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Abstract: Decision making in managing the asset and liability
structure of a pension fund can be supported by stochastic dynamic
optimization. We discuss our model, which is based on data analysis
and forecast for the asset-side as well as a simulation model for the
liability side.

The core of our decision support system consists of the following
building blocks: a set of securities, a pricing module based on a
multifactor Markov model to derive expected returns of securities,
a simulation-based model for liabilities, a carefully chosen objective
function suitable for the pension fund and a stochastic optimization
problem solver. We consider the use of different objectives in the
model and decomposition techniques to solve the stochastic portfolio
optimization problem. Our final goal is to design an efficient parallel
implementation.
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1. Introduction

The growing importance of pension funds has boosted the need for method-
ologically sound principles for asset allocation. Whereas the economical side of
pension fund management has been addressed by some authors (c.g., Haber-
man, 1994: Zimbidis and Haberman, 1993; Haberman, 1993; Dufresne, 1986),
the pertaining decision problem, as a problem of optimization under uncertainty
has not yet been discussed thoroughly in literature.

The characteristics of decision making for pension fund asset allocation are:
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e the planning horizon is long (10 - 30 years);

e the liabilities are determined by the out-payments, which in turn depend
on the mortality of the population;

e the rules of operation of pension funds are often complicated, since they
must determine how investment gains or losses are distributed among the
participants;

e in particular, through these rules, asset performance influences the stream
of liabilities: bad asset performance allows the fund to reduce out-payments,
whereas good performance leads to an increase;

e legal (risk limiting) and operational constraints restrict the possible deci-
sions.

In this paper, we describe the AURORA optimization model for managing
pension funds. The model consists of sub-models for the asset side, the liability
side, allows to specify the objective and constraints and contains a solver for
the large scale linear or nonlinear program. The software is being written in
Fortran 90 and High Performance Fortran (HPF) for parallel execution.

2. Modeling the assets

The pension fund may invest in several asset categories, like national bonds,
international bonds, national equities, international equities, etc.

We will take here the example of a large Austrian pension fund, which decides
how much to invest into two asset catlegories:

1. national bonds,

2. foreign bonds and stocks.
After this decision is made, the further execution is passed to two portfolio
managers (one for each category), who make the particular investments. Since
the pension fund does not directly manage the variety of assets, we may assume
that there are only two assets visible to the fund: asset 1 is the national bond
portfolio and asset 2 is the other asset (stocks and foreign bonds).

Asset 1 has lower return and lower variability in comparison with asset 2.
Fig. 1 shows monthly returns of the two assel categories in the last two years.

For the optimal allocation decision, the future possible developments of the
assets must be modeled as a discrete stochastic process, in particular a discrete
time discrete state Markov process. Since the computational complexity of the
optimization problem is determined by the arc-degree of the transition graph,
the number of successors of each state should be as small as possible. This is
the reason why Markov processes with only two or three successors (birth-and-
death processes) are popular. The simplest model is a random walk on the line
with only two successors (the neighbors) of each state. We call this a binary
lattice.

For each asset category, we construct a binary lattice which describes the fu-
ture returns of this category. Let us briefly describe, how the lattice is estimated
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Figure 1. Monthly return of asset 1 (solid line) and asset 2 (dashed line).

The monthly returns Rf-m), which we have observed, are assumed to be
i.i.d. and stem from a lognormal distribution, i.e., log R™ ~ N(u,a?). The
parameters ;i and ¢? can be estimated from data. We are interested in yearly
returns RW) ie.,

RW = exp(i log R'™) = ﬁ R™,
i=1 i=1
Clearly
log RW) ~ N(12p,1207)
and by the well known exponential moments of the normal distribution

E(RW) = exp(12u + 602)
E([RW1?) = exp(24u + 240?).

We want to find a two-point distribution D¥), which approximates the dis-
tribution of R®). To this end, we have to find constants a and b, such that the
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moments as RW), The determining equations are

a = B(RW) — \/E(RW?) — [E(RW)?
b= E(RW) + \/E(R{y)f) — [E(RW)]2.

Example. For the bond portfolio shown in Fig. 1, we have ji = 0.0026, ¢? =
0.0000291, which gives a = 1.0130, b = 1.0516, whereas for the stock portfolio
we have fi = 0.0077, 6* = 0.0004253 and a = 1.0214, b = 1.1789.

The pension fund makes investment decisions every 6 months. Therefore,
the square roots of the factors a and b are the final modeled G-month returns.
The constructed lattice for asset category 1 is shown in Fig. 2. Note that the
numbers at the nodes of the lattice represent the retiwn accumulated from now
to the time at which a given node appears.
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Figure 2. Example: lattice of accumulated asset return over time,
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3. Modeling the liabilities

The liabilities of a pension fund are determined by the total amount ol pension to
be paid to the beneficiaries in one period. To be more precise, we are interested
in the net cash flow resulting from paying out the pensions and at the same
time receiving contributions from the customers who continue to work. Both
quantities depend on the demographic development of the corresponding risk
group, where a risk group is defined as a group of individuals (numbering a
thousand or more people) whose pension contributions are managed together
and who share a common reserve capital.

Risk factors for the liability side are:

e longevity of the beneficiaries,

e insufficient number of new contributors entering,

o stopping of contribution due to economic difliculties of the contributors.

The risk contained in these uncertainties is also modeled by a binary lattice.
However, construction of this lattice cannot be based on historical data, since
these data are not available or, if available, are not very relevant. The best way
of dealing with the liability risk factors is by simulation.

Let us take again the example of a typical Austrian pension fund. ach cus-
tomer of the fund can be seen as being in one possible state of a discrete Markov
chain. The customers randomly change state according to their demographic
status.

Fig. 3 shows an example of a transition graph for customers. In each state,
payments flow from the customer to the fund or vice versa. The transition prob-
abilities as well as the (sex, age and position dependent) money flows between
customer and fund can be estimated [rom historie data of the fund. from its
operational rules and from general demography.

By simulating independently each of the present customers together with
the possible generation of new customers, we may get a picture of the ture
distribution of total money flows, i.e. the liabilities.

The scenario lattice is then delined by taking the independent product of the
three lattices: the lattice for asset category 1. the lattice for asset category 2
and the lattice for the liabilities. The full scenario lattice is an octal lattice:
each node has 8 = 27 successors. The size of the resulting history tree grows
rapidly with the number of decision periods (see Table 1).

periods | # nodes | # variables | # equations sparsily
1 9 81 45 | 0.337T-01
2 73 657 365 | 0.4255-02
3 585 5,265 2,025 | 0.53215-03
4 5,545 49,905 2 0.561F—-04
5 67,273 605,457 336 0.46G2F—~05
[ 951,305 8,561,745 4,756,525 | 0.32TE-06

Table 1. Sizes of the optimization problem for the underlying octal lattice.
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SIMPLIFIED TRANSITION GRAPH

Figure 3. Pension fund customer state transition graph.
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4. Problem specific objectives and constraints

The objective of a pension fund is to guarantee a high return on the participants’
contributions. But the customers also depend on the pension fund to actually
provide for their needs in the future. Therefore, safety of the portfolio is of
paramount concern.

There are institutional and legal rules regarding pension fund operation in
Austria. Within the constraints set out by the legislators, the managers of the
pension fund are responsible for balancing between the increased return and
increased security of their asset decisions.

4.1. Decision constraints

One decision aspect typical in pension funds (as well as, e.g., trust funds) is the
presence of legal and organizational constraints on decisions. They are designed
to restrict the risk of losses, which would adversely affect the pensioners. In the
case of an Austrian pension fund the legal constraints require that:

e no less than 40% of all assets be held in Austrian bond funds and cash,

e no more than 40% of assets be held in equities and options,

e no more than 20% in real estate, etc.

Due to further details in the legal definitions, in the real life example we use
throughout, up to 50% of assets may be held in equities.

Within those legal constraints, the fund managers of a particular risk group
may decide to limit their decisions further by, e.g., requiring at least 60% of
assets in Austrian bonds. Thus, the general portfolio management problem
with random external cash flows (liabilities and customers’ contributions) has
to be extended to include such constraints. Typically, they can be written down
in form of linear inequalities.

4.2. Objective functions

Since we are designing a decision support systenm, our main task is to present a
decision proposal together with some representation of its possible consequences.
We cannot simply perform one optimization and present the results to the pen-
sion fund management as the only right decision. Furthermore, the decision
maker has to have the ability to influence the resulting decision, preferably by
adjusting one or a few easily understandable parameters of the model.

In decision making under uncertainty the result of a decision can no longer
be well represented by, say, a single number. Instead, a distribution (or density)
of a random variable should be used.

We visualize the terminal wealth distribution by drawing it together with a
box-plot (as shown in Figure 4). Such risk profile can effectively and intuitively
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Figure 4. Graphical representation of terminal wealth distribution.
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Since the decision maker wants and needs to see the risk profile as the result
of the decision, his (or her) attitude towards risk has to be made a part of the
objective.

In the following we shall shortly discuss several possible approaches to ae-
curate representation of decision maker’s goals by the model.

4.2.1. (Risk adjusted) expected terminal wealth

The operating rules do not allow the fund to make profit, since all profits from
asset allocation have io be redistributed among the customers. [lowever, a
steady growth of fund’s capital brings reputation and new customers to the
fund. Therefore, at first it seems reasonable to optimize the total expected
wealth of the fund at the end of the planning horizon. even though this is the
wealth of the customers and not of the company.

Terminal wealth is a random variable, since it depends on the scenario. At
each terminal node n of the scenario tree, the wealth variable W (1) is known
together with the probability p(n) that this node is reached. An example below
and Iig. 5 show how two decisions (resulting from two fixed mix strategies) are
effectively compared.

Example. Following the fixed mix strategy. the portfolio is rearranged at cach
decision moment to meet the prespecified proportions of the asset categories.
As a consequence we have to sell parts of a well performing asset category and
buy a badly performing one.

The terminal wealth distribution with 50% and I'L"S]) 25% of the riskier asset
under these strategies turned out to be as shown in Fig. 5. ixpectedly, the larger
proportion of the riskier but more profitable asset alluws a higher expected
terminal wealth, but also causes larger variation of results across scenarios.

Clearly, maximization of expected terminal wealth is not amenable to deci-
sion maker’s manipulation, unless, e.g.. some measure of his/her risk aversion is
incorporated into the model (which thus becomes a so called mean risk model).
Portfolio safety is not easily quantifiable. However, there exist quite a few
formulations of the stochastic optimization problem objective that incorporate
some risk penalty. Thus, the maximized objective could be composed of a sum
of the expected wealth and the (negative) penalty for risk. Some of the possible
objective function forms are:

e risk measured by mean absolute deviation (MAD):

E(W) - —~EW))) = Z W(n)p(n)
—pZ [TV (n) — Z W(m)p(m)|p(n),
n
where 0 < p < l measures the r]e,g.;m‘ of risk aversion.
The mean absoiute deviation L (IW—E(W)]) is a good measure of the risk
Gonrratad wittl Fln A nmerr e B SO ooy e B A R | 1 '
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Figure 5. Terminal wealth distribution with fixed mix strategies: proportion of
the riskier asset is 25% and 50%, resp.
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tic dominance (SSD) in a sense that a unique optimal solution of a problem
with such objective is SSD eflicient (sce Ogrvezak and Ruszezynski, 1999,
for this and related results). Also, the upper bound on p can be increased
and the above result can be substantially strengthened in the case of svm-
metric distributions.
The risk aversion factor p allows to adapt the objective to the specific
needs of the decision maker. Moreover, MAD preserves lincarity: if the
terminal wealth W is linear in the decision variables . then the objective
is also linear in .

e lower-semivariance as risk criterion:

E(W) — p\JE{(IW = EGV)]2, ).

where 0 < p < 1 (hereafter [-]% denotes projection on a closed interval
(a,b)).
Again, such objective is consistent with SSD in the same sense as above.
Also, it is convex in the decisions x. if W is linear in a:.

Note that since MAD is equivalent to two times mean absolute semideviation,

both those risk measures can be scen as penalties for downside risk only.

4.2.2. Objective with a target level of terminal wealth

An approach related to the terminal wealth maximization is to set the target
terminal wealth 117 and penalize underachievement

maxE(f[“’(T) —W)ge - [W(T) - nf]fix),

where £ > 0 will encourage attempts to gain more than I whenever possible.
Manipulation of W allows the decision maker to steer between solutions with
lower and higher expected returns.

The resulting objective may be scen as nothing more than a concave (piece-
wise linear) utility function. However, using the simple formulation above (and
its equally simple interpretation) we steer clear of the difficulties of identyvfying
the decision maker’s utility.

4.2.3. Disadvantages of a terminal wealth objective function

For individual investors, expected terminal wealth or risk-adjusted terminal
wealth seems to be the right objective. For pension funds, however, it appears
at least debatable. The main goal is, doubtlessly, to guarantee a secure and
steadily growing outpayment of individual pensions.

Let us have a closer look at the operational details. The wealth of the fund
is at all times divided into two parts: capital and (bounded) risk reserve. The
pensions are paid from and are proportional to the capital. The risk reserve is

3 2k i .
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e when the fund’s earnings are poor (less than some return rate 1,). the
reserve is used to make up for the losses, and when it runs out, the out-
payments are reduced,

e high earnings (above some return rate r*. r* > r.) allow 1o fill the reserve
up to its upper limit; any earnings above that are immediately added to
the capital and cause increased outpayments.

It is easy to see that in boundary situations, i.e., when the reserve is empty
or full, increased outpayments reduce wealth while decreased outpayments in-
crease it. Thus, under such circumstances maximization of wealth is exactly the
opposite of what the pensioners and the fund management may wish for.

4.2.4. Objective with a target level of return

One possibility of avoiding the problems with mean terminal wealth objectives is
to set the target return rate 7 and penalize underachievement while encouraging
earnings higher than

T
max Y E (e[Ry(x) = 71§ — [Re(1) — 1%00),

t=1

where e > 0. Note that in the above formulation we take into account the returns
in all periods. This reflects the pensioners’ desire for steady and predictable
income throughout the time of taking pensions.

As it was in the case of target wealth, manipulation of 7 allows the decision
maker to influence solutions and their risk profiles.

4.2.5. Objectives based on aspiration and reservation levels

A related but slightly more advanced model takes the random returns [ (a)
and compares them to the two levels r. and r*. Below. the decision maker’s
expected satisfaction (measured from 0 to 1) in all periods is maximized

T
0 I r*—r
max ) E (H[ﬁ’e(ﬁ:) —Tulp )
t=1 *

More generally, any two return rates r < 12 can be used. The lower one rep-
resents the lowest acceptable performance, the upper one is the return rate we
aspire to achieve under favorable circumstances. In multicriteria optimization
such levels are known as reservation and aspiration levels, respectively. Vary-
ing them, the decision maker may easily influence the optimal solution. Tt is
important to note that their interpretation is clear to the decision maker.

This leads to a non-concave problem. The single period problem

mav K (IG‘P(I) IR ) (et | R{Q)]r.\
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is non-concave in general. Its solution satisfies

E (1{“91%(%(]ﬂ)RmST*}(R(2> _ Rm)) =il

Orig. preference ——
Convexified preference -+--

i 1

reservation aspiration

Figure 6. Objective function based on aspiration and reservation levels.

Following the common practice, we may replace the function 2 — [2])2 with
a concave function

a—-(l+e)a—2) z<a
Uapl) =« = ada<h
b+e(z—b) bh<z.

for some € > 0 (see Fig. 6 for illustration). This formulation makes the objective
piecewise linear concave and is usable even in a linear program.

4.2.6. Empirical comparison of solutions with different objectives

In Fig. 7 and Table 2 the risk profiles for decisions resulting from three difllerent
strategies are presented. Again, returns accumulated over the whole planning
horizon are compared.

A fixed mix strategy (with 50% of each asset) is clearly neither the safest nor
the most profitable with respect to the expected terminal wealth maximization.
The risk adjusted MAD strategy (even with a very small risk aversion factor

. ; ,‘
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Decision type 5% quantile Exp. val. 95% quantile
Fixed mix 1012.5310 | 1074.9568 1139.8300
MAD risk measure 1024.6790 | 1060.0931 1096.0450
Target return 1022.5470 | 1085.2518 1150.3970

Table 2. Comparison of some solutions (values in thousands of Austrian
schillings).

T T T T

__ . Distribution: M.A.D. —
- Risk graph: M.AD, =-==-

Distribution: fixed mix -
Risk graph: fixed mix ==~

Distribution: target
Risk graph: target -

1 : L 1 1
le+06 1.05e+06 1.1e+06 1.15e+06 1.2e+06 1.25e+06

Figure 7. Comparison of risk profiles for decisions taken with different objective
functions (values in thousands of Austrian schillings).
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The target following optimal strategy with a high target of ATS 1.12 billion in
the last period fights for gains quite aggresively (and falls short of the target in
most scenarios).

The mentioned examples are just a small sample of all possible comparisons
that a decision maker may have to make. Choice of the objective [unction and
its parameters (risk aversion factors, target levels, etc.) is an important part
of the decision process. Visual representation of the crucial characteristics of
the proposed solutions is necessary for the decision support system to be an
acceptable tool for pension fund asset management.

5. The stochastic dynamic optimization problem

On the level of abstraction appropriate for considering the optimization meth-
ods, all uncertainties are treated in a uniform manner. We have a discrete time,
discrete state stochastic vector process X(t), t = 1,2,...,T as the process of
uncertainties. This vector process models all economic events which are the
source of uncertainty and risks for the pension fund management., which in our
case are asset returns as well as random contribution and lability streams.

With the process X(t) we associate the history process
X(t) = (X(1),X@),.... X(1).

Since the process X has finitely many states, one may arrange all states of the
history process in a finite tree, called the scenario, or history, tree (see Fig. 8).
Its root is the starting state &} = X(1). The nodes of the tree may be numbered
n € N ={l1,...,N} so that each node number n corresponds in a one-to-one
manner to a history of the process X(-) up to the time at which this node oceurs.
The (unconditional) probability of reaching node n is denoted by p,.

At each node of the tree a decision is taken. The depth of cach node cor-
responds to the time for this decision. The decision is how much assets should
be bought and sold in order to be always able to meet the liabilities (pay the
pensions).

The linearly constrained stochastic dynamic optimization problem with de-
composable objective can be expressed most directly using the tree structure:

min Z pnfn(:rﬂ)
neN (])

V(ﬂ c N) { in-Lep(j:Y} _.i' AnIn e bn

where p(n) denotes the predecessor of node n, ¥(n € N) A, € Rm«*ne T, €

RmeXmem), To avoid treating the root node as a special case, we define X,y =

{p(r)} and Tp(r) = const. For all practical purposes x,.y may be treated as

an initial state and the constant term 7.2,y may be subtracted from the right
] 1 1 o

1 e | L 5 | x ' ~ T: ™ 1 fannmnoy ~ n 1 "
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10

Figure 8. An example of a scenario tree with three periods.
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[f functions f,(z,) are linear, ic., f,(1,) = ( In and the decomposable
constraints x,, € X, have a simple form like, e.g., &, = 0, then the problem (1)
becomes a large scale linear problem.

In the case of non-decomposable objectives, e.g., in the mean risk models,
the formulation is slightly different:

min Y puful@n) + Flaziti€ MCN)
neN (2}

Tf & T + *‘Ll-Tn === tl’”
VineN) { :1:7: GI{)({,.

Although the change seems very small it has wide ranging consequences for
the optimization procedure. The tree-oriented expression is no longer as easily
amenable to decomposition as the form (1) is.

Adding the non-decomposable term F(x; : i € M C A) to the objective
creates an implicit all-to-all logical link between all nodes i € M. 19.g., in the
mean risk models M is typically the set of terminal nodes of the ll(’v. Ina
case of decomposition methods this forces a lot of additional synchronization of
results and in fact might require major rethinking of those methods. In direct
solution algorithms, like the interior point method mentioned in the following
section, it causes unwelcome structural changes of the problem that also add a
lot to the practical difficulty of solution.

6. Selected optimization methods

[t is neither possible nor desirable to present or even name all optimization
methods that can be applied to the problem at hand. As this part of work is still
in progress we shall outline only those methods that are considered candidates
for implementation and application within the AURORA Financial Management
System,

The huge size (see Table 1 for a calculation of dimensions of a real life prob-
lem) as well as computational effort needed to solve the realistic optimization
problems of this class call for solution methods which will exploit to the limits
the most modern and powerful computers, especially the parallel ones, Thus,
methods amenable to efficient parallel implementation are in the focus of our
attention. Again, detailing the methods for parallel implementation is beyond
this paper’s intended scope.

At present all optimization methods listed below are either tested for suit-
ability to our problem, or in some stage of development.

As noted in the previous section, introduction of risk terms causes significant
and so far unresolved difficulties for all of the optimization methods currently
considered. In the discussion below we will therefore consider only the decom-
posable models:

o expected terminal wealth objective (wnh no risk term),

i Alatantiars vk e a Fnisreet Laasal alfbmwvis i 1 alets
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e objective with a target level of return,
e objective based on aspiration and reservation levels,

6.1. Direct solution by an interior point method

The literature of interior point methods (IPMs) already includes a large amount
of excellent reviews, monograplis and even textbooks. We shall therelore refer
the reader to Wright (1997) for a thorough introduction of IPMs, while we
shall only remark briefly on one aspect of efficiency in the context of pension
fund asset liability management problem. See also, e.g., Birge and Qi (1990),
Birge and Holmes (1992), Gassmann (1991), Czyzyk et al. (1994), Ruszezyniski
(1993a), Berger et al. (1991) and references therein for more information on
[PMs in the context of stochastic programming.

Thanks to a special structure of our problem (1), a primal-dual IPM may
be successfully used for solving rather large problem instances. In [PMs the
efficiency of a symmetric (possibly semi- or quasi-) definite factorization of a
so-called normal matrix determines the efliciency of the whole method. [t turns
out that our particular constraint matrix structure is very favorable when em-
ploying the primal normal equations approach. Fig. 9 presents an exmaple of
a constraint matrix and the corresponding normal equations matrix. It is easy
to see that the normal matrix is relatively sparse. In fact. both the formation
of the normal matrix and its factorization turn out to cause very little fill in,
which is a precondition for a successful and efficient solution of the probleni.
Even without further specialization of the algorithm relatively large problems
were already solved successfully. Consult Dockner et al. (1998) for the precise
statement of the optimization problem.

6.2. Augmented Lagrangian decompositions

All the augmented Lagrangian decomposition methods mentioned below are
based on the same principles:

e the idea of relaxing inconvenient constraints (in our case — those linking
decomposable subproblems) and introducing, instead, a form of penalty
for their violation,

e Lagrangian augmentation which enables the use of a simple iterative method,
the so called multiplier algorithm, for coordination by means of adjust-
ments of penalties (Bertsekas, 1982).

Detailed statements are of necessity left out of this work. The reader may

wish to consult Ruszezyniski (1995) for a full account of the methods, including
some discussion of parallel implementation issues.

6.2.1. Scenario decomposition

Scenarios (distinet paths from the root to one of the terminal nodes) are the units
Af dnnarmnacitian . Thaw ara linkad by the en-ealled non-anticinativity constraints
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Figure 9. The structures of the global constraint matrix and the normal system
maftrix for a model based on a six stage binary tree.
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which require that decisions in two scenarios should remain the same throughout
all those periods during which the scenarios are indistinguishable. See Fig. 10 for
an illustration. Thus, the stochastic problem can be defined as optimization of
decisions for separate scenarios with an additional non-anticipativity constraint.
This constraint is subsequently relaxed and penalized.
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Figure 10. Scenario tree example from Figure 8 expanded into separate scenarios
linked by nonanticipativity constraints.

6.2.2. Node decomposition

In this approach the tree structured problem (1) is seen as a collection of separate
node problems with local constraints 22, € X, linked by the transfer of decisions
xp along the branches. The constraints Ty, ,,) + Apen = by which define the
dynamics of the decision process, also link the subproblems. They are relaxed
by placing them in the augmented Lagrangian.

6.3. Nested Benders or regularized decomposition

Nested Benders (possibly regularized) decomposition (Benders, 1962; Birge,

1N0E. Dwvnrrnmanianlsd  TNORY 6 aviathar nada Aviantoard dasamnneition mathad for
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solution of our tree structured problem (1). At each nonterminal node n a syn-
chronization function Q(x:,) is appended to the original objective. It represents
the lower bound on the “cost to go”, i.e., the expected objective value increase
after applying the current decision x,, as the initial state in all the subtrees start-
ing at successors of node n. In subsequent iterations the approximation Q(u,)
is improved until it is locally accurate and the global minimum is attained.

The proposed value of x,, is passed from the current stage to the next one.
Given z,, the next stage subproblem find the best decisions wy. [or all & such
that p(k) = n and pass back the price (dual) information that allows to refine
Q(x,). When this process is viewed globally on the scenario tree. the solution
process passes in waves [rom one stage to another and synchronizes between the
stages. There are many possibilities of directing the flow of currently solved node
subproblems, however certain amount of synchronization is always required.

Nested regularized decomposition (Ruszezynski, 1993b) develops ideas of
nested Benders decomposition (Birge, 1985) and two the stage regularized de-
composition (Ruszezynski, 1986). Unlike its predecessors, it allows asynchronous
parallel execution of both master and slave problems at all nodes of the tree,
thus greatly diminishing the scalability concerns caused by the need to synchro-
nize for information passing. A complete deseription of the solution method
may be found in Ruszezynski (1993b).

7. Conclusions

We have shown how the management of a pension fund can be based on stochas-
tic dynamic optimization. The quality ol the decisions found by the optimization
algorithms depends heavily on the accuracy of the stochastic scenario model of
the future. The octal scenario tree presented in this paper seems to be rel-
atively simple (due to rather coarse diseretization) but already leads to very
large scale optimization problems. The future development lies in finer mod-
eling (with possible inclusion of expert opinion in the scenarios) together with
high performance parallel computing.

Objective functions equipped with understandable and user-tunable param-
eters (like risk aversion, target level of wealth, aspiration level for return, etc.)
allow the decision maker to learn about the decision problem at hand and ad-
just the optimization problem according to his/her risk preferences, which is
especially important in the setting of portfolio management of a pension fund.
By varying one or two parameters, a variety ol solutions can be produced and
compared with each other as well as with the outcomes of any fixed mix strategy
or other ad hoc strategy. The comparison of a whole distribution of solutions is
facilitated with an easy to understand graphical representation (the box plot).

It must be understood that we present a decision support tool and not a
decision making tool: the final decision must always be taken by a responsible
manager. Our tool’s major task is to aid the decision maker’s understanding of
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