . . , xn) positive if x1, . . . , xn are positive.
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We consider a market equilibrium as a desired solution of the game. A positive emission
reduction vector xM = (xM1 , ..., x

M
n ) will be called a market equilibrium if for each country

i, the function wi(λx
M) (λ > 0), is maximized at λ = 1,

xMi = argmax{wi(λxM) : λ > 0};

equivalently,
dwi(λx

M)

dλ
|λ=1= 0 (i = 1, . . . , n). (1.4)

Analogous definitions were given in [Ehtamo, Hamalainen 1993] and [Ehtamo, Hama-
lainen, Verkama 1994].

The relations (1.4) show that xM solves the equations

〈∇ wi(x), x〉= 0 (i = 1, ..., n); (1.5)

here 〈·, ·〉 stands for the scalar product in the n-dimensional Euclidean space.
Taking into account the form of wi, (1.1), one easily specifies (1.5) into

−xiC′i(xi) + (
n∑
j=1

ajixj)B
′
i(

n∑
j=1

ajixj) = 0 (i = 1, . . . , n). (1.6)

The equations (1.6) define a set of n offer curves that specify how much emission re-
duction xi country i is willing to supply in response to the deposition reduction

∑n
j=1 ajixj

it receives thanks to emission control of all countries. The ratio

pi = pi(x) =

∑n
j=1 ajixj

xi
(1.7)

represents the rate of exchange (at the emission reduction vector x). It shows to how
many units of the deposition reduction country i is willing to change a unit of its emission
reduction. Using the rates of exchange, we represent (1.6) as

−C′i(xi) + piB
′
i(pixi) = 0 (1.8)

and thus arrive at the next characterization of the market equilibria: A positive emission
reduction vector x is a market equilibrium if and only if it solves the system of algebraic
equations (1.8) where pi is given by (1.7).

Let us recall the notion of a Nash equilibrium. An emission reduction vector xN =
(xN1 , ..., x

N
n ) is a Nash equilibrium if

max
xi≥0

wi(x
N
1 , ..., xi, ..., x

N
n ) = wi(x

N
1 , ..., x

N
i , ..., x

N
n ) (i = 1, ..., n). (1.9)

Since the functions wi are strictly concave, the relations (1.9) are equivalent to the
requirement that all partial derivatives ∂wi(x

N)/∂xi vanish:

∂wi
∂xi

(xN ) = 0 (i = 1, . . . , n);

more specifically, xN is a solution to

−C′i(xi) + aiiB
′
i(

n∑
j=1

ajixj) = 0 (i = 1, . . . , n). (1.10)
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Using the rates of exchange pi (see (1.7)), we represent (1.10) in the form

−C′i(xi) + aiiB
′
i(pixi) = 0 (i = 1, . . . , n) (1.11)

which looks very much like the market equilibrium equations (1.8). A single difference
between the Nash equilibrium equations (1.11) and the market equilibrium equations (1.8)
is that in the former the “self-transport” coefficients, aii, stand on the place of the rates
of exchange, pi. More specifically, the equations are identical in the sense that both state
that the national government of each country i reduces its emission up to the level xi where
its marginal control cost, C′i(xi), equals its national marginal benefit. The equations differ
in understandings of the marginal benefits. At a Nash equilibrium, xN , country i treats
its marginal benefit as the derivative of its benefit function x 7→ Bi(

∑n
j=1 ajixj) in the

direction parallel to the axis xi, and at a market equilibrium, xM , as the derivative in the
direction of xM . In simpler words, to identify a Nash equilibrium emission reduction, xNi ,
country i looks at the impact of its own emission reduction on its marginal benefit, whereas
in identifying a market equilibrium emission reduction, xMi , it takes into account the
impact on its marginal benefit of the deposition reductions, which all countries exchange,
with the rate pi = pi(x

M), to its own abatement.
In what follows, we assume that a starting null-point, x0, is a Nash equilibrium xN .

Thus xNi = 0 (i = 1, . . . , n). Every market equilibrium, xM , which is by definition positive,
dominates the Nash equilibrium in all coordinates, xMi > 0 (i = 1, . . . , n) which says
that for each country a market equilibrium emission reduction exceeds the initial Nash
equilibrium one. In other words, for each country a market equilibrium is ecologically
“cleaner” than the initial Nash equilibrium.

Let us compare the market equilibricity with the Pareto optimality (the analysis will
be continued in section 3). An emission reduction vector xP = (xP1 , ..., x

P
n ) is called a

Pareto maximum if for every emission reduction vector x 6= xP there is country j for
which wj(x) < wj(x

P ). By the Germeyer’s theorem (see [Germeyer 1971, 1976]) the set
of all Pareto maxima coincides with the set of all solutions of the parametric family of the
maximization problems

maximize w(x, γ), xi ≥ 0 (1.12)

where

w(x, γ) = w(x1, ..., xn, γ1, ..., γn) =
n∑
k=1

γkwk(x)

γk ≥ 0 (k = 1, . . . , n),
n∑
k=1

γk = 1 (1.13)

(the theorem is applicable since the utility functions wi are strictly concave). Due to the
strict concavity of wi a maximizer in (1.12) is characterized by

n∑
k=1

γk
∂wk
∂xi

(x) = 0 (i = 1, . . . , n). (1.14)

Thus, all Pareto maxima are characterized as the solutions of (1.14) with arbitrary γk
satisfying (1.13). Note that (1.14) expresses the fact that the rows of of the Jacobi matrix

DW (x) =


∂w1(x)/∂x1 ∂w1(x)/∂x2 ... ∂w1(x)/∂xn
∂w2(x)/∂x1 ∂w2(x)/∂x2 ... ∂w2(x)/∂xn

...

∂wn(x)/∂x1 ∂wn(x)/∂x2 ... ∂wn(x)/∂xn

 (1.15)
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are linearly dependent with nonnegative coefficients γk.
Now let us recall that a market equilibrium x solves the equations (1.5). The latter

shows that the columns of the Jacobi matrix DW (x) are linearly dependent with coeffi-
cients xi > 0 (i = 1, . . . , n). Hence, in the market equilibrium x the rows of DW (x) are
also linearly dependent with some coefficients γ∗k not all of which vanish. If all γ∗k are
nonnegative then, with no loss of generality,

∑n
k=1 γ

∗
k = 1; hence, the market equilibrium

x is a Pareto maximum.
We formulate this observation as a lemma.

Lemma 1.1 Let a market equilibrium x be such that the rows of the Jacobi matrix DW (x)
are linearly dependent with nonnegative coefficients γ∗k (k = 1, . . . , n) not all of which
vanish. Then x is a Pareto maximum.

In section 3 we shall give simple conditions that guarantee that the coefficients γ∗k are
nonnegative.

Example.
To take a closer look at market equilibria and its relationships to Nash equilibria and

Pareto maxima, let us consider a simplified model. Assume that the countries’ cost and
benefit functions are given by

Ci(xi) = cixi

Bi(yi) =

{
diyi − bi

2 y
2
i 0 ≤ y ≤ d/b

d2/2b y > d/b
.

Here di and bi are positive constants. We also assume that the transport matrix A is
nondegenerate. The equations (1.10) for a Nash equilibrium take the form

n∑
j=1

ajixj =
aiidi − ci
aiibi

(i = 1, . . . , n). (1.16)

The system (1.16) determines the unique Nash equilibrium xN = 0 if aiidi − ci = 0
(i = 1, . . . , n).

The equations (1.14) for Pareto maxima are transformed into

−γici +
n∑
k=1

γkdkaik =
n∑
k=1

γkbkaikyk (i = 1, . . . , n); (1.17)

here vectors y = y(x) = (y1(x), ..., yn(x)) are determined by

yk = yk(x) =
n∑
j=1

ajkxj (k = 1, . . . , n). (1.18)

The system (1.17) can be rewritten in the matrix form

−Cγ +ADγ = ABΓy (1.19)

or
−Cγ +ADγ = ABY γ (1.20)

where

B =

 b1 ... 0
...

0 ... bn

 , C =

 c1 ... 0
...

0 ... cn

 , D =

 d1 ... 0
...

0 ... dn

 ,
Y =

 y1 ... 0
...

0 ... yn

 , Γ =

 γ1 ... 0
...

0 ... γn

 , γ =

 γ1

...

γn

 .
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Resolving (1.19) with respect to y under the assumption that γk > 0 (k = 1, ..., n), we
arrive at a linear system of equations for x,

y = ATx = (ABΓ)−1(−Cγ + ADγ).

Hence, arbitrary positive γk satisfying
∑n
k=1 γk = 1 determine a unique a Pareto

maximum by the formula

x = (AT )−1(ABΓ)−1(−Cγ + ADγ).

In order to describe all Pareto points, we resolve the system (1.20) with respect to the
vector of weight coefficients, γ. Nontrivial solutions of this system exist if its discriminant
is zero:

det(ABY +C −AD) = 0. (1.21)

We treat (1.21) as an equation of power n with respect to y. The equation de-
scribes a surface in the n-dimensional space. The highest power in (1.21) has the term
det(A)b1b2 . . . bny1y2 . . . yn which shows that the curvature of the surface is determined by
the sign of det(A). For example, in the two-dimensional space (n = 2) the surface (1.21)
is a hyperbola

det(A)b1b2y1y2 + (−det(A)b1d2 + a11b1c2)y1 + (−det(A)b2d1 + a22b2c1)y2 +

det(A)d1d2 + c1c2 − a11d1c2 − a22d2c1 = 0. (1.22)

We conclude that all Pareto maxima x are such that y = y(x) given by (1.18) lies on
the surface (1.21).

The equations (1.6) for a market equilibrium have the form

cixi = diyi − biy2
i (i = 1, . . . , n). (1.23)

Each equation describes a parabolic surface. The market equilibria are represented by
all positive vectors at which all surfaces intersect (all the surfaces obviously intersect at
the origin). The market equilibria with the Pareto property lie in the intersection of all
parabolic surfaces (1.23) and all surfaces (1.21), (1.18).

The equations (1.23) can be rewritten in the form

wi(x) =
bi
2
y2
i (i = 1, . . . , n).

At a market equilibrium x, the right hand sides are positive, since bi and aji are positive
by assumption. Hence, wi(x) > wi(0) = 0 (i = 1, . . . , n); in other words, in every market
equilibrium each country has a higher utility than in the initial Nash equilibrium xN = 0.

2 Existence of market equilibrium

In this section we provide conditions sufficient for the existence of a market equilibrium.
First of all, we assume that the second derivatives of the cost and benefit functions are
bounded,

∞ > σi ≥ C′′i (xi) ≥ 0 (xi ≥ 0, i = 1, . . . , n), (2.1)

∞ > bi ≥ −B′′i (yi) > 0 (yi ≥ 0, i = 1, . . . , n). (2.2)

Note that the functions yiB
′
i(yi) are bounded,

0 ≤ yiB′i(yi) ≤ ξ0
i <∞ (yi ≥ 0, i = 1, . . . , n). (2.3)
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This follows from the assumption that Bi(yi) is constant on [ȳi,∞). We shall use the
notation

di = B′i(0). (2.4)

We assume that for all i = 1, . . . , n

di > biαi, (2.5)

diβi > σi + bia
2
ii (2.6)

where

αi =
∑
j 6=i

ajiξ
0
j

ajjdj
, (2.7)

βi =
aiidi
ξ0
i

∑
j 6=i

aji; (2.8)

here σi, bi, ξ
0
i , and di come from (2.1), (2.2), (2.3) and (2.4).

The conditions (2.1), (2.2), (2.5), (2.6) guarantee the existence of a market equilibrium.
Note that the conditions do not involve the marginal costs C′i(xi) which constitute strictly
private information. To verify (2.5), (2.6) we must know bounds for the second derivatives
of the cost and benefit functions, the transport coefficients and the derivatives of the benefit
functions at the origin (in fact, the latter derivatives, di, can be replaced by available lower
bounds for di).

To give a strict formulation of the existence result we need several additional defini-
tions. Let us set

x0
i =

ξ0
i

aiidi
, (2.9)

and choose a positive ε smaller than the minimum of x0
i , (i = 1, . . . , n) and satisfying the

inequalities

ε ≤ −aiibiαi + (a2
iib

2
iα

2
i + αi(di − biαi)(σi + bia

2
ii))

1/2

σi + bia2
ii

, (2.10)

ε ≤ 1

βi

[(
diβi − σi

bi

)1/2

− aii.
]
. (2.11)

Note that the assumptions (2.5) and (2.6) imply that the right hand sides in (2.10)
and (2.10) are positive, hence, the desired positive ε exists. Introduce the parallelepiped

Πε = {x ∈ Rn : ε ≤ xi ≤ x0
i , i = 1, ..., n} (2.12)

(which is nonempty due to the choice of ε).

Theorem 2.1 Let (2.1), (2.2), (2.5), (2.6) hold. Then
(i) there exists a continuous operator z mapping Πε into itself, which associates to

every x ∈ Πε a solution z(x) of the system (1.8), (1.7)),
(ii) there exists a market equilibrium belonging to Πε.

Proof. Take arbitrary x ∈ Πε. Let pi = pi(x) (i = 1, . . . , n) be the exchange rates
(1.7). Using (2.9), we estimate pi as follows:

pi ≤ aii +

∑
j 6=i ajix

0
j

ε
≤ aii +

1

ε

∑
j 6=i

ajiξ
0
j

ajjdj
= aii +

αi
ε
, (2.13)
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pi ≥ aii +
ε
∑
j 6=i aji

x0
i

≥ aii + ε
aiidi

∑
j 6=i aji

ξ0
i

= aii + βiε. (2.14)

The vector x satisfies the market equilibrium equation (1.8) if and only if it solves the
equivalent system of equations

ri(zi) = 0 (i = 1, . . . , n) (2.15)

where
ri(zi) = C′i(zi)− piB′i(pizi).

The function ri is strictly monotone increasing, since r′i(zi) = C′′i (zi)− p2
iB
′′
i (pizi) > 0.

By assumption the point xN = 0 satisfies the Nash equilibrium equation (1.10):

C′i(0) = aiiB
′
i(0) = aiidi. (2.16)

Hence,
ri(0) = C′i(0)− piB′i(0) = (aii − pi)di < 0; (2.17)

the inequality holds due to (2.14). For yi, the saturation point of the benefit function B′i,
we have B′i(yi) which implies

ri

(
yi
pi

)
= C′i

(
yi
pi

)
− piB′i (yi) = C′i

(
yi
pi

)
> 0.

Therefore, the interval [0, yi/pi] contains a single positive root, z0
i , of the ith equation

in (2.15).
Let us prove that z0

i ≤ x0
i . Assume the contrary. Then necessarily r(zi) < 0 for all

zi ∈ [0, x0
i ]. Hence,

x0
iC
′
i(x

0
i ) < pix

0
iB
′
i(pix

0
i ) ≤ ξ0

i

(see (2.3)).
Substituting (2.9), we get

x0
iC
′
i(x

0
i ) =

ξ0
i

aiidi
C′i

(
ξ0
i

aiidi

)
< ξ0

i .

Consequently,

C′i

(
ξ0
i

aiidi

)
< aiidi.

Since C′i is increasing (see (1.2)), we get

C′i(0) < aiidi

which contradicts (2.16). A contradiction proves that z0
i ≤ x0

i .
Let us show that z0

i ≥ ε. From (2.17) and ri(z
0
i ) = 0, due to the Lagrange mean value

theorem, we deduce that

ri(z
0
i )− ri(0) = (pi − aii)di = r′i(ηi)z

0
i = (C′′i (ηi)− p2

iB
′′
i (piηi))z

0
i

for some ηi ∈ (0, z0
i ).

Referring to the estimates (2.1) and (2.2), we get

z0
i =

di(pi − aii)
C′′i (ηi)− p2

iB
′′
i (piηi)

≥ di(pi − aii)
σi + bip2

i

= Qi(pi). (2.18)
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Now we use (2.13), (2.14) and continue as follows:

z0
i ≥ min

{
Qi(si) : aii + βiε ≤ si ≤ aii +

αi
ε

}
= mi(ε).

The derivative

Q′i(si) =
di(−bis2

i + 2aiibisi + σi)

bis
3
i

vanishes on the interval [aii,∞) at a single point aii+(a2
ii+σi/bi)

1/2. One can easily state
that this point is a global maximum of Q′i(si) on [aii,∞). Hence, the minima of Qi(si) on
the interval [aii + βiε, aii + αi/ε] are in the endpoints:

mi(ε) = min

{
Qi(aii + βiε), Qi(aii +

αi
ε

)

}
= εdi min

{
αi

σiε2 + bi(aiiε+ αi)2
,

βi
σi + bi(aii + βiε)2

}
.

For stating the desired estimate z0
i ≥ ε it is sufficient to prove that mi(ε) ≥ ε or, more

specifically,
diαiε

σiε2 + bi(aiiε+ αi)2
≥ ε

and
diβiε

σi + bi(aii + βiε)2
≥ ε.

A simpler form of these inequalities is (2.10), (2.11). By assumption the inequalities
(2.10) and (2.10) hold true. Therefore, mi(ε) ≥ ε which implies z0

i ≥ ε. Thus, a single
root of the ith equation in (2.15), z0

i , lies in the interval [ε, x0
i ]. Due to the arbitrariness of

x ∈ Πε, we conclude that there is an operator z that associates to each x ∈ Πε a solution
z0 = z(x) of the system (2.15), (1.7)) which belongs to Πε.

Statement (i) is proved.
The operator z is obviously continuous and carries Πε into itself. By the lemma of

Schauder this operator has a fixed point xM ∈ Πε. Evidently, xM solves the system
(2.15), (1.7) which is equivalent to the market equilibrium system (1.8), (1.7). Since xM

is positive, it is a market equilibrium.
Statement (ii) is proved.
The proof is accomplished.

Example.
Let us give an illustration for the conditions (2.5), (2.6). Assume that the cost functions

are linear and all benefit functions are identical and have the form

Bi(yi) =

{
dyi − b

2y
2
i , 0 ≤ yi ≤ d/b

d2/2b, yi ≥ d/b
.

Obviously di = d. The estimates (2.1), (2.2) and (2.3) hold with σi = 0, bi = b and
ξ0
i = d2/4b. The relation (2.5) turns into

d

b
>
∑
j 6=i

ajid
2

4ajjbd

which is equivalent to

4 >
∑
j 6=i

aji
ajj

. (2.19)
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The relation (2.6) turns into

d

b
>

aiid
2

4bd
∑
j 6=i aji

which is equivalent to ∑
j 6=i aji

aii
>

1

4
. (2.20)

By Theorem 2.1 the inequalities (2.19) and (2.20) guarantee the existence of a mar-
ket equilibrium. Note that (2.19) and (2.20) involve only the transport coefficients. The
inequality (2.19) requires that the pollution amount transported to country i from other
countries must be not too high relative to their self-pollution loads. This requirement can
intuitively be explained as follows. In the opposite situation when the external pollution
load to some country i is very high, the exchange rate pi (1.7) is very high, hence, the
marginal benefit piB

′
i(pixi) is very high relative to the marginal cost C′i(xi); therefore,

the market equilibrium equation (1.8) is never satisfied. The inequality (2.20) is comple-
mentary to (2.20). It says that the pollution amount transported to country i from other
countries must be not too low relative to the self-pollution load of country i. The latter
requirement well agrees with intuition. Indeed, in the opposite situation when the external
pollution load to some country is very low, the country is not interested in the exchange
of emission reductions, hence, a market equilibrium is never reached.

3 Pareto market equilibria

Let us draw our attention to market equilibria belonging to the set of Pareto maxima; we
shall call them Pareto market equilibria. In this section we give an explicit characterization
of some Pareto market equilibria. The argument is based on Lemma 1.1.

We assume the conditions (2.1), (2.2), (2.5), (2.6) which guarantee the existence of
a market equilibrium in the parallelepiped Πε (2.12) due to Theorem 2.1. Like in the
previous section, Πε is determined by the values x0

i (2.9) and a positive ε smaller than the
minimum of x0

i , (i = 1, . . . , n) and satisfying the inequalities (2.10) and (2.11).
For every i = 1, . . . , n we set

Ai =
n∑
j=1

aji.

Let Ωi be the collection of all subsets Ki of the set {k = 1, . . . , n : k 6= i} such that
|Ki| =

[n
2

]
− 1. Here and below |Ki| stands for the number of elements of the set Ki and

[n/2] denotes the integer part of n/2.
A condition sufficient for the Pareto optimality of a market equilibrium has the form:

C′i(ε)− aiiB′i(Aiε) ≥ max
Ki∈Ωi

∑
k∈Ki

aikB
′
k(Akε). (3.1)

Proposition 3.1 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied. Then
every market equilibrium belonging to the parallelepiped Πε is a Pareto market equilibrium.

Proof. In section 1 we noticed that for a market equilibrium x the rows of the Jacobi
matrix DW (x) (1.15) are linearly dependent with some coefficients γ∗k (k = 1, . . . , n) not
all of which vanish. We shall prove that for arbitrary market equilibrium x ∈ Πε all γ∗k
are nonnegative (or, equivalently, have a common sign). This observation will complete
the proof due to Lemma 1.1.
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Using the form of the utility functions wi (1.1), we specify the Jacobi matrix:

DW (x) =


−C′1(x1) + a11B

′
1(y1) a21B

′
1(y1) ... an1B

′
1(y1)

a12B
′
2(y2) −C′2(x2) + a22B

′
2(y2) ... an2B

′
2(x2)

...

a1nB
′
n(yn) a2nB

′
n(yn) ... −C′n(xn) + annB

′
n(yn)


here

yk =
n∑
j=1

ajkxj (k = 1, . . . , n).

We have ∑
j 6=i

γ∗j aijB
′
j(yj) + γ∗i (−C′i(xi) + aiiB

′
i(yi)) = 0, (i = 1, . . . , n). (3.2)

Assume that among the coefficients γ∗k there are both positive and negative ones.
Introduce notations for the sets of positive and negative coefficients:

Γ+ = {k : γ∗k > 0}, Γ− = {k : γ∗k < 0}.

We have Γ+ 6= ∅ and Γ− 6= ∅. Without loss of generality we can assume that the
number of positive coefficients is greater than the number of negative ones, |Γ+| ≥ |Γ−|,
hence, |Γ−| ≤ [n2 ]. Let us fix the index of a negative coefficient whose modulus is maximal:

l = argmax{|γ∗k| : k ∈ Γ−}.

Now select in (3.2) the linear combination corresponding to the column i = l:∑
j 6=l

γ∗jaljB
′
j(yj(x)) + γ∗l (−C′l(xl) + allB

′
l(yl(x))) = 0.

Since aljB
′
j(yj(x)) > 0, we have∑

k∈Γ−\{l}
γ∗kalkB

′
k(yk) + γ∗l (−C′l(xl) + allB

′
l(yl)) < 0.

Hence,

C′l (xl)− allB′l(yl) <
∑

k∈Γ−\{l}

|γ∗k|
|γ∗l |

aikB
′
k(yl) ≤

∑
k∈γ−\{l}

aikB
′
k(yl).

Taking into account the inequalities ε ≤ xi, Aiε ≤ yi and the fact that the functions
C′i are increasing and the functions B′i are decreasing, we continue as follows:

C′l (ε)− allB′l(Aiε) <
∑

k∈Γ−\{l}
aikB

′
k(yl). (3.3)

The right hand side does not exceed the right hand side in (3.1) for i = l. Therefore,
(3.3) contradicts the assumption (3.1). A contradiction shows that all γ∗k have a common
sign, which accomplishes the proof.

Remark 3.1 For n = 2, 3, we have ([n/2]− 1) = 0 and the condition (3.1) is satisfied
automatically.
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4 Searching Pareto market equilibria: repeated auction

It is a common view that Pareto maxima are best in the cooperative game (in a Pareto
maximum no change in the emission reductions leads all countries to better utilities). How
can the governments arrive at a Pareto maximum? Let us imagine for a moment that
there is an international agency able to collect full information on the national emission
control cost functions, transport coefficients and national benefit functions. The agency
could find all Pareto maxima and communicate them to the governments which could
cooperatively select an appropriate one. Unfortunately, this simple way of resolving the
game is not realistic because the full information is never available; the cost functions
constitute a strictly private information for the national governments. We shall show
that under appropriate conditions, there is a realistic negotiation process allowing the
governments to find a Pareto market equilibrium. The process is interpreted as a repeated
auction in which the governments update their decisions without exchanging information
on the national costs and benefits.

Generally, in the negotiations on emission control, each government demands a re-
duction in pollution load and in return offers an emission reduction. The government’s
supply of emission reduction depends on the current rate of exchange, pi (1.7). In the
repeated auction, all delegates of the national governments elect an auctioneer and accept
the next “rule of the game”. In every round of the auction, the auctioneer proposes a
rate of exchange, or a price, pi for each country i, and each national delegate responds by
stating the reduction in emissions his government offers for this price. The (imaginary)
emission reduction vectors at the background of the proposed rates of exchange are viewed
as auctioneer’s plans.

A round of the auction proceeds as follows. The auctioneer offers a plan, a positive
emission reduction vector x, and computes the associated rates of exchange, or prices,
pi = pi(x) (i = 1, . . . , n), by the formula (1.7). Each country i finds its emission reduction
zi(pi), as its best reply to the price pi, that is, a maximizer of its priced utility

wi(zi, pi) = −Ci(zi) + Bi(pizi)

over all zi ≥ 0. The auctioneer analyses all best replies zi(pi) (i = 1, . . . , n) and works
out an updated plan for the next round. In updating the plans the auctioneer does not
use any information on the national cost and benefit functions. The goal of the repeated
auction is to guide the vector of best the replies, (z1(p1), . . . , zn(pn)), to a Pareto market
equilibrium in an infinite sequence of rounds.

Let us take a closer look at the countries’ best replies. Obviously the best reply zi(pi)
is unique and coincides with a nonnegative root of the ith equation in (1.8). Since the
price pi = pi(x) (1.7) is determined by the plan x, we shall also call zi(pi) the best reply to
the plan x and denote it zi(x). We shall deal with the best reply operator z that associates
to every plan x the vector of countries’ best replies, (z1(x), . . . , zn(x)).

Remark 4.1 Due to statement (i) of Theorem 2.1, the conditions (2.1), (2.2), (2.5), (2.6)
yield that the best reply operator z maps the parallelepiped Πε into itself. We shall use
this observation later.

Consider a fixed point of the best reply operator, x∗ = z(x∗). Obviously, x∗i solves the
equation (2.2) with pi = pi(x

∗) (see (1.7)). Hence, the fixed point x∗ is a solution of the
system of equations (1.8) which describes market equilibria. Therefore, if x∗ is positive, it
constitutes a market equilibrium. We arrive at the next observation.

Proposition 4.1 Every positive fixed point of the best reply operator is a market equilib-
rium.
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Due to Proposition 3.1 this statement is specified as follows:

Proposition 4.2 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied. Then
every positive fixed point of the best reply operator belonging to the parallelepiped Πε is a
Pareto market equilibrium.

We conclude that, under the assumptions of Proposition 4.2, the repeated auction
eventually finds a Pareto market equilibrium if the auctioneer’s plans approach a positive
fixed point of the best reply operator in the parallelepiped Πε.

Now let us consider in more detail how the repeated auction proceeds. In each round,
the governments give out their best replies to auctioneer’s plan. Therefore, the auction
dynamics is determined by auctioneer’s strategy for updating plans; we shall call it a
search strategy. Formally, we understand a search strategy as an arbitrary function U that
associates to every (natural) round number k, every positive vector xk (the auctioneer’s
plan in round k) and every nonnegative vector zk (the collection of countries’ best replies
to xk) a positive vector xk+1 = u(k, xk, zk) (the plan for round k + 1).

Let us suppose that some search strategy U (xk+1 = U(k, xk, zk)) be chosen. Then
the repeated auction proceeds as follows.

Round 0.
The auctioneer chooses some (positive) plan x1 for round 1.

Round k, (k ≥ 1).
Step 1.
For the positive plan xk = (xk1, ..., x

k
n) worked out at the previous round, the auctioneer

computes the prices

pki = pi(x
k) =

∑n
j=1 ajix

k
j

xki
=
yi(x

k)

xki
(i = 1, . . . , n)

and offers the price pki to country i.
Step 2.
Each country i finds its best reply, zki = zki (p

k) = zki (x
k), to the price pki ; recall that

zki is a maximizer of the priced utility wi(zi, p
k
i ) = −Ci(zi) + Bi(p

k
i zi) over all zi ≥ 0.

Step 3.
Each country i communicates its best reply zki to the auctioneer.
Step 4.
The auctioneer puts his latest plan xk and the best reply vector zk = (zk1 , ..., z

k
n) in the

search strategy U and works out a plan xk+1 for the next round: xk+1 = U(k, xk, zk).

We shall say that the search strategy xk+1 = U(k, xk, zk) with the initial plan x1

finds a Pareto market equilibrium xM in the repeated auction if the best reply vectors zk

converge to xM as the round numbers k go to infinity: zk → xM as k →∞. Note that in
the assumptions of Proposition 4.2, xM can be defined as a fixed point of the best reply
operator in the parallelepiped Πε. In this case the best replies converge to xM if and only
if the auctioneer’s plans converge to xM : xk → xM as k→∞.

From the point of view of the theory of repeated games the proposed repeated auction
determines a learning process for the governments; the auctioneer can, to a certain extend,
be associated with the market player described in [Zangwill, Garcia 1981].
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5 Finding Pareto market equilibria by following best replies

In this section we focus on the following-best-replies search strategy which prescribes the
auctioneer to take the latest best reply for a new plan:

xk+1 = z(xk). (5.1)

Our goal is to give conditions that guarantee that the following-best-replies search
strategy finds a Pareto market equilibrium in the repeated auction. Basing on Proposition
4.2, we look for a market equilibrium represented as a fixed point of the best reply operator
in the parallelepiped Πε (2.12).

A key point in our analysis is an upper estimate for the norm of the partial derivatives
of the best reply operator z : x 7→ z(x) = (z1(x), . . .zn(x)) in Πε. The differentiation of
the market equilibrium equation (1.8), in which z = z(x) and pi = pi(x) is given by (1.7),
yields

C′′i (zi(x))
∂zi(x)

∂xj
−∂pi(x)

∂xj
B′i(pi(x)zi(x))−piB′′i (pi(x)zi(x))(

∂pi(x)

∂xj
zi(x)+pi(x)

∂zi(x)

∂xj(x)
) = 0.

Resolving this equality with respect to ∂zi(x)/∂xj, we obtain

∂zi(x)

∂xj
= Hi(pi(x), zi(x))

∂pi(x)

∂xj
(5.2)

where

Hi(pi(x), zi(x)) =
B′i(pi(x)zi(x)) + pi(x)zi(x)B

′′
i (pi(x)zi(x))

C′′i (zi(x))−B′′i (pi(x)zi(x))p2
i (x)

.

Now we estimate the numerator and denominator as follows:

B′i(pi(x)zi(x)) + pi(x)zi(x)B
′′
i (pi(x)zi(x)) ≤ Di,

C′′i (zi)−B′′i (pizi)p2
i ≥ Bip2

i ;

here
Di = max

0≤yi≤yi
(B′i(yi) + yiB

′′
i (yi)), (5.3)

Bi = min
0≤yi≤yi

(−B′′i (yi)) > 0. (5.4)

Hence,

Hi(pi(x), zi(x)) ≤
Di

Bip
2
i (x)

. (5.5)

Due to (1.7),

∂pi
∂xj

{
aji/xi if j 6= i(
−∑k 6=i ajixk

)
/x2

i if j = i
.

For x ∈ Πε this formula yields

n∑
j=1

∣∣∣∣∣∂pi(x)∂xj

∣∣∣∣∣ = pi(x)− qi
xi

≤ pi(x)− qi
ε

(5.6)

where
qi = aii −

∑
j 6=i

aji,
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and
1

ε

n∑
j=1

xj

∣∣∣∣∣∂pi(x)∂xj

∣∣∣∣∣ = 2(pi(x)− aii)
ε

(5.7)

(note that (1.7) easily implies pi(x) ≥ aii; hence, the right hand sides in the obtained
estimates are nonnegative).

Combining the equality (5.2), and the inequalities (5.5), (5.6) and (5.7), we get:

n∑
j=1

∣∣∣∣∣∂zi(x)∂xj
(x)

∣∣∣∣∣ ≤ Di

εBi
min{ui(pi(x)), vi(pi(x))} (x ∈ Πε); (5.8)

here

ui(pi) =
(pi − qi)

p2
i

,

vi(pi) =
2(pi − aii)

p2
i

.

Since pi(x) ≥ aii, we have

ui(p(x)) ≤ u0
i , vi(p(x)) ≤ v0

i

where u0
i and v0

i are, respectively, the maximum values of ui(pi) and vi(pi) over all pii ≥ aii.
The differentiation of vi(pi) implies

v′i(pi) =
2(2aii − pi)

p3
i

.

A single maximum point is pi = 2aii and the maximum value is

v0
i =

1

2aii
. (5.9)

Differentiate ui(pi). We get

u′i(pi) =
2qi − pi
p3
i

.

If aii ≥ 2qi, then u′i(pi) ≤ 0 for all pi ≥ aii, the point pi = aii is the maximum of ui(pi),
and the maximum value is

u0
i =

aii − qi
a2
ii

≥ 1

2aii
. (5.10)

If aii < 2qi, then the maximum is attained at pi = 2qi, and

u0
i =

1

4qi
<

1

2aii
. (5.11)

Taking into account (5.9), (5.10), (5.11), we arrive at

min{ui(pi), vi(pi)} ≤ min{u0
i , v

0
i } =

1

2
min

{
1

aii
,

1

2qi

}
=

1

ai

where

ai = 2

aii + max

0, aii − 2
∑
j 6=i

aji


 . (5.12)

Now we specify (5.8) as follows:

max
x∈Pε

n∑
j=1

∣∣∣∣∣∂zi(x)∂xj
(x)

∣∣∣∣∣ ≤ Di

εaiBi
. (5.13)

This estimate yields the next result on finding a Pareto market equilibrium via the
following-best-replies search strategy.
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Proposition 5.1 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied, and

1

ε
max
i=1,...,n

Di

aiBi
≤ ρ < 1 (5.14)

where Di, Bi and ai are given by (5.3), (5.4) and (5.12). Then the following-best-replies
search strategy (5.1) with the initial plan x1 ∈ Πε finds a Pareto market equilibrium in the
repeated auction.

Proof. By Remark 4.1 the best reply operator z maps the parallelepiped Πε into itself.
It is obviously continuous. Hence, Πε contains a fixed point, xM of z.

As noted in the previous section, xM is a market equilibrium. By Proposition 3.1 xM

is a Pareto market equilibrium.
Consider the max-norm in the n-dimensional space: ‖x‖ = maxi∈1,...,n |xi|. Using

(5.13), for be the best reply operator z and arbitrary x, y ∈ Πε we obtain:

‖z(x)− z(y)‖ = max
i
|zi(x)− zi(y)| = max

i=1,...,n

∣∣∣∣∣∣
n∑
j=1

max
0≤η≤1

∂zi
∂xj

(y+ η(x− y))(xj − yj)

∣∣∣∣∣∣
≤ max

i=1,...,n

∣∣∣∣∣∣
n∑
j=1

max
0≤η≤1

∂zi
∂xj

(y + η(x− y))

∣∣∣∣∣∣ max
k=1,...,n

|xk − yk|

≤ max
i=1,...,n

1

ε

Di

AiBi
≤ max

k=1,...,n
|xk − yk| ≤ ρ‖x− y‖

Since ρ < 1, the best reply operator z is a contraction operator on Πε. Therefore, xM

is a unique fixed point of z in Πε.
Let {xk} and {zk} be, respectively, the sequences of the plans and best replies in the

repeated auction corresponding to the following-best-replies search strategy (5.1). Since
the initial plan x1 lies in Πε and z is a contraction operator on Πε, (5.1) shows that {xk}
converges to xM (see, e.g., [Vasin, Ageev 1995], Theorem 2.2). As soon as xM is a fixed
point of the operator z the best replies zk = z(xk) = xk+1, also converge to xM .

We have shown that the following-best-replies search strategy with the initial plan x1

finds a Pareto market equilibrium in the repeated auction.

6 Other search strategies

In stating that the following-best-replies search strategy finds a Pareto market equilibrium
(Proposition 5.1) we used the method of contraction operators well-known in the theory of
approximation of fixed points. Other theoretical methods can also be utilized for the design
of search strategies. We shall consider a few applications of the method of nonexpansion
operators and its modifications. Our analysis will not be as detailed as in the previous
section; we shall not provide any specific relations between the parameters which can be
sufficient for the nonexpansion property of the best reply operator. The technique we shall
refer to operates with the Euclidean norm, ‖x‖e = (x2

1 + . . .+ x2
n)

1/2 (in contrast to the
proof of Proposition 5.1, where the max-norm, ‖x‖ = maxi∈1,...,n |xi|, was utilized).

We shall assume that the best reply operator z is a nonexpansion operator in the
parallelepiped Πε, that is, the inequality ‖z(x) − z(y)‖e ≤ ‖x − y‖e holds for all x, y ∈
Πε. This assumption allows to employ the (more cautious than following-best-replies)
τ -following-best-replies search strategy, which prescribes the auctioneer to move the latest
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plan xk towards the latest best reply zk and stop at a point where a chosen τ proportion
of the distance between xk and zk is covered:

xk+1 = τxk + (1− τ)zk, 0 < τ < 1. (6.1)

In our situation, one of the known fixed point approximation results (see, e.g., [Ortega,
Rheinboldt 1970]; [Vasin, Ageev 1995], Theorem 2.4) can be specified as follows:

If the best reply operator z maps Πε into itself (see Remark 4.1) and the initial plan
x1 lies in Πε, then the plans xk and best replies zk in the repeated auction corresponding
to the τ -following-best-replies search strategy converge to a fixed point of z in Πε. This
observation and a simple argument used in the proof of Proposition 5.1 leads to the next
proposition.

Proposition 6.1 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied, and
the best reply operator z be a nonexpansion operator on Πε. Then the τ -following-best-
replies search strategy (6.1) with the initial plan x1 ∈ Πε finds a Pareto market equilibrium
in the repeated auction.

A modification of the τ -following-best-replies search strategy allows to select a fixed
point closest to a desired emission reduction vector x. If the best reply operator z is
a nonexpansion operator and maps Πε into itself, then the set Sε of all fixed points of
the operator z in Πε is nonempty, closed and convex (see [Vasin, Ageev 1995], Theorem
2.1), and, hence, for every x ∈ Πε there is a unique fixed point x ∈ Sε closest to x:
‖xM − x‖e = minx∈Sε ‖x− x‖e. In the assumptions of Theorem 2.1, all fixed points from
Sε constitute Pareto market equilibria. In this case we shall call xM the x-closest Pareto
market equilibrium (in Πε).

We define the x- extremal following-best-replies search strategy by the formula

xk+1 = (1− τk)x+ τkz(x
k) (6.2)

where 0 < τk < 1. This search strategy is able to find the x- closest Pareto market
equilibrium under an appropriate choice of the coefficients τk. A sequence (τk) will be
called called admissible if 0 < τk < 1, τk+1 > τk, limk→∞ τk = 1, and there is a sequence
of natural numbers (n(k)) such that n(k + 1) > n(k), and

lim
k→∞

(1− τ(k+n(k)))

(1− τk)
= 1, lim

k→∞
n(k)(1− τk) =∞.

An example of an admissible sequence is τk = 1 − 1/kp where p ∈ (0, 1); one can set
n(k) = kq with q ∈ (p, 1).

Referring to [Vasin, Ageev 1995], Theorem 2.8, we arrive at the next statement.

Proposition 6.2 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied, the
best reply operator z be a nonexpansion operator on Πε, x be an arbitrary vector from
Πε, and (τk) be an admissible sequence. Then the x-extremal following-best-replies search
strategy (6.2) with the initial plan x1 ∈ Πε finds the x- closest Pareto market equilibrium
xM in the repeated auction.

The following-best-replies and τ -following-best-replies search strategies are particular
realizations of a more general Mann’s iteration scheme with averaging, which is defined
by the formula

xk+1 = z(vk), vk =
k∑
j=1

mkjxj. (6.3)
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The coefficients mkj are chosen so as to meet the normal Mann conditions: mkj ≥ 0;
mkj = 0 for j > k;

∑k
j=1 mkj = 1; limk→∞mkj = 0; mk+1j = (1 − mk+1k+1)mkj for

j = 1, . . . , k; finally, either mkk = 1 for all k, or mkk < 1 for all k.
We shall treat (6.3) as a generalized averaging search strategy. In contrast to the search

strategies considered earlier, the averaging search strategy has full memory. In round k

of the auction, the auctioneer using the averaging search strategy composes the average
plan vk by giving different weights mkj to all plans xj (j = 1, . . . , k) realized in the past,
and offers the prices pki = pi(vk); the best reply vector zk = z(vk) emerging due to these
prices determines the new auctioneer’s plan xk+1.

If averaging takes into account only latest plan xk, that is, mkk = 1 and mkj = 0
(k 6= j), the averaging search strategy (6.3) turns into the following-best-replies search
strategy (5.1).

If we put

mk1 = (1− τ)k−1, mkj = τ(1− τ)k−j (j = 2, . . . , k), mkj = 0 (j > k),

the averaging search strategy can be represented in the form

vk+1 = (1− τ)vk + τz(vk),

which imitates the τ -following-best-replies search strategy (6.1). The latter, as we see,
takes into account the whole history of plans, mkj 6= 0 (j ≤ k); for large k the latest plan
has the strongest impact: mkk > mkj.

In the averaging search strategy it is admissible to give equal preferences to all plans
in the record: mkj = 1/k (j ≤ k) (Chesaro weights), which implies that the average plans
vk evolve with harmonic coefficients:

vk+1 =

(
1− 1

k

)
vk +

1

k
z(vk).

The application of [Vasin, Ageev 1995], Theorem 2.28, yields the next result.

Proposition 6.3 Let the conditions (2.1), (2.2), (2.5), (2.6) and (3.1) be satisfied, the
best reply operator z be a nonexpansion operator on Πε, and mkj (k, j = 1, 2, . . .) satisfy
the normal Mann condition. Then the averaging search strategy (6.3) with the initial
plan x1 ∈ Πε finds a Pareto market equilibrium xM in the repeated auction; moreover the
average plans vk defined in (6.3) converge to xM .

We considered several search strategies based on standard successive approximations
methods. Nonstandard strategies that strongly take into account the specific structure of
the best reply operator may essentially extend the variety of situations in which a Pareto
market equilibrium is found.

As an example of a nonstandard search strategy, we mention the procedure suggested
in [Ehtamo, Hamalainen, Verkama 1994]:

xk+1 =
yk+1∑n
i=1 y

k+1
i

,

yk+1
i = xki + max

m=1,...,n
(zi(x

k)− zm(xk)),

xk ∈ Sn−1 =

{
x ∈ Rn : xi ≥ 0,

n∑
i=1

xi = 1

}
.

The rigorous specification of the conditions that ensure that this and other nonstan-
dard search strategies find a Pareto market equilibrium is a challenging subject for future
research.
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Conclusion

In this paper we explicitly formulated conditions that guarantee the existence of a market
equilibrium and a Pareto market equilibrium in a noncooperative multi-person game aris-
ing in trading emission reductions. We showed that the notion of the market Pareto equi-
librium and successive fixed point approximation algorithms can be applied in a learning
process associated with international negotiations on multilateral reduction of emissions.
The negotiations can be viewed as a repeated auction in which emission reductions de-
pend on the rates of exchange (prices) that are offered. Under appropriate conditions, we
designed a type of auction that would enable the participants to find Pareto equilibrium
emission reductions dominating the initial Nash equilibrium. The auction would function
if the participants have only information on their own national cost and benefit functions
and their individual rates of exchange. The auctioneer having neither information on costs,
nor on benefits operates with the matrix of transport coefficients and emission reductions
proposed by the delegates. Therefore, the auction is indeed a mechanism that uses the
information actually dispersed among the participants and allows them to coordinate de-
cisions on emission reduction in a Pareto optimal way.
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