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Abstract: Decision making in managing the asset and li ability 
structure of a pension fund can be supported by stochast ic dyn amic 
optimization. We di scuss our model, which is based on data analysis 
and forecast for the asset-side as well as a simul ation model for the 
liability side. 

The core of our decision support system consists of the following 
building blocks: a set of secur ities, a pricing module based on a 
multifactor Markov model to derive expected returns of secur it ies, 
a simulation-based model for liabilities, a carefully chosen objecLi ve 
function suitable for the pension fund and a stochastic optimi zation 
problem solver. We consider the use of different objectives in the 
model and decomposition techniques to solve the stochastic por tfolio 
optimization problem. Our final goal is to design an efficient paral lel 
implementation . 

Keywords: asset-liability management, pension fund mamlgc
ment, financial modeling, stochas tic dynamic optimization 

1. Introduction 

The growing importance of pension funds bas boosted the need for method
ologically sound principles for asset allocation. Whereas the economical side of 
pension fund management has been addressed by some authors (e.g ., Haber
man, 1994: Zimbidis and Haberman, 1993; Haberm an, 1993; Dufresne, 1986), 
the pertaining decision problem, as a problem of optim ization under un certainty 
has not yet been discussed thoroughly in literature. 

The characteristics of decision making for pension fund asset a llocation a rc: 

1 This research is part of the Specia l Research Program SPI3 POll A l!T10RA supporLcd by . . -. - . 
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• the planning horizon is long ( 1 0 - 30 years); 
• the liabilities are determined by the out-payments, which in turn depend 

on the mortality of the population; 
• the rules of operation of pension funds are often complicated, since they 

must determine how investment gains or losses are distributed among the 
participants; 

• in particular, through these rules, asset performance influences the stream 
of liabilit ies: bad asset performance allows the fu nd to reduce out-payments, 
whereas good performance leads to an increase; 

• legal (risk limi ting) and operational constraints restrict the possibl e deci
sions. 

In this paper, we describe the AURORA optimization model for managi ng 
pension funds. The model consists of sub-models for t he asset side, the li abili ty 
side, allows to specify the objective and constraints and contains a solver for 
the large scale linear or nonlinear program. Tbe software is being written in 
Fortran 90 and High Performance Forlran (HPF) for parallel execut ion. 

2. Modeling the assets 

The pension fund may invest in several asset categories, li ke national bonds, 
international bonds, national equities, international equities, etc. 

We will take here the example of a large Austrian pension fund, which decides 
how much to invest into two asset categories: 

1. national bonds, 
2. foreign bonds and stocks. 

After this decision is made, the further execution is passed to two portfolio 
managers (one for each category), who make the particular inves tments. Since 
the pension fund does not directly manage the variety of assets, we may assume 
that there are only two assets visible to the fund: asset 1 is the national bond 
portfolio and asset 2 is the other asset (stocks and foreign bonds). 

Asset 1 has lower return and lower variability in comparison with asset 2. 
Fig. 1 shows monthly returns of the two asset categories in the last two years. 

For the optimal allocation decision, the fu t ure possible developments of the 
assets must be modeled as a discrete stochastic process, in particular a discrete 
time discrete state Markov process. Since the computational complexity of the 
optimization problem is determined by the arc-degree of the transition graph , 
the number of successors of each state should be as small as possible. This is 
the reason why Markov processes with only two or three successors (birth-and
death processes) are popular. The simplest model is a random walk on the line 
with only two successors (the neighbors) of each state. We call this a binary 
lattice. 

For each asset category, we construct a binary lattice which describes the fu
ture returns of this category. Let us briefly describe, how the lattice is estima ted 
r .. --- - .L L _ L! -"--- : -- 1 ....1 ..... 4- ..... 
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Figure 1. Monthly return of asset 1 (solid line) and asset 2 (dashed line). 

The monthly returns R;m), which we have observed, are assumed to be 
i.i.d. and stem from a lognormal di stribution, i. e., log R(m ) ""' N({t, 0'2 ) . The 
parameters {l and 0'2 can be estimated from data. We are interested in yearly 
returns R(Yl , i.e., 

12 12 

R(y) = exp(L= log R~m)) =IT R;m). 
i=l i = l 

Clearly 

and by the well known exponential moments of the normal di stributi on 

E(R(Yl) = exp(12{l + 60'2 ) 

E([R(Yl j2 ) = exp(24{l + 240'2 ) . 

We want to find a two-point distribu tion D(y), which approxim ates the dis
tribution of R(Y). To this end, we have to find constants a and b, such that the 
-" - ~- ' ·- ~ ' ___ n l ,.(y) _ \ n 1 n(JJ) 1 \ 
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moments as R(Y ). The determining equations are 

a= E(R(Yl)- J E(R(Yl 2
)- [E(RCvl)F 

b = E(R(Yl) + J E(R(Yl 2
) - [E(RCul)J2 . 

Example. For the bond portfolio shown in Fig. I, we have p = 0.00:2Ci, cJ- 2 = 

0.0000291, which gives a= 1.0130, b = 1.05 1G, whereas for t he stock portfolio 
we have fj = 0.0077, (J 2 = 0.0004253 and a= 1.0214, b = 1. 1789. 

The pension fnnd makes investment decisions every G mont hs. T herefore, 
the square roots of the factors a and b are the final modeled ()-month returns . 
The constructed lattice for asset category :1 is sbowu in Fig. 2. l\ote that the 
numbers at the nodes of the lattice represent the return accumulated f'r orn now 
to the t ime at which a given node appe8 rs. 
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F igure 2. Example: lattice of accumulated asset return over t irn e. 
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3. Modeling the liabilities 

The liabilities of a p ension fund are delerrninecl by the tota l u rnou nt of pension to 
be paid to the benefici ari es in one period . To be rnorc precise , we £Ire i ntert~sted 
in the net cash flow resul t ing from paying ou t the pensions ~IJicl ,,.~. t he same 
t im e receiving contribut ions from t he customers who cont inttc to work. Both 
quantities depend on t he demographic: development or the con esponding ri sk 
group , where a risk group is defin ed as a group of incli vicluals (nu mbering a 
t housand or more people) whose pension cont ributions are ma naged together 
and who share a common reserve ca pita l. 

R isk factors for t he li abili ty side are: 
• longevity of t he benefi cia ri es, 
• insufficient number of new contributors enterin g, 
• stopping of contributi on due to econom ic: d iffi culti es of t he contr ibutors. 
T he ri sk contained in these uucertainti cs is a lso modeled by a bi 1wry lattice. 

However, construction of t hi s la tti ce cannot be based ou hi stori ca l data, sin ce 
these data are not available or , if avail abl e, are not very relewlllL. T he bes t way 
of dealing with the li abili ty risk fac tors is by simulation. 

Let us take again t he example of a. typical A ustri a.n pension fund. Each cus
tomer of the fund ca.u be seen as being in one possible state of n di screte Markov 
cha in . The customers random ly cha nge state according to t. !Je ir dernograplii c: 
status. 

Fig. 3 shows an example of a transition grapl1 for customers. ln en c:l1 state , 
payments flow from the customer to the fund or vice versa . The tnm sit iou prob
ab ili ties as well as the (sex , age and positi on dependent) rnoney fl ows between 
customer and fund can be estim a ted from hi stori c data of t he f111Jd , from its 
opera tional rules and from genera I demography. 

By simulating indepenclenLl y ea.d t of t he present c:us t.onw rs together wiLh 
tbe possible genera tion of new customers, we may get a pi c t.ttre of the fut .m e 
dis t ribu t ion of total money fl ows, i.e. Lhc li ab ili t ies. 

The scena rio lattice is then cle Uned by taking the independent. prod 1t ct. or the 
three lattices: t he lattice for asset ca tegory I , t he lattice for asset. category 2 
and the lattice for the li ab ili t ies . The fu ll scenari o latt ice is a ll oct.al laLLice: 
each node bas 8 = 23 successors. T l1 e size of t he result.i11 g l1i st.ory t ree grows 
ra pidly with the number of decision peri ods (sec Ta bl e I). 

periods # nodes # vari ab les # equat ions spars i Ly 

1 9 8 1 45 0.337E- 0 1 
2 73 657 365 0.'125E- 02 
3 585 5,265 2,925 0.5:l2E- O:l 
4 5,545 49 ,905 27,725 O.G6 1 E-0~ 

5 67,273 605,,157 336,365 OAG2E- 0Ei 
6 951 ,305 8,561,745 '1,756,525 0.327E- OG 

Table 1. Sizes of the optimi zation problem for the u11 derl y in g oc tal la tt ice. 
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4. Problem specific objectives and constraints 

T he objective of a pension fund is to guarantee a high return on the parti cipants' 
contributions . But the customers also depend on the pension fund to actuall y 
provide for their needs in the future. Therefore, safety of the portfolio is of 
paramount concern. 

There are institutional and legal rules regarding pension fund operat ion in 
Austria. Within t he constraints set out. by the legislators, the managers of the 
pension fund are responsible for babncing between t he incre<lsed return and 
increased security of t heir asset decisions. 

4.1. Decision constraints 

One decision aspect typical in pension funds (as well as , e.g. , trust funds) is the 
presence of legal and organizational constraints on decisions. Th ey are des igned 
to restr ict the ri sk of losses, whi ch wou ld adversely affect Lhe pensio11 ers. fn t he 
case of an Austrian pension fund the legal constrain ts requ ire !.hat: 

• no less than 40% of a ll assets be held in Austri an bond funds and cash, 
• no more than 40% of assets be held in equities and opti ons, 
• no more than 20% in rea l estate, etc. 

Due to further details in the legal defini t ions, in the real life exnmpl e we use 
t hroughout, up to 50% of assets may be held in equiti es. 

Within those legal constraints, the fund managers of a pa rt icul ar ri sk group 
may decide to limit their decisions fmth er by, e.g., requirin g at least GO% of 
assets in Austrian bonds. Thus, the general portfolio management problem 
with random external cash f-l ows (li abiliti es and customers' contributi ons) has 
to be extended to include such consLraints. Typi call y, Lhey can be written clown 
in form of linear inequa.lities. 

4.2. Objective functions 

Since we are designing a decision support sys tem , our maiu task is to present a 
decision proposal together with some represeutat ion of its poss ible consequences. 
vVe cannot simply perform one optimization aud present t he results to the pen
sion fund management as the only right decision. Furtherm ore, tiJe decision 
maker has to have the ability to influence the resul t ing dec ision, prefera bly by 
adjusting one or a few easily understandable pa rameters of tlw model. 

Tn decision making under uncertainty the result of a decision can no longer 
be well represented by, say, a single number. Instead, a di s t ri bution (or density) 
of a random vari able should be used. 

We visualize the t erminal wealth distribution by draw ing it together with a 
box-plot (as shown in F igure 4) . Such risk profil e can effec tively and intuiti vely 



762 G.Ch. PF'LUC and A. SW II~TA NOWSKI 

---- - - - -·------------- -~------

'·' ; ·· 

~I 
-<IIJ>---· 

'-c,C::-, ---:-, :c-,.-:e,.ooc:-c-7,o·i ---,~, - •. ~,--, \-, ~,, r.- ·--;-'1;--~ 
, ,o· 

95%quanllkl 

meatl • uppor ~0 1111 -S t;u x l fl rd -devt a li on 

mean.t l ;.> rue;mallsoluteclovtallon 

mean - 112 111 e~nilhsokltodovtliiiOJI 

5%quantil!! 

Figure 4. Graphical representation of termin al wealth dist.rib11ti ou. 
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Since the decision maker wants and needs to see the ri sk protile as t l1 c result 
of the decision, his (or her) attitude towards ri sk has to be 111 Mie n part of the 
objective. 

In the following we shall shortly d iscuss several possi b i t~ a ppnl<tchcs t.o ac
curate representation of decision maker 's goa ls by the model. 

4.2.1. (R isk adjusted) expected terminal wealth 

The operating rules do not a llow t he fun d to make profi t, sin ce a ll pmfits from 
asset allocation have to be redistributed among t he custom ers. llowcver , u 
steady growth of fund 's capital brings reputat ion and new customers to the 
fund. Therefore, at first it seems reasowJble to optirni ze t he tot;,il ex pected 
wealth of the fund a.t the end of the planJling hori zon, even tho1J gli Lhi s is the 
wealth of the customers and not of t he company. 

Terminal wealth is a random var iabl e, since it depends on I. he sce1 wrio. At 
each terminal node n of t he scenario tree, t he wea lth variable lV (n ) is known 
together with the probabili ty p(n) that t hi s node is reached. An exarnple below 
and Fig. 5 show how two decisions (resu lti ng from two fi xed mix strat.egics) are 
effectively com pared. 

Example. Following the fixed mix strategy, the portfol io is rearrnnged at each 
decision moment to meet the prespec: ifi cd proportions of t li e asset categories . 
As a consequence we liave to sell parts of a well performing asse t. category and 
buy a badly performi ng one. 

The termin al wealth di stribution with :'iO% and resp. 2f>% of t!JC' ri ski er asseL 
under these strategies turned out Lo be as s liowu ill F ig. 5. Expcc:tedl y, t he la rger 
proportion of the ri skier but more profitable asse t a ll ows a hi gher ex pected 
terminal wealth, but also causes larger variat ion of results across SCP IJ nri os. 

Clearly, maximizat ion of expected termin al wealth is not arnelJ abl e to deci
sion maker 's manipulat ion, un less, e.g., some measure of hi s/her ri sk aversion is 
incorporated in to the model (whi ch thus becomes a so called m.erl'n risk ·rnodel). 
Portfoli o safety is not easil y quantifiable. However , there exist qni tc a few 
formulations of t he stochastic optim ization problem object. ive t ha t. incorporate 
some risk penalty. Thus, the rnaximized objec tive could be composed of a surn 
of the expected wealth and th e (negative) penalty for ri sk. Sornc of the poss ible 
objective function form s are: 

• risk measured by mean abso lute deviation (MAD): 

E(W)- pE(IW - E(W) I) = L W(n)p(n.) 
n 

- p L IW(n)- L W(m.)p(m.)ip(n) , 
n ·m. 

where 0 < p ::; ~ measures t he degree of ri sk avers ion. 
The mean absolute devia tion E( IW - E(H' )I) is a good measm e of the ri sk 
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ti c dominance (SSD ) in a sense that a unique optimal sol u Li on of <I probl em 
with such objective is SSD effi cient (sec Ogrycza k and Ruszczy J'Jski , 1900, 
for thi s and rela ted results) . Also, th e upper bound on p ean be illC:rea.sed 
and the above result can be substanti ally strengthened in the casP of sym
metric distributions. 
The risk aversion factor p all ows to adapt th e objective to t·il f! specifi c 
needs of the decision maker. l\lloreovcr , J\!lAD preserves linea rity : if the 
terminal wealth H' is linear in t he decision variabl es :r, tl1 cm t he object.i vc 
is also linear in :r. 

• lower-semi vari ance as risk criteri on: 

E(W ) - PV E { ([W - E(w )eoo FT 
where 0 < p :::; 1 (hereafter [·]~ denotes projecti on on a elosecl interva l 
(a, b)). 
Aga in, such objective is consistent with SSD in Lh e sarne sense as above. 
Also, it is convex in the decisions a;, if W is liuear in :~: . 

Note t ha t since MAD is equi va lent to two times mea n a bsolute 8 c~m:i dc v iation , 

both those risk measures can be seen DS penalties for downside ri sk onl y. 

4.2.2. Objective with a target level of terminal wealth 

An approach rel a ted to t he termin al wealth max imi za tion is to set Lh e ta rge t 
termina l wealth 11lf and penalize uuderachievemcnt 

where c: > 0 will encourage attempts to gain more tha n 1'l1 wh eJl i?V(~ r possibl e. 
Manipul ation of 1~1 all ows the decision maker to s teer between solt1Li ons witiJ 
lower a nd higher expected returns. 

The resulting objective may be seen as nothing more th<m a concave (pi ece
wise linear) utility funct ion. However , usi11 g Lh c simple form1Jl a ti on <1bove (and 
its equall y simple interpretation) we steer d ear of the diffi cul t ies of ideutyfy ing 
the decision maker 's u t ili ty. 

4.2.3. Disadvantages of a terminal wealth objective function 

For individua l investors, ex pected (.ermi na l we< !I Lh or ri sk-adjusted Lerrni na I 
wealth seems to be the right object ive. For pension fund s, however, it a ppear:-; 
at lea st debat a ble. The main goal is, doubtl essly, to guarant.ee a secure and 
steadily growing outpayment of i11di v idual peusions. 

Let us have a closer look a t the operat ional cleta i Is . The wealth of the fund 
is a t all Limes divided in to two parLs : capi tal and (bounded) ri sk rC'scr ve. T ile 
pensions arc paid from and are proport ional to Ll1 e c.api ta I. The ri sk reser ve is 
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• when the fund's earnings are poor (less t han sonw rei:nm rate ·r. ), the 
reserve is used to make up for the losses, and wlH~ II it nms out, the out
payments are reduced , 

• high earnings (above some return rater*, r * > 1·, ) all ow w fil l t he reserve 
up to its upper limi t; any earnings above that are irnmecliately <1d cled to 
the capital and cause increased outpayments. 

It is easy to see th at in boundary situations, i. e., wheu t l1 e reserve is empt.y 
or full, increased outpayments reduce wealth wh il e decreased outpaymcnts in 
crease it. Thus, under such circumstances maximizat ion of wealth is exc1c Li y the 
opposite of what t he pensioners and the fund management rnay wish for. 

4.2.4. Objective with a target level of return 

One possibility of avoiding t he problems with mean ter minal wealth object ives is 
to set the target return rate i and pena li ze underachi evement whil e eJJ COIInlg;i ng 
earnings higher than ·r 

T 

max L E ( c[Rt (:.r: t) - r]6 00 
- [Rt (:1;1) - 1~] ~ 00 ) , 

t = I 

where c > 0. Note tha t in the above formu lat ion we take into accoun t th e returns 
in all periods. This reflects the pensioners' des ire for steady and predictable 
income throughout t he t ime of taking pensions. 

As it was in the case of t arget wea lth , manipulat ion of t <1 ilows the decision 
maker to influence solutions and their ri sk pro fil es . 

4.2.5. Objectives based on aspiration and reserva tion levels 

A related but slight ly more advanced model Lakes the ra ndom returns R1(x 1. ) 

and compares them to the two levels r * and 1'* . Below , the decision maker's 
expected satisfaction (measured from 0 to I) in all periods is maximi zed 

ma.xtE (-1
-[R1(xt) - r.] ;;· -T· ). 

t = l r* - r. 

More generally, any two return rates 7'1 < ·r2 can be used. T he lower one rep
resents the lowest acceptable perform ance, the upper oue is the retm n rate we 
aspire to achi eve under favorable circllrnstances. Tn rnulticriteriu opt iJni zatioJJ 
such levels are known as reservation and asviTation levels, respect ively. Vary
ing them, the decision maker may easily infl uence the optimal solu tion . Tt is 
important to note that their interpretation is clear Lo t he decision maker. 

This leads to a non-concave problem. T he single per iod probl em 

rn<>v H: ( r~·R(l) -l- 11 _ T\R(2)JT*\ 
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is non-concave in general. Its solution satisfies 

reservation 

Orig. preference -
Convexified preference 

aspi ration 

Figure 6. Objective function based on aspiration and reserva tion levels. 

767 

Following the common practice , we may repl ace the function x -----'~ [x ]~ with 
a concave function 

{ 

a-(1 + c)(a-1:) 
Wa,b(x) = 1: 

b+ E(x - b) 

:r < a 
a :S :r < b 
!J :S :r:. 

for some E > 0 (see Fig. 6 for illustrat ion) . Thi s formul a Li OII makes the ob.it•cL ive 
piecewise linear concave and is usable even in a lin e<u program . 

4.2.6. Empirical comparison of solutions with differ ent objectives 

In Fig. 7 and Table 2 the ri sk profiles for deci sions resulting from three di!Terent 
strategies are presented. Again, returns accumu lated over th e whole planning 
horizon are compared. 

A fixed m ix strategy (with 50% of each asset) is clearl y neith er t lw safest nor 
the most profitable with respect to the ex pec ted tcrmimd we;dt h JJJ ax irni zation. 
The risk adjusted MAD strategy (even with <1 very snw ll ri ;.; k <Wl' r ~ i o JJ l;1ctor 
- L' - f\ f\1 \ _ Lf' __ _ 
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Decision type 5% quantile Exp. val. 95% quanti le 
Fixed mix 1012.5310 1074.9568 11 39.8300 
MAD risk measure 1024.6790 1060.0931 1.096.0450 
Target return 1022.5470 1085.2518 1150.3970 

Table 2. Comparison of some solutions (values in thousands of Austrian 
schi II ings) . 
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The target following optimal strategy with a high target of ATS 1.1:2 billion in 
the last period fights for gains qui Le aggresively (and falls short of the target in 
most scenarios). 

The mentioned examples are just a small sample of all possible cornp<lrisons 
that a decision maker may have to rnake. Choice of the objective fti!J ction and 
its parameters (risk aversion factors, target levels, etc:.) is an irnportant part 
of the decision process. Visual representation of the crncial clwnwteri stics of 
the proposed solutions is necessary for the decision support system to be an 
acceptable tool for pension fund asset management. 

5. The stochastic dynamic optimization problem 

On the level of abstraction appropriate for considering the optinJi ;cdtion meth
ods, all uncertainties are treated in a uniform mann er. \IVe have a di screte time, 
di screte state stochast ic vector process X(t), t = I , 2, ... , T as the process of 
uncertainties. This vector process models all economi c events wl1icJJ are the 
source of uncertainLy and risks for the pension fund management, which in our 
case are asset returns as well as random contributi on and liabilit y s tremns. 

With the process X (t) we associate the hi story process 

X(t) = (X(1), X(2), ... ,X (t)). 

Since the process X has finitely many states, one may arrange all states of the 
history process in a finite tree, called th e scenario, or history, tree (see Fi g. 8). 
Its root is the starting state X1 = X( 1). The nodes of tbe tree rnay be nu rnbered 
n E N = {1, ... , N} so that each node number 'll corresponds i11 a one-to-one 
manner to a. history of the process X(-) up to the time a t which this node occurs. 
The (unconditional) probability of reaching node n is denoted by p,. 

At each node of the tree a decision is taken. The depth of each node cor
responds to the time for this decision. The decision is how much assets should 
be bought and sold in order to be always able to meet the liabiliti es (pay the 
pensions). 

The linearly constrained stochastic dynamic optimization probl em with. de
composable objective can be expressed most directly using the tree structure: 

( 1 ) 
V(n EN) 

where p(n) denotes the predecessor of node n, V(n E N) An E ~fm" xn,, T" E 

~m,xnd,l. To avoid treating the root node as a special case, we defin e Xp(r) = 
{xp(r)} and Xp(r) = const. For all practical purposes :r:p(r) may be treated as 
an initial state and the constant term Tr.Tp(r) may be subtracted from tl1e right 
1- ___ -1 - ~ - 1 _____ -'- _ __ 1 n _ 1 • 1' 1 J 1 1 -1 "r. n \ r· r· 11 1 1 t' 1 , · 
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Figure 8. An example of a scenario tree wit.h three periods. 
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If functions J.,(xn) arc linear , i. e., fn.(:~;n) = c;:::r;n· and the decorn posable 
constraints Xn E Xn have a simpl e forrn like, e.g. , .1:" 2 0, t.hen t i ll~ problem (1) 
becomes a large scale linear problem. 

In the case of non-decomposable ob jectives, e.g., in the mean ri sk models, 
t he formul a tion is slightly difl"ereut : 

nEN (2) 
V(n E N) 

Alt hough the change seems very small it bas wide ranging w nscquences for 
the opt imization procedure. The tree-ori ented expression is no longer as easil y 
amenable to decomposit ion as t he form ( !) is. 

Adding t he non-decomposable term F(:1;; : i E M <;;; N) to t lw objec tive 
creates an implicit all-to-all logical link between all nodes i E M. E.g., iu t he 
mean risk models M is typically the set of termin a l nodes of th e t ree. lu a 
case of decomposition methods t hi s forces a lot of add it iona l synchroni zation of 
results and in fact might require major rethi nk ing of t hose methods. ln di rect 
solution algorithms, like the interior poin t method mentioned in the following 
section, it causes unwelcome structura l changes of the probl em thc.tt" a lso add a 
lot to the practical diffi cul ty of solution. 

6. Selected optimization methods 

JL is neither possible nor desirable to present or even name all opt.i111i zat ion 
methods that can be applied to the problem at hand . As this pa rt o l' work is s till 
iu progress we shall out line only those methods t hat are considered candidates 
for impl ementation and appli cat ion within t. he AuRORA Fin ancial Ylrt.mtgement 
System. 

The huge size (see Tab le 1 for a calc:ul at ion of dimensions of a re<tl lil'e prob
lem) as well as computational effor t needed to solve the re<tli s t. ic optimi zation 
problems of this class call for solution methods which will ex ploit l.o Lhc limi ts 
t be most modern and powerful compu ters, especia ll y the para ll el ones. T hus, 
methods amenable to effi cient parallel impl ementa tion a re in L11 e foc us of our 
at tention. Again, detaili ng the methods fo r parallel impl ernenl.at ion is beyond 
t his paper's intended scope. 

At present all optimization methods li sted below are either Les t.ed for suit
abili ty to our problem , or in some stage of development. 

As noted in the previous section , in trodu ction of ri sk term s causes signifi caut 
and so far unresolved diffi culties for a ll of tltc opt imi zat ion met hucl s ct llTentl y 
considered. In the discussion below we wi II therefore consider 0 1 t! y t.h c decom
posable models: 

• expected termin al wealt h object ive (wiLh no ri sk term ), 
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• objective with a target level of return, 
• objective based on as pi ration and reservation levels. 

6.1. Direct solution by an interior point m et hod 

The li terature of interior point methods (IPMs) already iu clucles a large amoun t 
of excellent reviews, monographs and even textbooks. vVe shall therefore refer 
t he reader to Wright (1997) for a thorough introduction of IPJ\IIs, while we 
shall only remark briefl y on one aspect of effi ciency in the con tt~x L of pension 
fund asset liab ility management problem. See a lso, e.g., Bi rge <llld Qi ( 1990), 
Birge and Holmes (1992), C assmnnn (199 1), Czyzyk et al. ( 19(H) , Huszc:zyJ1 ski 
(1993a), Berger et al. (1991) and references therein for more i11 fonn a t.ion 011 
IPMs in the context of stochast ic programm ing. 

Thanks to a specia l structure of our problem ( I), a prim al-dual IPM t1 1ay 
be successfully used for solving rather large problem instances . In l PMs the 
efficiency of a symmetr ic (possibly sc rni - or quasi-) derl!li te fact.ori zat. ion of a 
so-called normal matrix determines the effi ciency of t he whole method. Tt turns 
out that our particular constraint matri x structure is very favorable when ern
playing the primal normal equations approach. Fig. 9 presents a 11 exrna.ple of 
a constraint matrix and the correspondi ng 11 orrnal equat ions matri x . Tt is easy 
to see that the normal mat rix is relatively spa.rse. In fact , both t he formation 
of the normal matrix and its factori zation t urn out to cause very li tt. le rdl iu , 
which is a precondi tion for a successful and effic ient sol11 t ion of Lhe problem. 
Even without further speciali zat ion of the a lgori thm relatively l<1 rge problems 
were a lready solved successfully. Consul t Dod:: 11 er et a!. ( 1998) fo r th e preci se 
statement of the optimiza t ion problem. 

6.2. A ugmented Lagrangian decompositions 

All the augmented Lagrangian decomposit ion methods rnentioncd below arc 
based on the same prin ciples: 

• the idea of relaxing inconven ient cOJlst.rain ts (i n ou r case __ .. t.l1 osc lillki11g 
decomposable subproblems) and introducing, instead, a l'orm or penalty 
for their violation, 

• Lagrangian augmentation wh ich enables the use of a simple iterat ive rncthocl, 
the so called multiplier algori t hm , for coordin a tion by means of <lcl jnst
ments of penal t ies (Bertsekas, 1982). 

Detailed statements are of necess ity left out. of t l1is work. T l1 e reader may 
wish to consult Ruszczyliski (1995) for a fu ll account of the methods, induding 
some discussion of parallel implementation issues. 

6.2.1. Scenario d ecomposition 

Scenarios (distinct paths from the root. to one of the termi nal nodes) are the uni ts 
~+ ..:J~n~~nA~ it- i An 'l'h ou ., ,. , li nl..-.orlln r 1-h., <:n-r·,-, IIPrl nnn -nn t.ic inaJ.i v i t.v constraints 
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50 100 150 2<KJ 250 

Figure 9. The structures of the global constrain t matrix and the norm al system 
matrix for a model based on a six stage binary tree. 
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which require that decisions in two scenari os should remain the same throughout 
all those periods during which the scenarios are indistinguisha ble. See Fig. ] 0 for 
an illustration. Thus, the stochastic problem can be defin ed as optimization of 
decisions for separate scenarios wit h an addi tionalnon-anti cipativity constrain t . 
This constraint is subsequently relaxed and penali zed . 

1-----~ C) 1-----~ 0 
2 5 

1--- ... ~o ~----... ~o 
6 

~-----~a 

1-------~ 0 1--------
4 

7 

0 
8 

0 
9 

0 
10 

Figure 10. Scenario tree example from Figure 8 expanded into separ ate scenarios 
linked by nonanticipativity constraints . 

6.2.2. Node decomposition 

In this approach the tree structured problem ( 1) is seen as a collection of separate 
node problems with local constraints Xn E Xn linked by the transfer of decisions 
X n along the branches. The constraints T nXp(n ) + An X n = bn which defi ne the 
dynamics of the decision process, also link the subproblems. T hey are relaxed 
by placing them in the augmented Lagrangian. 

6.3. Nested Benders or regularized decomposition 

Nested Benders (possibly regularized ) decomposition (Benders, 1902; Birge, 
1 ()Qt::: . D, ,.....,. , ,......, -u,~.-. 1 ... ~ 1 00 '1 1, I ~ ""' .-.. n n -f-1""' ' ' n n rl a A 1•l onh::.v l rl o r•Anln r~c;: it· i f\ n rnD l hnrl fr'll' 
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solution of our tree structured problem (1 ). J\ teach uonterminal noclc n a syn
chronization function Q(xn) is appended to t.hc original objectiVE'. It represen ts 
the lower bound on the "cost to go" , i.e., the expected objective val11e increase 
after applying the current decision ~rn as the initial state in all the subtrees start
ing at successors of node n. Tn subsequent i t.eratious the appro xi rnatio11 Q(:rn) 
is improved until it is locally accurate and the global rninirnum is attained. 

The proposed value of Xn is passed from the current stage to tlw next one. 
Given Xn, the next stage subproblem find tl1e best decisions :t:~c for all 1.: such 
that p(k:) =nand pass back the price (dual) informati on that allows to rdinc 
Q(J:n)· \Vhen this process is viewed globally on the scenario tree, tl1e solution 
process passes in waves from one stage to a notb er and synchronizes between the 
stages . There are many possibilities of directing the flow of currently solved node 
subproblems, however certain amount of synchronization is a hvuys req 11ired. 

Nested regularized decomposition (Ruszczy1iski, 1993b) develops ideas of 
nested Benders decomposition (Birge, 1985) a nd two the stage regulari zed de
composition (Ruszczyr1ski, 1986). Unlike its predecessors, it a I lows asynchronous 
parallel execution of both master and slave problems at all uocks of the tree, 
thus greatly diminishing the scalability concerns caused by the need to sy nchro
nize for information passing. J\ complete description of the solntion method 
may be found in H.t1szczy11ski ( 1993 b). 

7. Conclusions 

vVe have shown how the management of a pension fnnd can be basrcl 011 stochas
tic dynamic optimization. The quality of the decisions found by the opt.i rn izat. ion 
a lgorithms depends heavily ou the accuracy of the stochastic: scenario model of 
the future. The octal scenario tree presented in this paper seems to be rel
atively simple (clue to rather coarse discretization) but already leads to very 
large scale optimization problems. The future development I ies in fi ncr mod
eling (with possible inclusion of ex per t opinion in the scena rios) toget.her with 
high performance parallel computing. 

Objective functions equipped with understandable Rnclnser-tnnablc pan1m
eters (like risk aversion, target level of wealth, aspiration level for retnm , etc.) 
allow the decision maker to Jearn about the decision probl em at hand and ad
just the optimization problem according to his/her ri sk preferences, which is 
especially important in the setting of portfolio ma.nagement of a pension fnnd. 
By varying one or two parameters, a variety of solution s can be produced and 
compared with each other as well as with the outcomes of any Fixed rnix st ra tegy 
or other ad hoc strategy. The comparison of a whole distribution of solutions is 
facilitated with an easy to understa nd graphi ca l rep resentat ion (the box plot). 

Tt must be understood that we present a deci sion sv.ppm-t tool <tllCl not a 
decision making tool: the {]nal decision mnst always be taken by <l responsible 
manager. Our tool's major task is Lo aid t.l1 c decision maker's ltnd rrstaJl(] ing of 
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